LEC GaAs의 점결함에 대한 Melt 조성의 영향

The Effect of Melt Stoichiometry on the Native Defects of LEC GaAs

  • 고경현 (아주대학교 재료공학과) ;
  • 안재환 (아주대학교 재료공학과)
  • 발행 : 1991.02.01

초록

LEC법으로 성장된 GaAs의intrinsic defect에 의해서 형성된electron 및 hole trap의 농도와 성장시의 melt stoichiometry 와의 정량적 상관 관계를 DLTS법을 이용하여 분석하였다. EL2는 melt중 As의 분을 ([As]/{[As]+[Ga]})이 1.5에서 0.42까지 변하면 그 농도가 $10^{16}cm^{-3}$에서 $10^{11}cm^{-3}$정도로 감소되며, 이때 분율이 0.46 이하에서는 그 이상에서보다 As의 감소에 따라 급격히 감소하였다. 68meV 및 77/220meV의 경우는 As의 분율이 감소하면 증가하여 각각 $10^{15}cm^{-3}$$10^{14}cm^{-3}$ 정도의 농도를 가진다. 따라서 이 trap들은$GS^{AS}$와 관련된 defect들에 의해서 형성되었음을 알 수 있다.

The effects of the melt stoichiometry on the concentration of electron and hole traps formed by intrinsic defects of LEC GaAs were studied employing DLTS measurement technique. The concentration of EL2 were varied from $10^{16}cm^{-3}$ to $10^{11}cm^{-3}$ when the arsenic atomic fraction in the melt ([As]/{[As]+[Ga]} varied from 0.5 to 0.42. Specifically, when the fraction falls below 0.46, the 띠2 concentration start to decrease sharply. For 68meV and 77/200meV traps, their concentration increase inversely with the arsenic atomic fraction and have the values in the range of TEX>$10^{15}cm^{-3}$ and $10^{14}cm^{-3}$, respectively. It is, therefore, concluded that these hole traps originated from the intrinsic acceptor defects including $GS^{AS}$.

키워드

참고문헌

  1. Semi-Insulating Ⅲ-Ⅴ Materials(Evian) Stoichiometry- Related Centers in LEC GaAs D.E. Holmes;K.R. Elliott;R.T. Chen;C.G. Kirkpatrick;S. Makram-Ebeid(ed.);B.Tuck(ed.)
  2. Semi-Insulating Ⅲ-Ⅴ Materials (Kah-nee-ta) Identification of $As_{Ga}$ Defects in Lec GaAs K.R. Elliott;R.T. Chen;S.G. Greenbaum;R.J. Wagner;D.C. Look(ed.);J.S. Blackemore(ed.)
  3. J. Appl. Phys. v.51 no.5 Compensation Mechanisms in GaAs G.M. Martin;J.P. Farges;G. Jacob;J.P. Hallais;G. Poiblaud
  4. IEEE Trans. v.ED-29 Compensation Mechanism in Liquid Encapsulated Czochralski GaAs : Importance of Melt Stoichiometry D.E. Holmes;R.T. Chen;K.R. Elliott;C.G. Kirkpatrick;P.W. Yu
  5. Defects in Electronic Materials, MRS Symp Proc. v.Ⅴ104 Endor Microscopy on Deep Level Defects in GaAs J.M. Spaeth;A. Gorger;D.M. Hofmann;B.K. Meyer
  6. Appl. Phys. Lett. v.49 no.17 Semiconducting/Semi-Insulating Reversilbility in Bulk GaAs D.C. Look;P.W. Yu;W.M. Theis;W. Ford;G. Mathur;J.R. Sizelove;D.H. Lee;S.S. Li
  7. J. Appl. Phys. v.62 no.7 Photoluminescence in Electrically Reversible(Semiconducting to Semi-Insulating) Bulk GaAs P.W. Yu;D.C. Look;W. Ford
  8. 13th Int'l Conf. on Defects in Semiconductors Nonstoichiometric Defects in GaAs and the EL2 Bandwagon J. Lagowski;H.C. Gatos
  9. J. Cryst. Growth v.36 no.125 Native Defects and Stoichiometry in GaAlAs G.M. Blom
  10. J. Phys. Chem. Soilds v.40 no.613 Revised Calculation of Point Detect Equilibria and Non-Stoichiometry in Gallium Arsenide D.J. Hurle
  11. J. Appl. Phys. v.62 no.8 Characterostics of GaAs with Inverted Thermal Conversion C.H. Kang;J. Lagowski;H.C. Gatos
  12. Semi-Insulating Ⅲ-Ⅴ Materials (Evain) On the Behavior and Origin of the Major Deep Level (EL2) in GaAs J. Lagowski;J.M Parsey;M. Kaminska;K. Wada;H.C. Gatos;S. Makram-Ebeid(ed.);B. Tuck(ed.)
  13. Appl. Phys. v.A no.36 Mechanism for the Creation of Antistie Defects during Combined Climb-Glide Motion of Dislocations in Sphalerite-Structure Crystals T. Figielski
  14. Phys. Rev. v.B no.35 Electronic Structure and Binding Energy of the $As_{Ga}$-As₁pair in GaAS : EL2 and the Mobility of Interstitial Arsenic G.A. Baraff; M.Schluter
  15. J. Phys. Chem. Solid v.32 Calculation of Point Defect Concentrations and Nonstoichiometry in GaAs R.M. Logan;D.T.J. Hurle
  16. J. Appl. Phys. v.65 no.2 Native Acceptor Levels in Ga-rich GaAs M. Bugajski;K.H. Ko;J. Lagowski;H.C. Gatos
  17. Appl. Phys. Lett. v.41 no.6 Evidence of Intrinsic Double Acceptor in GaAs P.W. Yu;W.C. Mitchel;M.G. Mier;S.S. Li;W.L. Wang
  18. Phys. Rev. v.B no.33 Binding and Formation Energy of Native Defect Pairs in GaAs G.A. Baraff;M. Schluter