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Abstract

Two important sensitivity issues over shortest path problems have been discussed.
One is the problem of updating shortest paths when nodes are added and when the
lengths of some arcs are increased or decreased. The other is the problem of
calculating arc tolerances, that is, the maximum increase or decrease in the length of a
single arc without changing a given optimal tree. In this paper, assuming that there
exists a parameter of interest whose perturbation causes the simultaneous changes in
arc lengths, we find the invariance condition on these simulthaneous changes such that

the shortest path between two specified nodes remains unchanged.

The shortest path problem is one of the fundamental problems in the area of network
programming and many efficient algorithms have been proposed in the literature (e.g. [3, 4]).
Two important sensitivity issues have been discussed. One is the problem of updating shortest
paths when nodes are added or deleted and when the lengths of some arcs are increased or
decreased [6, 7, 11, 13]. The other is the problem of calculating arc tolerances, that i1s, the
maximum increase or decrease in the length of a single arc without changing a given optimal
tree [ 8, 12, 14].

However, in network applications, a node often serves as a decision point and the arcs
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emanating from this node represent possible alternatives, the costs of which naturally depend
on some attribute or parameter of the decision point. In this situation, any perturbation in the
parameter may affect the alternative costs in a dependent and simultaneous fashion. A proper
sensitivity analysis should be capable of handling these simultaneous changes in arc costs.

In this paper, we assume that there exists a parameter of interest whose perturbation causes
the simultaneous changes in arc lengths. We wish to find the invariance condition on these
simultaneous changes such that the shortest path between two specified nodes remains
unchanged. The invariance condition is then applied to derive the sensitivity range of the

parameter. Computational aspects are discussed and numerical examples are presented.

1. Shortest Path Problems

Consider a directed acyclic network G=(J, A) with node—set J={1,---, n} and arc-set ASJX
J. In addition, there is a length(or travel time, or cost, etc). ¢,&R associated with each (i, j).
Throughout the paper, it is assumed that the nodes in J are topologically ordered: that is, (i, j)
€ A implies i <j. This ordering is always possible for a directed graph. The problem of finding
the shortest path from node 1 to n can be efficiently solved by either of the following

recursions.

I:fl:O
fi=min {f,+cy}, j=2, =+, n (1
L, )EA
or
£.=0
|:g,:min {e.+g), i=n—1, -, 1 (2)
LNeEA

where f, represents the length of the shortest path from node 1 to j ;g, the length of the
shortest path from node i to n.
Once both recursions (1) and (2) are solved, it is a simple matter to evaluate the relative

penalty of an indivdual node or arc with respect to the shortest path 1—n. Since any path 1—n
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passing through node j has at least the total length of f+g;, the relative penalty of nodej can

be expressed in terms of

f+g—1fn (3)

The value in (3) is zero if and only if node j is in the shortest path 1—n.
Any node with a positive value in (3) can be eliminated from the network without affecting the

shortest path 1—n. Similarly, the relative penalty of arc (i, j) can be expressed in terms of

f|+cz,/+gi_fn- (4)

The value in (4) is zero if and only if arc (i, j) is in the shortest path 1—n.
As long as the nonnegativity of (4) is maintained, the arc length ¢; can be changed without
affecting the shortest path 1—n.

Expressions (3) and (4) also can be obtained from an L.P dual formulation of the shortest path

problem. The optimal dual slack associated with arc (i, j) is given by

Ei|:f1+cz/—f. (5)

which measures the minimum regret for taking the shortest path 1—i and then arc(i, ;) to
reach node j. Intuitively, thare is no regret for taking arc (i, j) if it is in the shortest path from

node 1tokwithj < k < n, or

¢ci,= O0for (i, ) EPL i<k <n (6)

where P* is the set of arcs in the shortest path 1—k. Notice that ¢, = 0 for (i, )& Pt

Let G denote the network G=(J, A) with slack ¢, instead of cost ¢, for each (i, j) in A. We
call G the cost network and G the slack network. Given G, we define, f, as the length of the
shortest path 1—j and g, as the length of the shortest path i—>7n. Then fi=0,j=1, - , n by (6)

and the values of g are obtained via a recursion similar to (2). Expressions (3) and (4) now can
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be rewritten as follows:

fl + gvp‘fn - é, (7)
and
ﬁ + Ci; + g — fn = E|| + gl- (8)
To verify (7), consider a path [, k,------ , b, njin G. Its length 1s

Cjkl + Cl:]/rf + -+ C,@-[n
= —fi+ Feg, _fA‘) + (fy, ey, _sz) + ot (fk[ +Ckln =)+

= _f/+ né;("_c_k‘k!_k +Ek{n +fn

If(s, ki, -, k; n] is a shortest path j—n, it follows that g, = —f, + g, + f, or (7), which
establishes the equivalence between G and G in terms of shortest path problems. Algebraically,
this equivalence is a consequence of the fact that the standard form LP’s objective gradient ¢
can be replaced by ¢—#A for any conformable constraint matrix A’and row vector 7 without
changing the primal optimal solution. Expression (8) follows immediately upon adding f, + ¢, —
fi=c,to (7).
Note that g, measures the minimum possible regret for passing through node j en route node 7.
This observation is useful in finding all e-optimal paths when we solve a shortest path problem
on G=(J, A). Specifically, if we let Je={j €J | g< e} and Ae={(i,j) € A | i, j & Je}, then

network (Je, Ae) contains all e-optimal paths 1--n (cf. [1]).
2. Invariance Conditions

We now suppose that some perturbation in the parameter of interest has increased the length of
arc (i, j) by 4, such that

i > oy + 4
for all (i, /) in A. We wish to find the invariance condition on the unknowns 4, such that the

shortest path 17 remains unchanged.

Let G, denote the perturbed cost network ¢, +4, V(i j) € A
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Similarly, let G, denote the perturbed slack network with c+d, Vi, i) € A Then the
equivalence between G and G remains valid for their perturbed versions, G, and G,, since the
quantities 4,’s were simply superimposed for the construction of G, and G,. This observation
may be summarized as follows:

Result 1 The shortest path 1—n on G is optimal on G, if and only if the total of perturbed slacks

on the shortest path 1> non G,is 3, cpdh

In the following subsections, structural assumptions on 4, are considered, on which Result 1 can

be applied to derive invariance conditions for the shortest path.
2.1 Single arc length

A simplest assumption would be that the length of a single arc can be increased or decreased

independently, or
A0 only if (i, j)=(s, t) )

for fixed (s, t). It suffices to consider only the paths 1—n that pass through arc(s, t). There
are two cases in which (s, t) €P* and (s, t) €P%
I (s, t) &P% theri any path 1—7 passing through arc (s, 1) has at least the total of

perturbed slacks.
f+c+d+a

which must remain nonnegative since 23, y+4 =0
M n- (il .

Result 2 Under the assumption (9), if (s, t)&P, the shortest path I—n on G 1s optimal on G, if

and only if

A= —cy—g,

On the other hand, if (s, 1) € P*, then the invariance condition on 4, can be simplified to

A< s, 1)

where

f.is, t)= min {ci+gl).
(L) EAN{(s, 1))
i<s<j
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Note that [(s, t) represtents the length of the shortest path 1—n in the network G with arc(s,
t) deleted. An efficient algorithm for calculating the values of f{s, t) is provided in the

appendix, which runs in O(1/6n*) time.

Result 3 Under the assumption (9), if (s, t )& P, the shortest path 1—n on G is optimal on G,

if and only if

As( Si ’(Sy t)
2.2 Node parameter

Another useful assumption would be that the lengths of all arcs emanating from a given node

depend on its own parameter, or

A+0only if isi=s (10)

for fixed s. Since this i1s a simple extension of the assumption (9), the following results are
easily understood and verified by the same reasoning.
In Result 5, f (s) represents the length of the shortest path 1—n in the network G with node s

deleted, or

fs)= min {c +g}.
(i,peEA

1<3<]
The values of £(s) can be collected during the process of calculating the values of {,(s). See the

appendix for details. Also, notice that f ’(s) =0 if node s is not in the shortest path 1->n.

Result 4 Under the assumption (10), if (s, J)EP, for any j, the shortest path 1—n on G is
optimal on G, if and only if

4,> —c,—g, for each (s, j)E A.

Result 5 With the assumption (10), if (s, t)&P, for some t, the shortest path 1—n on G is

optimal on G, if and only if
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Av[ S?’;(S)
and

d,—4.< c,+g; for each (s, j)E Abut jFL.

2.3 Time parameter

There are important network applications in which nodes represent time points, and each arc
represents an activity whose cost (length) depends on the parameters of those time points that
are covered by the activity.

For example, see project sequencing problems [5], equipment replacement problems [p. 226,

157, and production planning problems [16]. A practical assumption then would be that

4+0 only if i<s<j (1)

for fixed s. The parameter of node s having this property is called a time parameter.

If s=n, there is nothing to do for sensitivity analysis. If 1<s<n, every path 1—n contains
some arc whose length is subject to change.
Hence

Result 6 Under the assumption (11), if (L,m)EP% with |<s<m, the shortest path 1-n on G s
optimal on G, if and only if

An—4,< citg, for each i, )€ A, i<s<j.
2.4 Stage parameter

Consider a network G=(J, A) in which J={1,---, n} can be partitioned into m disjoint sets J,={1},
J,,--Ju={n}, and a one-step transition occurs from J, to J,, then to Js, and so on, finally to Ja
so that A={(i ) | i € Ji, j€Js1, k=1,---m—1}. Subscript k of the subset J, is called a stage

variable [p.71.27]. Then we may assume that, for a fixed &,

A+#F0onlyif i € Joand j € Jin (12)
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in order to investigate the sensitivity of the shortest path 1—n with respect to a parameter of
stage k. Since every path 1—-n contains some arc (i, j) withi € J, and j € J..,, the invariance

condition on the A4s is given as follows:

Result 7 Under the assumption (12), if (s, t)&P* with s € J, and t € J,,,, the shortest path 1

—n on G is optimal on G, if and only if
A —A,<c,+g, for each (i,j) € Asuchthati € Jyy j € Jowr

3. Computational Aspects

Given a shortest path 1—n with the values of f, the first step in finding the invariance
conditions is to calculate the values of ¢, and g, whick is straightforward. In the second step,
for each case of Results 2—7, the number of inequalities to be evaluated is proportional to the
number of perturbed arcs. In particular, for Results 3 and 5, we need the values of { (s) and {",
(s) to complete the evaluation. The appendix lists a FORTRAN program which calculates the
values of f{(s, t) for ali(s, t)EA in O(1/6n*) steps of comparisons. The values of L(s) can be

obtained as a by-product.

In a practical viewpoint, each 4, corresponds to an unknown in the system of inequalities to
be solved. Consequently, without a proper functional form of 4, the usefulness of the
invariance conditions in yieding the sensitivity range of a parameter would be diminished for
large network applications. For notable exceptions, see the parametric study of production
planning problems [9] and project sequencing problems [10] in which the simultaneous
changes in arc lengths are captured into a closed—form function of the parameter. The

following section illustrates a simple application.

4 Numerical Examples

Consider a network G=(J, A) in which the arc cost ¢; is given as

ci,:K,+g(k»—i+1)tk (13)
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where parameters K, and t, are any real number. We wish to find the sensitivity ranges of
these parameters such that the shortest path 1—n remains unchanged for any value in the
range.

Using the problem data of Table 1, we illustrate the use of the invariance conditions given n
Section 2 in order to find the sensitivity range of each parameter. The corresponding cost

network G is given in Figure 1. Note that node 5 is a dummy. By inspection, we have

K
1 3 —T
2 5 2
3 2 4
4 4 3

Table 1: The Problem Data

leO, f2:4’ .](3:87 f4:147 f5:20

and the shortest path 1—-5is [1, 3, 5]. The slack network G 1s constructed as shown in Figure

2. Also, by inspection, we have

and

f1)=cc, §2)=0, K3)=6, £@)=0, §B)=.
Examining the functional form of ¢, in (13), we see that any perturbation of parameter K,

causes the simultaneous changes in all the costs ¢, with i=s and j > s, which is an instance of

the assumption (10). Hence, the invariance conditions in Results 4 and 5 can be applied to find

the sensitivity range of parameter K,. Let 4K denote the change in K..

Then

A4=AK only if i=s and ] > s (14)
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As an example, we calculate the sensitivity range of parameter K,. Since node 3 is in the
shortest path 1—5, it follows from Result 3 that d:=dK<£(3)=6 or JK<6. Therefore, the
current shortest path 1-5 remains unchanged for any value of K, not greater than 8.

Similarly, we see that any perturbation of parameter t, causes the simultaneous changes In
all the costs ¢, with i<s<j so that Result 6 can produce the sensitivity range of . Let /t
denote the change in t.. Then

di=(s—i+1)4 only if i<s<J. (15)

For example, for node 4, we have

415:4475, Az:’):SAL A:;:’,ZZAL ds=2&

and
Hys—dis== —24<12+0
hs—ths== — A< 840
Dys—dys== A< 140
so that
—6< <.

Therefore, the current shortest path 1—5 remains unchanged for any value of t, between —3
and 4. The complete list of the sensitivity ranges of parameters K, and ¢, is provided in Table 2.

Verification of these sensitivity ranges is left as an exercise for the reader.

S K, N
Lower limit | Upper limit | Lower limit | Upper limit
1 - +oc — + o
2 2 + oc — o 4
3 —oc 8 0.5 +
4 3 + o —3 4

Table 2: The Sensitivity Ranges of K, and ¢,
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Figure 1. The Cost Network G

Figure 2. The Slack Network G
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5. Conclusion

In this paper, we conducted a parametric study of the shortest path between two specified
nodes with respect to the simultanoues changes in arc lengths, while the traditional study has
mainly focused on the problem of updating shortest paths or calculating arc tolerances. So-
called invariance conditions were derived for each case of single arc length, node parameter,
time parameter, and stage parameter. Although the whole procedure for finding the sensitivity
range of each parameter is relatively simple as demonstrated in Section 4, we must admit that
the simultaneous changes in arc lengths should be captured into a proper functional form for
efficient implementation. Functional forms of 4, as such can be found in important network
applications, for instance, production planning problems [9] and project sequencing problems

{10]. We hope many more applications would be found in near future.
Appendix

The following lists a FORTRAN program for calculating the values of f,(s,t) and Ti(s), 1<s<t
<n, given the values of ¢, and g. In the program, variables F1(S, T) and F2(S) represent f,(s,t)
and £{s), respectively. Function XMIN(S) returns the value of min, <, {c,+g,}, while suroutine
YMIN(S, Y1, Y2, JY) returns the minimum(Y1) and second minimum(Y2) over E\,+Ag_,, j=s+

1,---n, and index JY with the value of Y1. The whole program runs in (1/6n*) time.
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10

20

700
710
800
810

PROGRAM INVARIANCE
INTEGER S, T
COMMON N, C(10, 10), G(10)
DIMENSION F2(10), F1(10, 10)
OPEN(7, FILE=‘SHORT.DAT")
OPEN(8, FILE="‘SHORT.OUT")
READ(7,700) N
DO 10i=1,N-1
READ(7,710)(C(LJ),J=1+1,N)
CONTINUE
READ(7,710) (G(J), J=1N)
DO 20S5=1,N
F2(S) =XMIN(S)
WRITE(8,800) S,F2(S)
CALL YMIN(S,Y1,Y2,JY)
DO 20 T=S+1,N
IF(T.EQ.JY) THEN

Y=Y2
ELSE

Y=Y1
ENDIF
F1(S,T)=MIN(F2(S), Y)
WRITE(8,810) S,T,F1(S5,T)
CONTINUE
STOP
FORMAT(I10)
FORMAT(5F10.0)
FORMAT(15,5X,E20.6)
FORMAT(215,E20.6)
END

10

FUNCTION XMIN(5)
INTEGER 5

COMMON N, €(10,10), G(10)
XMIN=1.0E+37

DO 101=1,5-1

DO 10 [=S+1,N
X=C(LJ)+G(D)
IF(XMIN.GT.X) XMTN=X
IF(XMIN.EG.0.0) RETURN
CONTINUE

RETURN

END

SUBROUTINE YMIN(S,Y1,Y2,JY)
INTRGER S
COMMON N,C(10,10), G(10)
Y1=1.0E+37
Y2=1.0E+37
JY=5
DO 10 J=S+1,N
X=C(ES,H+GWU)
IF(Y1.GT.X) THEN
Y2=Y1
Y1=X
JY=J
ELSEIF(Y2.GT.X) THEN
Y2=X
ENDIF
CONTINUE
RETURN
END
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