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A STUDY ON NUMERICAL METHODS FOR
ORDINARY DIFFERENTIAL EQUATIONS.

Dong WoN YU

0. Introduction

In order to obtain numerical solutions of initial value problem for
stable system with large Lipschitz constants, Lawson [4] consider a
function

2(t) = exp(~tA)y(t),

where A is a real square matrix and it is appropriately extracted from
the Jacobian matrix of the system.

In this paper, we consider an exponentially dominant order a of a
problem, and the matrix A is replaced by this number a in the above
function. In Section 1, the Runge-Kutta method and the multistep
methods generalized by this function. When the exponentially domi-
nant order is positive, its numerical solutions can be accurately com-
puted by these generalized methods. In Section 2, A- and B-stability
of the generalized Runge-Kutta methods are tested. Finally, in Section
3, a concept of AB-stability is introduced. And we study some suffi-
cient conditions under which the generalized Runge-Kutta methods are

AB-stable.

1. Generalized Formulas

In the following, we deal with the initial value problem
(1) ¢ =fty@), f:R™ SR™, >0, y(0) =y,

where f = (f, f%,---, f™) is possibly nonlinear in the the dependent
and independent variables.
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Let us denote the exact solution of the initial value problem (1.1)
as y(t) = (y'(¢), (1), -+ ,y™(t)), where y/ : Rl — R'. We assume
that each component y’(t) is exponentilly dominated by the term c;(t)
exp((aj +15;)t) as t — oco. '

tlim (1) — c;(t)exp((a; +iB)))| =0, i=1,2,... ,m.

Here c; is a polynomial of ¢, and a; and §; are suitable constants. Then
there is a real number « such that

a = max{aj, a2, ,qn}.

This real number « is called an exponentially dominant order of the
initial value problem (1.1). Throughout this paper we shall consider
only such exponentially dominent problems.

Let us consider the function 2} (t) = c; exp(a;t) and its tangent line
at (t,,2'(tp)):

ZH(t) = 2 (tn) + @iz (ta)(t — tn),
then a; can be obtained as follows:

2 (tgr) — 2 (Es)
T hzi(ty,) ’

h=tpg1 —tn, i =1,2,...,m.

Similarly, if the problem (1.1) has the exponentially dominant order,
we have

(1.2) ' . _ '
. yz(tn-H) — y'(tn) . fita, yl(tn)) .
a; = lim : = lim ~———7—%  1=1,2,...,m,
n—o0o hy'(tn) n—oo y'(tn)
where

yi(tn+1) = yi(tn) + hfi(tny yi(tn))'

Let us now apply the function

z(t) = exp(—at)y(t)
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to the initial value problem (1.1). Then we have a transformed initial
problem for z(¢):

(1.3) z'(t) = exp(—at) g(t,exp(at)z(t)), >0, z(0) = yo,
where
(1.4) g(t,2) = f(t,2) —az, g¢:R™"1 S R™.

In order to obtain a numerical approximation of the transformed
problem (1.3), we intend to use the s-stage Runge-Kutta methods given
by

C1|a11 @12 - - Qg
C2|az1 azz - -+ azs
(1.5) B
Cs [Qg1 Qg2 "' Qg = c|A
| 5 b - b, bl
where ¢; = 31_, aij, A = [aij], b7 = [b1, bz, -+, bs) and T = [e1, c2,- -
¢s). Then we have
s ~
(1.6) Top1 =Tn+hY biki, n=0,1,2,..,
=1

where

iéi = eXP(_atn,i) g(tn,ia eXP(atn,t)xn,i)’

L]
$n,i=$n+hg ajjk;j, 1=1,2,...,s.
Jj=1

In this case h = t,41 — ty, ta,i = t, +cih, and z, and z, ; represent
the approximations to z(¢,) and z(t, ), respectively.

We observe, however, that the product of the form exp(at, i)z, in
the equation (1.6) approximates to the solution y(¢,,:) of the original
problem (1.1). So we can replace z,, z,; and ki by exp(—aty)yn,

209



Dong Won Yu

exp(—aty i )yn,i and exp(—atn,i)g(tn i, yn i), respectively. Then we have
the generalized Runge-Kutta (GRK) methods with the exponentially
dominant order « :

(1.7) Ynt1 = exp(ah)y, + h Z bi exp((1 — ¢;)ah)k;,
i=1

where
ki=g(tnisyni), 1=1,2,...,s,

Yn,i = exp(ciah)yn + h Z aij exp((ci — cj)ah)k;.

j=1
REMARK. If we apply the linear multistep methods

k k
Z QiYntp1-i = h Z bif(tnti—isYnt1-i)
1=0

i=0

to obtain a numerical approximation of the transformed problem (1.3),
the generlized linear multistep (GLM) methods with the exponentially
dominant order « is similarly derived as follows:

k k
Z a; exp(tah)yps1-i = h Z biexp(tah)g(tnt1—i, Ynt1-i)-

=0 1=0

2. Stability Properties

Let us consider the scalar test equation

(2'1) yl(t) = )‘y(t)’ t>0, y(O) = Yo,

where A is a complex number and Re()) is nonpositive. By applying
the GRK methods (1.7) to the equation (2.1), we have obtained

(2'2) Yn+1 = exP(ah)R(h;\)yna
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where A = A — a, and R is the stability function of the original Runge-
Kutta methods (1.5)

det(] — 6A + 6ebT)

R®) = det(I ~ 9A)

or R(8) = 14667 (I—-6a) e (see [3] & [5]).

In this case A and b are the coefficients of the original Rung-Kutta
methods (1.5) and e = [1,1,...,1]T.

Using the formula (1.2), we know that the exponentially dominant
order of the test problem (2.1) is A. Hence A = 0, R(k)) = 1 and

Yn+1 = exp(Ah)yn.

Therefore we have the following result.

PROPOSITION 2.1. The GRK methods (1.7) is A-stable in the sense
of Dahlquist [2].

Let us replace the test equation (2.1) by the nonautonomous scalar
equation

(2.3) y'(t) = A(t)y(t), >0, y(0) = yo,

where A : R — C is continuous and Re(A(t)) is nonpositive. And
applying the GRK methods (1.7) to the equation (2.3), we have

Yn+1 = exp(ah) K(A) yn,

where
(2.4)
A = diag[h{A(tn+c1h)—a}, R{A(tn +c2h)—a}, - ,R{A(tn +csh)—al}]
and
—_— T -
K(A) =3 —AA+eb ) K(A)=1+bTA(I - AA) .

det(I — AA)

Then we have the following result.
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PROPOSITION 2.2. The GRK methods (1.7) is AN-stable in the
sense of Burrage and Butcher (1], if the stability function K satisfies

|K(A)| < exp(—ah),

where A is the diagonal matrix given by (2.4).

We now consider the nonlinear test system

(2.5) y'(t) = f(t,y(®)), f:R™' S R™, t>0, y(0)=yo,

such that

(2.6) (f(ty) = f(t,2),y = 2) <wly—=|*, » <0,
for all y, 2 € R™ and ¢t € R. Here,(.,.) is an inner product on R™ with
the corresponding norm, ||.||. Then the following inequality follows the

equation {1.4) and the inequality (2.6).

2.7 (g(t,y)—glt,z), y—2) < Plly-2|*, P=v-a.

Let yn, yn+1 and yn ; be numerical solutions of the test system (2.5)
defined by the GRK methods (1.7), and suppose that z,, zn41 and zp ;
are solutions obtained by perturbations or different starting values of
the test system (2.5), which satisfy

Zn4+1 = exp(ah)z, + h Z biexp((1 — ci)ah)g(tn i, zn,i),

t==1

zni = exp(ciah)zn + h Z aijexp((ci — ¢j)ah)g(tn,j, 2n,5)-
1=1

If we use the algebraic stability in the sense of Burrage and Butcher
(1], then we have the following theorem.

THEOREM 2.3. The GRK methods (1.7) is BN-stable in the sense
of Burrage and Butcher [1], if the following conditions are satisfied:

1. the original Runge-Kutta methods (1.5) is algebraiclly stable,
2. v<a<.
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Proof. We define u = yn — 2n, W = Ypt1 — Znt1, Vi = Yn,i — Zn,i
and ¢; = hexp(—ciah){g(tni;yYn,i) — 9(tn,i, 2n,i)}. Then the following
relation can be deduced from v; :

L]
u = exp(—ciah)v; — Z ai;d;.
1=1
By substituting the above expression into the squared norm of w, we
obtain
2

lwl* = exp(2ah)

u +Zbi¢i

i=1

—exp(2ah){|[ul|2+2Zb (u, ) + Z bib; (i, 65)}

t,j=1

= exp(2ah){]ul? +22b exp(—ciah) (vi, ¢ Z mij (¢i, di)}

=1 i,j=1

where mij = b,'a,']' + bja]‘,' — b.'bj.

Since the original Runge-Kutta methods are algebraically stable, the
matrix M = [m;j] is nonnegative definite. Thus, the last term on
the right hand side of the above equation is nonpositive. From the
inequality (2.7) and the fact of ¥ < a < 0, we have (v;, ¢;) < 0. Hence
we have ||w|| < ||lu||, which means the BN-stability.

Since BN-stability implies B-stability, we have

COROLLARY 2.4. Under the assumption of theorem 2.3, the GRK
methods (1.7) is B-stable.

Let us now denote the matrices P; as follows:
P =[Py}, i=12,...,s,
where
Pijk = Qija5k + aikar; — aijaik, t,5,k=1,2,... s

Then we can similarly verify the following corollary.
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COROLLARY 2.5. Suppose the following conditions hold:
1. a;x 20, 3,k=1,2,...,s,
2. 520, t=1,2,...,s,

3. the matrices P; are nonnegative definite, 1=1,2,...,s,
4. v<a <0,
then
ni — zn,ill < |lyn — 2nl, i=1,2,...,s.

3. Error Analysis

We consider again the transformed initial value problem (1.3). It
can be written in an integral form

z(t) = z(0) +/(; exp(—art)g(7,exp(at)z(7)) dr.

Replacing exp(at)z(t) by y(t), we have a vector integral equation for
y(t)

(31)  y(t) = explat)y(0) + / exp(alt — 7))g(r, y()) dr.

The following relation can be deduced from the equation (3.1):

h
(3.2) y(tns+1) = exp(ah)y(tn)+/0 exp(a(h—1))g(tn+7,y(tn+7)) dr.

Comparing (3.2) and (1.7), we have the increment function of the
GRK methods (1.7) as follows:

(3.3) Y(tn,yn) = Z biexp((1 — ci)ah)g(tn i yn,i)-

And we suppose that the function g(t, y) satisfies the Lipschitz condition
with a small Lipschitz constant L :

(3.4) lg(t,y) = g(t, 2)ll < Llly — z]|.

Then we have the following lemma.
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LEMMA 3.1. Suppose the following conditions hold:
1. a.-,-}ﬂ, 'L.,]':].,Q,...,s,

2. b, >0, i=1,2,...,s, ‘

3. the matrix M = [m,;] (i,7 = 1,2,...,s) is nonnegative defi-
nite,

4. the matrices P; = [pij¥] (3,5,k = 1,2,... ,s) are nonnegative
definite,

9. v<a<go,

Then the increment function (3.3) satisfies a Lipschitz condition

[¥(2ns yn) = $(tn, za)ll < bllyn — zall,

where
6=1L {Z b exp((1 — c.')ah)} .
i=1
Proof. From (3.3) and (3.4), we have

(s ) =tz = | D7 (2 = ei)ech) (gl 1, 9m,) - g(t,.,,-,z,,,,-)}H

< Z{b,’ exp((l - Ci)ah)—L_”yn,i - Zn,i”}

i=1
By Theorem 2.3 and Corollarly 2.5, we have the result.

From the integral equation (3.2) and the increment function (3.3),
the residual error of the GRK methods (1.7) can be defined as follows:

h
(35) rn= / exp(a(h — 7)) g(tn + 7, y(ta + 7)) dr — hip(ts, y(tn))-
0
Now we consider an asymptotically stable system
(3.6) y'(t) = f(t,y(t), f:R™ =R™, t2>0,

such that

(1) the system has an asymtotically stable zero solution,
(11) (f(tay)_f(tvz)a y"'z) SV”y"ZHZ, VSO
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Then, using (3.5), the following lemmas can be easily proved and we
omit the proof.

LEMMA 3.2. If the GRK methods (1.7) is applied to the asymptot-
ically stable system (3.6), then the residual error r,, tends to zero as
n — oo.

LEMMA 3.3. If 0 < 0 < 1 and lim,_.o0 6, = 0, then
lim {6"%8p + 6" 16y +---+ 66, + én} = 0.

We now introduce a concept of AB-stability, which stands for a nu-
merical method is A-stable and B-stable.

DEFINITION. The GRK methods (1.7) is called AB-stable if its global
truncation error, E, = y(t,) — yn, for the system (3.6) tends to zero as
n — o0o.

THEOREM 3.4. If the following conditions are all satisfied:

1 a;; 20, 4,j=1,2,.

2 b >0, i=12,...,s,

3. the matrix M = [m,,] 1s nonnegative definite,

4. the matrices P; = [p;jx] (i = 1,2,... ,s) are nonnegative defi-
nite,
v<a<i,

6. = exp(ah) + hL{Y i, biexp((1 — ci)ah)}, 0< 6 <1.
Then the GRK methods (1.7) is AB-stable.

Proof. By applying the GRK methods (1.7) to the test problem (3.6),
its global truncation error is given by

En+] - exp(ah)En + h{¢(tn> y(tn)) - ¢(tn7 yn)} + Ta.

Hence we have

1Bn+1]l < exp(ah) | Enll + kil (tn, y(tn)) — ®(tn, yn)ll + lIrall.
By Lemma 3.1, we have
[Entrll < O£ + lIrall-
The error E, 4, after n recurrence steps satisfies
1En+1ll < 6™ I Eoll + 6™ liroll + 67" [Irall + -+ + Bllracs || + I7all.

By Lemma 3.2 and Lemma 3.3, we have the result.

o
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