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1. Introduction

The study of non-self-adjoint operator algebras on Hilbert space
was begun by W. B. Arveson {1} in 1974. Recently, such algebras
have been found to be of use in physics, in electrical engineering, and
in general systems theory. Of particular interest to mathematicians
are reflexive algebras with commutative lattices of invariant subspaces.
One of the most important classes of such algebras is the sequence of
“tridiagonal” algebras, discovered by Gilfeather and Larson [8]. These
algebras possess many surprising properties related to isomorphisms
and cohomology, and are not yet well understood.

Let H be a complex Hilbert space with an orthonormal basis

{fi, fas -+, fan}- Then a member of the tridiagonal algebra on H has

the form
* X *
(* \

- ¥
\ )
with respect to the basis {f1, f2,- - , fan}, where all non-starred entries
are zero. H we write the given basis in the order
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{fi,fa.F5, s fan-1, f2, fa, - » f2a}, then the above matrix looks like
this
(* * *\
¥ *

%

\ y

where all non-starred entries are zero. Let H be a complex Hilbert
space with an orthonomal basis {e;,e2,--* ,e2,}. Let .Ag‘) be a subal-
gebra of B(H), the class of.all bounded operators acting on H, such
that an operator A is in (i) if and only if all but the (¢,2)~, (i,n +
i)—, (kyn+ k —1)—, and (1, 2n)—component are zero

(i = 1$2a"' ) 7 k =2:31"' 11 n22)-

In this paper, we shall show necessary and sufficient condition in
which isomorphisms of (";) are spatially implemented.

First we will introduce the terminologies which are used in this pa-
per. Let H be a complex Hilbert space and let A be a subset of B(H),
the class of all bounded operators acting on .

If A is a vector space over C and if A is closed under the composition
of maps, then A is called an algebra. A is called a self-adjoint algebra
provided A* is in A for every A in A. Otherwise, A is called a non-
self-adjoint algebra.

If £ is a lattice of orthogonal projections acting on H, AlgL denotes
the algebra of all operators acting on H that leave invariant every
orthogonal projection in £. A subspace lattice £ is a strongly closed
lattice of orthogonal projections acting on H, containing 0 and I.
Dually, if A is a subalgebra of B(H), then LatA is the lattice of all
orthogonal projections which leave invariant each operator in A.

An algebra A is reflexive if A = AlgLat. A and a lattice £ is reflexive if
L = LatAlgL. A lattice C is a commutative subspace lattice, or CSL, if
each pair of projections in £ commutes; AlgL is called a CSL-algebra.
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If 4,22, -, z, are vectors in some Hilbert space, then [z1,22,--- , T
means the closed subspace generated by the vectors 1,2, ,Zn.

. (2
2. Isomorphisms of ’A2n)

Let £y and £; be commutative subspace lattices. By an isomor-
phism ¢ : AlgLy — AlgLl,; we mean a strictly algebraic isomorphism,
that is, a bijective, linear, multiplicative map. An isomorphism ¢ :
AlgLy — AlgL, is said to be spatially implemented if there is a
bounded invertible operator T such that @(A) = TAT™! for all A
in Alg£1.

Let H be a 2n-dimensional Hilbert space with a fixed basis
[e1, €2, ,€2q] and let £ be the subspace lattice of orthogonal projec-
tions generated by {[e1], [e2], - - - , [en), {e1, €2, €nt1l, [€2, €5, €ng2)y -+,
[€n—1, €ns €20~1]; [€1,€n, €2,]}- Then Agff = AlgL.

We will introduce a theorem in order that automorphisms of Ag',?
need not be spatially implemented.

THEOREM 1. ([9]} Let £1 and L2 be commutative subspace lattices
on Hilbert spaces H, and M, respectively and let £, be completely
distributive. Let p : Algly — AlgLl; be an algebraic isomorphism.
The followings are equivalent :

i) p is quasi-spatial, implemented by a closed, injective linear
transformation T : Hy — M, whose range and domain are
dense.

ii) p preserves the rank of every finite-rank operator ; that is,
rank(p(R)) = rankR for all finite-rank R.

Let ¢: A?) — Ag) be defined by

a; 0 0 a g as
6 ai 0 a5 ag 0
0 0 ar 0 as Qg
0 0 0 dig 0 0
0 0 0 0 aii 0
0 0 0 0 0O a5
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ay 0 ] as 0 —ag
0 ay 0 a5 ag 0
0 0 a7 0O as ag
0 0 0 aip 0 0
(] 0 0 0 all ¢
0 0 90 0 0 9a

It is easy to check that ¢ is an isomorphism. However, the rank of the
matrix

6 0010 -1
6 0011 O
A= 00001 1
00000 O
0 0000 O
06000 O

is 2, whereas the rank of ¢(A) is 3. Hence p is not spatially imple-
mented by Theorem 1. :

Let ¢ and j be positive integers. Then Ej;, is the matrix whose
(1, 7)-component is 1 and all other components are 0.

THEOREM 2. Let ¢ : Ag,) — .A;zu) be an isomorphism such that

@(Ey) = Ey, for alli =1,2,--- ,2n. Then there exist nonzero complex
numbers ay,; such that ¢(E,,) = a;,E,, for all E,, in (2)

n

Proof. Since p(E,,) = E,, and y is an isomorphism, we have
‘P(E,J,‘) = E;f forall 2 =1,2,.---,2n. Since

E:_) = E_,J_; EzJ Ejj and Eij = E,, Esj E;’; (.7 = 1;2a v ,21’&),

e(Eyy) = p(E;;) o(Eyy) o(Bjj)
(%) - E_;'; ¢(E,,) E,; and

‘P(Etj) = E;, ‘P(Bt:) E;}L

Comparing the components of the first equation of (¥} with that of the

second equation of (*), we have ¢(E,,) = a;;E;, for all E;, in .Ag,)
Since E,'J % 0,a;, # 0.
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THEOREM 3. Let ¢ : Agzn) - (:) be an isomorphism such that
¢(Ey) = By foralli =1,2,---, 2n and let p(E,;) = a,, E,,;, ay; #0,
for all E;, in AY). Then ¢(A) = TAT ™ for all A in A and for some
(2n,2n)-diagonal invertible operator T if and only if

N2 ¥n2n—1%n—-12n~2" " "O3 n42 &2 nil

= On2n On—12n-1" " QA2 042 Xl ntl

Proof. (=) Let A = (a,;) be in A&) Then ¢(A) = (o ay).
Let T = (t,;) be a (2n,2n)-diagonal matrix such that ¢,; # 0 for
all i = 1,2, .-+, 2n. If o(A) = TAT"! for all A in AP, then

2n?
TAT™! = (t;a tj_Jl). So the following linear system for unknown

variables ¢,, (:=1,2,---,2n);

_ -1 - -1
it =1t gy g o120 = t11t20 04
— -1 . _ 1
az,n41 = E22 tn-l-l,n-{-l? a2t = f22 tn+2,n+z
-1 -1
Q3 n42 = 33 tﬂ.,.g,,ﬁ.z, a3 n43 = t33 n+3,n+37
o =tgpt s =gt )
kintl = Ykkbnit gt Xkntk = lkkinyg nyk
ST = tpnts)
En2n-1 = lanlgy_g2n-1; Xn2n = lnnlypan

has solutions, Put #;; = 1. Then from the above relations t2, 2, =
al—ff,n and also,

N | -1
tn+1,n+1 =09 nt1s t2n,2n = Ay 2ns

— -1 -1 -1

122 = 0 n41 O piys Ini2,nt2 = Og 490 @2 nt1 Qg niys
_ -1 -1

fa3 = Q342 03 fyg X204l O pygs

— =1 -1 —1
In43,n43 = 03 1303042 09 140 X2 nt1 X nids

— -1 -1
fkk = Qknd k=1 O "3 ip " O py1s

R § R | -1 ~1
bntkntk = Qg bkk = Qg p g Ok ntk—1""" O3 n 202 n41 ¥ nyys
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_ -1 -1 |

tan = On2n-1 Up1,2n—1%¥n—1,2n """ & 42 X2,n+1 ¥y i1
S | -1 L -1

t2n,2n = O on®n2n-1 &, ;9,1 A2,n41 ¥ ny1o

1.e.,

k-2 k—2
tex = (H Qk—yntk—-1~1) X (H Ok jntk—3) and
=0 J=1

k=2 k-1
tatkntk = (H kg ntt-1-1) X (]| @k—pntr—) 7"
=3

1={

- - -1 -t .
Thus t2n20 = 0 30 Cn2n—1 Cpl1gno1* O2at1 O g1 = O 2, 1€,
A12n Hnp2n—1°" " A3 ni2 X2 .t} — O 2n Un—12n-1""'* ¥2 n42 XY nt1-
() Let A = (a,,) be in A and let T = (tx4) be a (2n,2n)—
diagonal matrix such that txx #0Qforall ¥ =1,2,-.- ,2n. i

U1 2pn On2p—1 " A3 n42° " " A2 n4l = Un 20 Hn-1,2n-1 """ 02 n42 QL ntl,
then since p(A4) = (ay; a,;), o; #0 (1 <14,5 <2n),

-1 -1 -1 _ -1
an,2n a":2”*lan—l,2n—-l T 02 nyl al,n+l = 03 95
-1 -1 -1
Put tnyk,nts = Cpntk Yhntk—1"" 02 220431 ¥y nyy

_ _ 1 -1
tek = Ok ntkintk ntk = g ntk—1 Oy nyp—1 " 1 np1-

Then TAT™! = (¢, a4 t;;l) = (o, a,,) for all A = (a,,) in (3 Hence
there exists a (2n, 2n)—diagonal invertible operator T such that ¢(A) =
TATL,

THEOREM 4 (GILFEATHER AND MOORE [9}). Let £y and L2 be
commutative subspace lattices on Hilbert spaces H; and H,, respec-
tively, and suppose that ¢ : Algl, — AlgL, is an algebraic isomor-
phism. Let M be a maximal abelian self-adjoint subalgebra { masa )
contained in AlgLy. Then there exist a bounded invertible operator
Y : Hy — H, and an automorphism p : AlgL, — AlgL; such that

(i) p(M)= M forall M in M
(ii) p(A) =Y p(A)Y ™! for all A in AlgL,.
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THEOREM 5. Let ¢ : (2,3 — (2,3 be an isomorphism and let in
Theorem 4, p(E,,) = a,j,

@1.2rn Qn2n—1 An—12n-2 " ** A3,n42 &2 n+l

= Ap2n An—1,2n-1"""' 02 n42 ¥ nil.

Then there exists an invertible operator T such that p(A) = TAT™! ‘
for all A in A.(zf,), i.e. ¢ is spatially implemented.

Proof. Since (AL)N(AP) is 2 masa of A2 and E;, is in (AN
(.Agi))' for all i =1,2,---,2n, by Theorem 4 there exist an invertible
operstor Y in B(H) and an isomorphism p : A2 — A?) such that

p(Ey) = Ey and p(A4) = Yp(A)Y 1 for all 4 in AP and for all i =
1,2,--+,2n. By Theorem 3 p(A) = SAS™! for some invertible diagonal
operator S and for all 4 in A}, Hence o(4) = (Y S)A(S~1Y~1). Let
T =YS. Then p(A) = TAT! for all A in AY.
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