Pusan-Kyongnam Math. J. 7(1991), No. 1, pp. 71-78

REGULAR NEAR-RINGS AND π -REGULAR NEAR-RINGS

YOUNG IN KWON

1. Introduction

The concept of a regular near-ring was introduced in 1968 by J.C. Beidlemān [1] and several elementary properties of such near-rings were developed. Later Steve Ligh [7] was the first to give some structure theory for regular near-rings. In 1972, H. E. Heatherly [6] established the structure theory for some types of regular near-rings. Here we will investigate some properties of regular near-ring. And we will introduce reflexive inverse of a near-ring element and give the relating properties. In [10], it is proved that if a ring R with identity contains no non-zero nilpotent elements, then R is regular if and only if every principal left ideal is the left annihilator of an element of R. We will prove that if a zero-symmetric near-ring N with identity contains no non-zero nilpotent elements, then N is regular if and only if every principal left N-subgroup is the right annihilator of an element of N.

In 1979, A.K.Goal and S.C.Choudhary [4] got many interesting properties of π -regular near-rings. We now give some characterizations of π -regular near-ring. An element a in N is regular if a = axahas a solution in N and any such solution x is called a generalized inverse of a. An element a in N will be called unit regular if N has an identity and a has an invertible generalized inverse. A reflexive inverse of a in N is a near-ring element x such that a = axa and x = xax. Corresponding concepts in ring theory are given in [3],[5] and [11]. Every regular element contains a reflexive inverse for a = axa implies that y = xax is a reflexive inverse of a. The near-ring N is regular if each of its element is regular element. A near-ring N is right strongly regular(left strongly regular) if for all a in N, there exists x in N with $a = a^2x(a = xa^2)[9]$.

Received April 18, 1991.

2. Regular near-rings

THEOREM 2.1. For a non-zero distributive regular element a of a near-ring N, the following are equivalent:

- (1) a has a unique generalized inverse.
- (2) a is neither a right nor a left divisor of zero.
- (3) N has an identity and a is a unit element.

Proof. (1) \rightarrow (2). If a is the unique generalized inverse and if ab = 0 or ba = 0, then a(x + b)a = a. By uniqueness, x + b = x whence b = 0.

 $(2) \rightarrow (3)$. Suppose that a is neither a right nor a left divisor of zero. Choose an element x with a = axa. For any b in N, we have a(b - xab) = 0 = (b - bax)a and therefore, xab = b = bax. Thus xa is a left identity and xa is a right identity for N. Hence e = ax = xa is the identity for N and a is clearly a unit element.

 $(3) \rightarrow (1)$. If N has the identity e and a is a unit element, then a = axa implies ax = e = xa, so $x = a^{-1}$.

COROLLARY 2.2. A non-zero distributive near-ring N with identity is a near-field if and only if each non-zero element of N has a unique generalized inverse.

THEOREM 2.3. If a is a regular element of the distributive near-ring N, then the following are equivalent:

- (1) a has a unique reflexive inverse.
- (2) There is an element x in N such that a = axa and both ax and xa are central idempotents.
- (3) If a = aya, then ay = ya.
- (4) If a = aya = axa, then ay = ax = xa = ya.

Proof. (1) \rightarrow (2). Let x be the unique element of N for which a = axa and x = xax. For any y in N, the elements x + y - xay and x + y - yax are generalized inverses of a and hence

$$x = (x + y - xay)a(x + y - xay) = x + yax - xayax$$
$$= (x + y - yax)a(x + y - yax) = x + xay - xayax.$$

Therefore yax = xay for every y in N. Letting y be ax and xa successively, we have $ax = (ax)^2 = xa^2x = xa$, since (ax)ax = (xa)ax implies $ax = xa^2x$ and (xa)ax = (xa)xa implies $xa^2x = xa$.

 $(2) \rightarrow (3)$. Choose an element x with a = axa and both ax and xa in the center. Hence if a = aya, then ay = (ax)ay = ayax = (aya)x = ax = xa = x(aya) = (ya)(xa) = ya.

 $(3) \to (4)$. If a = aya = axa, then by (3), ay = ya = y(axa) = (ya)(xa) = (ay)(ax) = ax = xa.

(4) \rightarrow (1). If y and x are reflexive inverses of a, then y = y(ay) = yax = (ya)x = xax = x.

Now we consider the following condition [8] on a near-ring N:

(C) aN = aNa for each a in N.

LEMMA 2.4. ([8]) Let N be a zero-symmetric near-ring with (C). Then ab = 0 implies ba = 0 and axb = 0 for any a, b, x in N.

LEMMA 2.5. ([6]) Let N be a zero-symmetric near-ring without non-zero nilpotent elements. Then ab = 0 implies ba = 0 and axb = 0 for any a, b, x in N.

THEOREM 2.6. The center of a regular near-ring is also regular.

Moreover the center of a left(right) strongly regular near-ring is left(right) strongly regular.

Proof. Let N be a regular near-ring and let $a \in Cent(N)$, the center of N. Then a = axa for some x in N. This implies a = axa = axaxa. It is sufficient to show that $xax \in Cent(N)$. If $y \in N$, we have (ax)y =a(xy) = xya = xyaxa = a(xy)xa = axayx = ayx = y(ax) and so $ax \in$ Cent(N). Now (xax)y = x(ax)y = xyax = axyx = y(ax)x = y(xax)and therefore, $xax \in Cent(N)$. It is easy to see that Cent(N) is in fact left strongly regular as well as right strongly regular.

LEMMA 2.7. Let N be a near-ring with identity. If every principal left N-subgroup generated by a is the right annihilator of an element of N, then every non-zero divisor is a regular element.

Proof. If a is a non-zero divisor of N, let b be an element of N such that $Na = Ann_r(b)$, then ba = 0 implies b = 0 and therefore Na = N which implies that a has a left inverse. Thus we have a = aba, where b is the left inverse of a.

Young In Kwon

THEOREM 2.8. Let N be a zero-symmetric near-ring with identity 1 and without non-zero nilpotent elements. Then the following are equivalent:

- (1) N is regular
- (2) Every principal left N-subgroup generated by a is the right annihilator of an element of N

Proof. If N is regular, for any a in N, there exists b in N such that a = aba. Since e = ba is an idempotent and Na = Ne, then Ne is the right annihilator $Ann_r(1-e)$ of 1-e. For any $x = ne \in Ne$, (1-e)x = (1-e)ne = ne - ene = 0. And if $y \in Ann_r(1-e)$, then (1-e)y = 0 and so y - ey = 0. Then $y = ey = ye \in Ne$. Thus we have that (1) implies (2). Conversely, assume that (2) holds. We first note that since N contains no non-zero nilpotent element, if ab = 0for a, b in N, then $(ba)^2 = b(ab)a = b0a = 0$ implies ba = 0. Thus $Ann_{l}(a) = Ann_{r}(a)$ for every a in N. Let a be not zero in N. If a is a non-zero divisor, by the Lemma 2.7, a is a regular element. If a is a zero divisor, let $Na = Ann_r(b)$, then b is non-zero and ab = ba = 0. Let c = a + b. Suppose cx = (a + b)x = 0 for some x in N. Then $ax = -bx \in Ann_r(b) \cap Ann_r(a)$. If $y \in Ann_r(b) \cap Ann_r(a)$, then y = za for some z in N since $Na = Ann_r(b)$ and aza = ay = 0which implies $(za)^2 = z(aza) = 0$. Since N contains no non-zero nilpotent elements, y = za = 0. Then ax = -bx = 0 which implies $x \in Ann_r(b) \cap Ann_r(a) = \{0\}$. Thus c = a + b is a non-zero divisor. Now we have that $ca = (a+b)a = a^2$ and by the Lemma 2.7, $a = ad^2$ where d is the left inverse of c. Then $(a-ada)^2 = a(a-ada) - ada(a-ada) = 0$, since $(a - ada)a = a^2 - ada^2 = 0$ which implies a(a - ada) = 0. By the hypothesis, a = ada which will prove that (2) implies (1).

THEOREM 2.9. Let N be a zero-symmetric near-ring and N has no non-zero nilpotent elements. Then N satisfies the condition (C) if and only if N is regular.

Proof. Suppose that N satisifies the condition (C). For each a in N, there is an element b in N such that $a^2 = aba$. Hence (a - ab)a = 0 implies a(a - ab) = 0 and $(a - ab)^2 = 0$, since $(a - ab)^2 = a(a - ab) - ab(a - ab) = 0$. Thus by the hypothesis a = ab. Since aN = aNa, it follows that a = ab = axa for some x in N and so N is regular near-ring. Conversely, assume that N is regular. Then for each a in N, a = axa

and xa is an idempotent for some x in N. Let $e = e^2$ be in N. Then for each a in N, (ea - eae)ea = 0 implies ea(ea - eae) = eae(ea - eae) = 0. Thus $(ea - eae)^2 = 0$ and so ea = eae. Now let y be any element element in N. Then ay = (axa)y = a(xa)y = axayxa = a(xayx)a. Thus aN = aNa, i.e., N satisifies the condition (C).

From the Theorem 2.8 and Theorem 2.9, we have that

COROLLARY 2.10. Let N be a zero-symmetric near-ring with identity and without non-zero nilpotent elements. Then the following are equivalent:

- (1) N is regular.
- (2) N satisifies the condition (C).
- (3) Every principal left N- subgroup generated by a is the right annihilator of an element of N.

3. π -Regular near-rings

DEFINITION 3.1. ([4]) An element a of a near-ring N is said to be π -regular element if there exists x in N and an integer n such that $a^n = a^n x a^n$.

If every element of N are π -regular element, we say that N is a π -regular near-ring. Clearly every regular near-ring is π -regular but not conversely.

EXAMPLE 3.2. ([4]) Let $N = \{0, a, b, c\}$ with addition and multiplication be defined as follows:

	0	a	Ь	с
		~		
0	0	a	b	с
a	a	0	с	Ь
b	Ь	с	0	a
С	c	Ь	a	0

Young In Kwon

1	0	a	Ь	с
0	0	0	0	0
a	0	0	a	a
b	0	0	Ь	Ь
C	0	a	Ь	С

It can be seen that (N,+,.) is a π -regular but N is not regular, as the element a is not a regular element.

LEMMA 3.3. Let N be a near-ring with identity and without nonzero nilpotent element. If every principal left N-subgroup generated by a^n for an element a in N and for some integer n is the right annihilator of an element of N, every non-zero divisor element is a π -regular element.

Proof. If a is a non-zero divisor, let x be an element of N such that $Na^n = Ann_r(x)$. Then $a^n \in Ann_r(x)$ and so $xa^n = 0$ implies x = 0 and therefore $Na^n = N$ which implies a^n has a left inverse. Thus we have $a^n = a^n x a^n$, where x is the left inverse of a^n .

THEOREM 3.4. Let N be a zero-symmetric near-ring with identity and without non-zero nilpotent elements. Then N is π -regular if and only if every principal left N-subgroup generated by a^n for an element a in N and for some positive integer n is the right annihilator of an element of N.

Proof. If N is π -regular, for any a in N, there exists x in N such that $a^n = a^n x a^n$ for some integer n. Since $e = x a^n$ is an idempotent $Na^n = Ne$ and Ne is the right annihilator $Ann_r(1-e)$ of $1-e=1-xa^n$. Conversely, assume that every principal left N-subgroup generated by a^n is the right annihilator of an element of N. Since N contains no non-zero nilpotent elements, $Ann_l(a) = Ann_r(a)$ for every a in N. Let a be non-zero in N. If a is a non-zero divisor, by the Lemma 3.3, a is π -regular element. If a is zero divisor, let $Na^n = Ann_r(b)$, then b is non zero and $a^n b = ba^n = 0$. Let $c = a^n + b$. Suppose that $cx = (a^n + b)x = 0$ for some x in N. Then $a^n x = -bx \in Ann_r(b) \cap Ann_r(a^n)$. If

 $y \in Ann_r(b) \cap Ann_r(a^n)$, then $y = za^n$ for some z in N, since $Na^n = Ann_r(b)$ and $a^n za^n = a^n y = 0$. Then we have $(za^n)^2 = z(a^n za^n) = 0$. Since N contains no non-zero nilpotent element, $y = za^n = 0$. Then $a^n x = -bx = 0$ which implies $x \in Ann_r(b) \cap Ann_r(a^n) = \{0\}$. Thus $c = a^n + b$ is a non-zero divisor. Now we have $ca^n = (a^n + b) a^n = (a^n)^2$ and by the Lemma 3.3, $a^n = d(a^n)^2$ where d is the left inverse of c. Then $(a^n - a^n da^n)^2 = a^n(a^n - a^n da^n) - a^n da^n(a^n - a^n da^n) = 0$ because $(a^n - a^n da^n)a^n = (a^n)^2 - a^n d(a^n)^2 = 0$ which implies $a^n(a^n - a^n da^n) = 0$. By the hypothesis, $a^n = a^n da^n$ and so N is π -regular near-ring.

THEOREM 3.5. Let N be a zero-symmetric near-ring without nonzero nilpotent elements. Then $a^n N = a^n N a^n$ for each a in N and some integer n if and only if N is π -regular.

Proof. Suppose that for each a in N and some integer $n,a^n N = a^n Na^n$. For each a in N, there is an element x in N such that $(a^n)^2 = a^n xa^n$. Hence $(a^n - a^n x)a^n = 0$ implies $a^n(a^n - a^n x) = 0$ and so $(a^n - a^n x)^2 = 0$. By the hypothesis $a^n = a^n x$. Since $a^n N = a^n Na^n$, it follows that $a^n = a^n x = a^n ya^n$ for some y in N and N is π -regular nearring. Conversely, if N is π -regular then for each a in $N, a^n = a^n xa^n$ and xa^N is an idempotent for some x in N and integer n. Let $e = e^2$. Then for each a in N and integer $n, (ea^n - ea^n e)ea^n = 0$ implies $ea^n(ea^n - ea^n) = ea^n e(ea^n - ea^n e) = 0$. Thus $(ea^n - ea^n e)^2 = 0$ and so $ea^n = ea^n e$. Now let y be any element in N. Then $a^n y = (a^n xa^n)y = a^n(xa^n)y = a^nxa^nyxa^n = a^n(xa^nyx)a^n$. Therefore we have $a^n N = a^nNa^n$.

From the Theorem 3.4 and Theorem 3.5, we have that

COROLLARY 3.6. Let N be a zero-symmetric near-ring with identity and without non-zero nilpotent elements. Then the following are equivalent:

- (1) N is π -regular.
- (2) $a^n N = a^n N a^n$ for each a in N and some integer n.
- (3) Every principal left N-subgroup generated by a^n for some element a in N is the right annihilator of an element of N.

THEOREM 3.7. Let N be a near-ring in which if ab = 0, then ba = 0 and axb = 0 for any a, b, x in N. If $a^n N = a^n N a^n$ for

each a in N and some integer n, then (1) for any a in N, there is an element y such that $a^n = a^n y a^n$ is nilpotent (2) ea = eae for any a and $e = e^2$ in N.

Proof. Suppose that for each a in N and some integer n, $a^n N = a^n Na^n$. Then we have $(a^n)^2 = a^n xa^n$ for some x in N and $(a^n - a^n x)a^n = 0$. By the hypothesis $a^n(a^n - a^n x) = 0$ and $a^n x(a^n - a^n x) = 0$ and so $(a^n - a^n xz)^2 = 0$. That is, $a^n - a^n x$ is nilpotent. Now $a^n x = a^n ya^n$ for some y in N and $a^n - a^n ya^n = a^n - a^n x$. Thus $a^n - a^n ya^n$ is nilpotent. So (1) holds. Since for $e = e^2$ in N and for any integer n, $e^n = e$, we have eN = eNe and so $ea = ex_1e$ and $ex_1 = ex_2e$ for some x_1, x_2 in N. Then $ea = ex_2e = ex_1$ and thus $ea = ex_1e = eae$.

References

- 1. J. C. Beidleman, A note on regular near-rings, J. Indian Math. Soc. 33(1969), 207-210.
- 2. H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. (1970), 363-368.
- 3. G. Ehrlich, Unit regular rings, Portugal Math. 27(1968), 209-212.
- 4. A. K. Goyal and S. C. Choudhary, Generalized regular near-rings, Studia Scientiarum Math. Hungrica 14(1979), 69-76.
- 5. R. Hartwig and J Luh, A note on the group structure of unit regular ring elements, Pacific J. Math. 71(1977), 449-461.
- 6. H. E Heatherly, Regular near-rings, J. Indian Math. Soc. 38(1974), 345-354.
- 7. S. Ligh, On regular near-rings, Math. Japonicae 15(1970), 7-13.
- 8. S. Ligh and Y. Utumi, Some generalizations of strongly regular near-rings, Math. Japonicae 21(1976), 113-116.
- 9. G. Mason, Strongly regular near-rings, Proc. Edinburgh Math.Soc. 23(1980), 27-35.
- R. Yue Ming Chi, On (von Neumann) regular rings, Proc. Edinburgh Math. Soc.19(1974), 89-91.
- 11. G. Pilz, Near-rings, North Holland, 1977.
- 12. T. R. Savage, Generalized inverses in regular rings, Pacific J. Math. 87(1980), 455-466.

Department of Mathematics Gyeongsang National University Chinju 660–701, Korea