Pusan-Kyongnam Math J. 7(1991), No. 1, pp 53-59

REPRESENTATION ON A HILBERT B-MODULE

AN-HYUN KIM

1. Introduction

Each cyclic *-representation gives rise to a state on a C^* -algebra. And it turns out that each state generates a cyclic *-representation that reproduces it ([2, p261],[3]). But, if we replace a state by a completely positive map, what happens? This paper is an investigation of a *representation (on a Hilbert B- module) generated by a completely positive map.

In §2, we introduce some definitions and their properties which will be needed in next section.

In §3, we show that a completely positive map gives rise to a pre-Hilbert B-module in much the same way that a state gives rise to a pre-Hilbert space. The properties of pre-Hilbert B-module generated by a completely positive map are described and this section contains main theorems([Theorem 3.4], [Theorem 3.5]).

2. Properties of B-valued inner product

DEFINITION 2.1. Let B be a C^{*}-algebra. A pre-Hilbert B-module is a right B-module X equipped with a conjugate bilinear map $[,] : X \times X \to B$ satisfying:

(a) $[x, x] \ge 0 \quad \forall x \in X;$ (b) [x, x] = 0 only if x = 0;(c) $[x, y] = [y, x]^*$ for $x, y \in X;$ (d) $[x \cdot b, y] = [x, y]b$ for $x, y \in X, b \in B.$

The map [,] will be called a *B*-valued inner product on *X*. The following simple facts are obvious:

1° $[x, y \cdot b] = b^*[x, y]$ $x, y \in X, b \in B$. 2° if B has 1, X is unital (i.e., $x \cdot 1 = x, x \in X$).

Received March 17, 1991.

An-hyun Kim

- 3° defining $\|\cdot\|_X$ on X by $\|x\|_X = \|[x,x]\|^{1/2}$, $\|\cdot\|_X$ becomes a norm on X.
- $4^{o} ||[x,y]|| \leq ||x||_{X} ||y||_{X}, ||x \cdot b||_{X} \leq ||x||_{X} ||b|| \quad x, y \in X, \ b \in B.$

DEFINITION 2.2. A pre-Hilbert B-module X which is complete with respect to $\|\cdot\|_X$ will be called a *Hilbert B-module*.

For a pre-Hilbert B-module X, we let A(X) denote the set of operators $T \in B(X)$ for which there is an operator $T^* \in B(X)$ such that $[Tx,y] = [x,T^*y]$ for $x, y \in X$. And for $x, y \in X$, define $x \otimes y : X \to X$ by $x \otimes y(w) = x \cdot [w,y]$.

The following simple facts are obvious:

- 5° A(X) is a *-algebra with involution $T \to T^*$.
- 6° if $T \in A(X)$, then $T(x \cdot b) = (Tx) \cdot b$ for $x \in X$, $b \in B$ (i.e. T is a module map).

LEMMA 2.3.

- (1) $x \otimes y \in A(X)$ with $(x \otimes y)^* = y \otimes x$.
- (2) $T(x \otimes y) = Tx \otimes y, \quad T \in A(X).$
- (3) $\{x \otimes y : x, y \in X\}$ spans a two-sided ideal for A(X).

Proof. (1) For all $w_1, w_2 \in X$,

$$[w_1, (x \otimes y)w_2] = [w_1, x \cdot [w_2, y]] = [w_2, y]^* [w_1, x]$$
$$= [y, w_2] [w_1, x] = [y \cdot [w_1, x], w_2]$$
$$= [(y \otimes x)w_1, w_2]$$

For all $w \in X$, $b \in B$,

 $(x \otimes y)(w \cdot b) = x \cdot [w \cdot b, y] = x \cdot [w, y]b = (x \otimes y(w)) \cdot b.$ (2) $T(x \otimes y)w = T(x \cdot [w, y]) = (Tx) \cdot [w, y]$ (since T is a module map) $= (Tx \otimes y)w.$

(3) By (1),(2), it is clear.

We write X' for the set of B-module maps from X to B which are bounded with respect to $\|\cdot\|_X$. We make X' into a right B-module by defining

$$(\lambda \tau)x = \overline{\lambda} \tau(x) \text{ and } (\tau \cdot b)(x) = b^* \tau(x),$$

for $\lambda \in C$, $\tau \in X'$, $x \in X$, $b \in B$.

Each $x \in X$ gives rise to a map $\hat{x} \in X'$ defined $\hat{x}(y) = [y, x]$ for $y \in X$. We will call X self-dual if $\hat{X} = X'$. THEOREM 2.4. Let X be a pre-Hilbert B-module.

- (1) The B-valued inner product extends to $X' \times X'$ in such a way as to make X' into a Hilbert B-module.
- (2) Each $T \in A(X)$ extends to a unique $\tilde{T} \in A(X)$. Moreover, the map $T \to \tilde{T}$ is a *-isomorphism of A(X) into A(X').

Proof. [7]

Let B be a von-Neumann algebra of operators on a Hilbert space H, and let $X \otimes H$ be the algebraic tensor product of X with H.

Define $\langle , \rangle \colon X \otimes H \times X \otimes H \to C$ by $\langle x \otimes \xi, y \otimes \eta \rangle = ([x, y]\xi, \eta)$. Let $Z = \{ w \in X \otimes H : \langle w, w \rangle = 0 \}$, so Z is a subspace of $X \otimes H$ and $K_o = X \otimes H/Z$ is a pre-Hilbert space with inner product $(w_1 + Z, w_2 + Z) = \langle w_1, w_2 \rangle$.

Let K be the Hilbert space completion of K_o . For $T \in A(X)$, define a linear map $\theta_o(T)$: $X \otimes H \to X \otimes H$ by $\theta_o(T)(x \otimes \xi) = Tx \otimes \xi$.

It is shown in 5.3 of [9] that $\theta_o(T)$ induces a bounded linear map $\theta(T) : K \to K$ satisfying $\theta(T)(x \otimes \xi + Z) = Tx \otimes \xi + Z$.

LEMMA 2.5. If A is a self-adjoint operator on H and (Ah, h) = 0 for all h, then A = 0.

Proof. [3]

THEOREM 2.6. The map θ is a faithful *-representation of A(X) on K.

Proof. By the above statements, it is clear that θ is a homomorphism. Also, for each $x, y \in X$, $\xi, \eta \in H$,

$$\begin{aligned} (\theta(T^*)(x\otimes\xi+Z), y\otimes\eta+Z) &= (T^*x\otimes\xi+Z, y\otimes\eta+Z) \\ &= < T^*x\otimes\xi, y\otimes\eta > = ([T^*x,y]\xi,\eta) \\ &= ([x,Ty]\xi,\eta) = < x\otimes\xi, Ty\otimes\eta > \\ &= (x\otimes\xi+Z, Ty\otimes\eta+Z) \\ &= (x\otimes\xi+Z, \theta(T)(y\otimes\eta+Z)) \\ &= (\theta(T)^*(x\otimes\xi+Z), y\otimes\eta+Z). \end{aligned}$$

Let $T \in \text{Ker}\theta$. Then $0 = \langle Tx \otimes \xi, Tx \otimes \xi \rangle = ([Tx, Tx]\xi, \xi)$. Since [Tx, Tx] is self-adjoint, by Lemma 2.5, T = 0.

3. Representation on a Hilbert B-module

DEFINITION 3.1. Let B be a C^{*}-algebra, A a *-algebra and ϕ : $A \rightarrow B$ a linear map. We call ϕ positive if $\phi(a^*a) \ge 0$, $a \in A$.

For $n = 1, 2, \dots, \phi$ induces a map ϕ_n from algebra A of $n \times n$ matrices with entries in A (made into a *-algebra by setting $[a_{ij}]^* = [a_{ij}^*]$ for matrices $[a_{ij}] \in A_{(n)}$) into the corresponding C^* -algebra B defined by $\phi_n([a_{ij}]) = [\phi(a_{ij})]$; we asy that ϕ is completely positive if each of the induced map ϕ_n is positive.

According to [10, p194], a linear map $\phi : A \to B$ is completely positive iff $\sum_{ij} b_i^* \phi(a_i^* a_j) b \ge 0$ for $a_1, \dots, a_n \in A$, $b_1, \dots, b_n \in B$. Let ϕ be completely positive and suppose in addition that $\phi(a^*) = \phi(a)^*$ for $a \in A$. The map ϕ gives rise to a pre-Hilbert B-module as follows: Consider the algebric tensor product $A \otimes B$, which becomes a right B-module when we set $(a \otimes b) \cdot \beta = a \otimes b\beta$ for $b, \beta \in B$, $a \in A$.

Define
$$\ll, \gg: (A \otimes B) \times (A \otimes B) \to B$$

 $\left(\sum_{j=1}^{n} a_{j} \otimes b_{j}, \sum_{i=1}^{m} \alpha_{i} \otimes \beta_{i}\right) \rightsquigarrow \sum_{i,j} \beta_{i}^{*} \phi(\alpha_{i}^{*} a_{j}) b_{j}$

for $a_1, \cdots, a_n, \alpha_1, \cdots, \alpha_m \in A, \quad b_1, \cdots, b_n, \beta_1, \cdots, \beta_m \in B.$

 \ll, \gg is clearly well-defined and conjugate-bilinear. Since ϕ is completely positive, for all $x \in A \otimes B$, $\ll x, x \gg \geq 0$. Since ϕ is *-map, $\ll x, y \gg = \ll y, x \gg$ and $\ll x \cdot b, y \gg = \ll x, y \gg b$ for $x, y \in A \otimes B$ and $b \in B$.

Put $N = \{x \in A \otimes B : \ll x, x \gg = 0\}$. Then N is a submodule of $A \otimes B$ and $X_o = A \otimes B/N$ is a pre-Hilbert B-module with B-valued inner product $[x + N, y + N] = \ll x, y \gg$ for $x, y \in A \otimes B$.

THEOREM 3.2. Let A be a U^{*}-algebra with 1, B a C^{*}- algebra with 1, and $\phi : A \rightarrow B$ a completely positive map. Then

- (1) there is a Hilbert B-module X, a *-representation π of A on X, and an element $e \in X$ such that $\phi(a) = [\pi(a)e, e]$ for $a \in A$.
- (2) the set $\{\pi(a)(e \cdot b) : a \in A, b \in B\}$ spans a dense subset of X.

Proof. [7],[10].

In particular, note that $\pi(a)(x+N) = a \cdot x + N \quad \forall x \in A \otimes B$ and $\pi(a) \in A(X)$ (i.e., $\pi(a)$ is a B-module map), X a completion of X_o , also $e = 1 \otimes 1 + N$.

Let A be a U^{*}-algebra with 1, and B a W^{*}-algebra. If X, π and e are as in Theorem 3.2, we may define a *-representation $\tilde{\pi}$ of A on the self-dual Hilbert B-module X' by $\tilde{\pi}(a) = \pi(a)^{\sim} \in A(X')$ for $a \in A$ (see 2.4).

Suppose $\psi : A \to B$ is another completely positive map. We write $\psi \leq \phi$ if $\phi - \psi$ is compeletely positive and let $[0, \phi]$ denote the set of compeletely positive maps from A into B which are $\leq \phi$.

For $T \in A(X')$, define $\phi_T : A \to B$ by $\phi_T(a) = [T\tilde{\pi}(a)\hat{e}, \hat{e}]$. Notice that $\phi_I = \phi$ and that the map $T \rightsquigarrow \phi_T$ is a linear map of A(X') into the space of linear transformations of A into B.

THEOREM 3.3. Under the above circumstance,

- (1) for each $T \in \tilde{\pi}(A)'$ with $0 \le T \le I'_X$, the formula $\phi_T(a) = [T\tilde{\pi}(a)\hat{e}, \hat{e}]$ defines a completely positive map such that $\phi_T \le \phi$.
- (2) the correspondence $T \rightsquigarrow \phi_T$ described in (1) is a bijection of $\{T \in \tilde{\pi}(A)' : 0 \leq X \leq I_{X'}\}$ onto $[0, \phi]$.
- (3) the correspondence preserves convex combinations, where $\tilde{\pi}(A)'$ denotes the commutant of $\tilde{\pi}(A)$ in A(X').

Proof. [2],[7].

Let A be a U^{*}-algebra with 1, and B a W^{*}-algebra with 1. We denote the set of completely positive maps $\phi : A \to B$ such that $\phi(1) = 1$ by $\sum (A, B, 1)$.

Note that $\sum (A, B, 1)$ is a convex subset of the space of linear maps from A into B.

THEOREM 3.4. Under the above circumstance, the following conditions on $\phi \in \sum (A, B, 1)$ are equivalent:

- (1) ϕ is an extremal point of $\sum (A, B, 1)$;
- (2) the map $T \rightsquigarrow [T\hat{e}, \hat{e}]$ of A(X') into B is injective on $\tilde{\pi}(A)'$;
- (3) If ψ is any completely positive map on A such that $\psi \leq \phi$, then $\psi = \alpha \phi$ with $0 \leq \alpha \leq 1$.

Proof. (1) \iff (3) This follows immediately from (68.24) in [2].

(2) \Longrightarrow (1) Suppose that the map is injective and let $\phi = t\phi_1 + (1-t)\phi_2$, $\phi_1, \phi_2 \in \sum (A, B, 1)$ (0 < t < 1). then $t\phi_1 \leq \phi$. i.e., $t\phi_1(a) \in [0, \phi]$. By 3.3, there are $T \in \tilde{\pi}(A)'$, $0 \leq T \leq I_{X'}$ such that $t \phi_1(a) = [T\tilde{\pi}(a) \hat{e}, \hat{e}] \quad \forall \ a \in A$. Setting a = 1, $t\phi_1(1) = [T\hat{e}, \hat{e}]$. By the way, since $t\phi_1(1) = t \cdot 1$, $t\phi_1(1) = [T\hat{e}, \hat{e}] = t$. Therefore $[(T-tI)\hat{e}, \hat{e}] = 0$. By the hypothesis, T = tI. Also,

 $t\phi_1(a) = [tI\tilde{\pi}(a)\hat{e}, \hat{e}] = t[\tilde{\pi}(a)\hat{e}, \hat{e}] = t = t\phi_I(a) = t\phi(a).$ Thus, $t\phi_1 = t\phi$ and $\phi_1 = \phi_2 = \phi$.

(1)=>(2) Suppose that $\phi \in \sum (A, B, 1)$ is an extremal point. Take $T \in \tilde{\pi}(A)'$ such that $\mu(T) = [T\hat{e}, \hat{e}] = 0$. i.e.,

$$\mu : \tilde{\pi}(A)' \subset A(X') \longrightarrow B$$
$$T \longrightarrow \mu(T) = [T\hat{e}, \hat{e}].$$

Choose s,t > 0 such that $\frac{1}{4}I_{X'} \leq sT + tI_{X'} \leq \frac{3}{4}I_{X'}$ and set $F = sT = tI_{X'}$. Then, since $\mu(\frac{1}{4}I_{X'}) \leq \mu(F) \leq \mu(\frac{3}{4}I_{X'})$, it follows that $\frac{1}{4} \leq t \leq \frac{3}{4}$.

Define $\phi_1(a) = [F\tilde{\pi}(a)\hat{e},\hat{e}], \quad \phi_2(a) = [(I-F)\tilde{\pi}(a)\hat{e},\hat{e}].$ Since $0 \leq F \leq I_{X'}$, By 3.3, ϕ_1 , ϕ_2 are completely positive. Also $\phi_1(1) = t \cdot 1, \phi_2(1) = (1-t)1, \ (\phi_1 + \phi_2)(a) = \phi_I(a) = \phi(a).$ Since $t^{-1}\phi_1, \ (1-t)^{-1}\phi_2$ belong to $\sum (A, B, 1)$, from extremality of ϕ , $t^{-1}\phi_1 = (1-t)^{-1}\phi_2 = \phi$. In particular, $[F\tilde{\pi}(a)\hat{e},\hat{e}] = \phi_1(a) = t[\tilde{\pi}(a)\hat{e},\hat{e}], \quad \forall \ a \in A.$ Thus $F = tI_{X'}$, and so sT = 0.

Therefore T = 0 and μ is injective on $\tilde{\pi}(A)'$.

THEOREM 3.5. If π is a *-representation of A on a Hilbert B-module Y and $\phi(a) = [\pi(a)e, e]$ and if π_{ϕ} is constructed as in 3.2, then

(1) there exists an isometric mapping U from X into Y.

(2) $U\pi_{\phi}(a)$ and $\pi(a)U$ agree on X.

Proof. (1) By theorem 3.2, $\pi_{\phi}(A)(e_{\phi} \cdot B)$ and $\pi(A)(e \cdot B)$ are dense subspaces of X, Y, respectively. Now define $U_o \pi_{\phi}(a)$ $(e_{\phi} \cdot b) = \pi(a)$

$$\begin{aligned} (e_{\phi} \cdot b) & b \in B. \\ \|\pi_{\phi}(a)(e_{\phi} \cdot b)\|^{2} &= \|[\pi_{\phi}(a)(e_{\phi} \cdot b), \ \pi_{\phi}(a)(e_{\phi} \cdot b)]\| \\ &= \|[\pi_{\phi}(a^{*}a)(e_{\phi} \cdot b), \ e_{\phi} \cdot b]\| \\ &= \|[(\pi_{\phi}(a^{*}a)e_{\phi}) \cdot b, \ e_{\phi} \cdot b]\| \\ &\quad (\text{since } \pi_{\phi}(a^{*}a)e_{\phi}, \ e_{\phi}]b\| \quad (\text{by 1}^{o}) \\ &= \|b^{*}[\pi(a^{*}a)e_{\phi}, e_{\phi}]b\| \quad (\text{by 1}^{o}) \\ &= \|b^{*}[\pi(a^{*}a)(e \cdot b), \ e \cdot b]\| \\ &= \|[\pi(a)(e \cdot b), \ \pi(a)(e \cdot b)]\| \\ &= \|[\pi(a)(e \cdot b)\|^{2}. \end{aligned}$$

Thus U_o is well-defined and isometric on $X_o (= \pi_{\phi}(A)(e_{\phi} \cdot B))$. Therefore U_o extends to an isometric mapping U of X into Y.

(2) By definition and continuity of U_o , it is clear.

References

- 1. W. B. Arveson, Subalgebras of C*-algebras, Acta Math 123(1969).
- S. K. Berberian, Lectures in functional analysis and operator theory, Springer-Verlag, 1974.
- 3. J. B. Conway, A course in functional analysis, Springer- Verlag, 1985.
- 4. Kadison and Ringrose, Fundamentals of the theory of operator algebras, Academic Press Inc., 1983
- 5. T W. Palmer, *-representation of U*-algebras, Indina Univ. Math. J. 20(1971), 929-933.
- W. L. Paschke, Completely positive maps on U^{*}-algebras, Proc. Amer. Math. Soc. (1972), 412-416.
- W. L. Paschke, Inner product modules over B*-algebras, Amer. Math. Soc., 1973
- N. C. Phillips, Inverse limits of C^{*}-algebras, Operator Theory J. 19(1988), 159-195.
- 9. M. A Rieffel, Induced representation of C^{*}-algebras, Indina Univ. Math. J., 1975.
- 10. M. Takesaki, Theory of operator algebras I, Springer- Verlag, 1979.

Department of Mathematics Changwon National University Changwon 641–773, Korea