REPRESENTATION ON A HILBERT B-MODULE

AN-hyun Kim

1. Introduction

Each cyclic *-representation gives rise to a state on a C^{*}-algebra. And it turns out that each state generates a cyclic $*$-representation that reproduces it ($[2, \mathrm{p} 261],[3])$. But, if we replace a state by a completely positive map, what happens? This paper is an investigation of a *representation (on a Hilbert B-module) generated by a completely positive map.

In §2, we introduce some definitions and their properties which will be needed in next section.

In §3, we show that a completely positive map gives rise to a preHilbert B -module in much the same way that a state gives rise to a pre-Hilbert space. The properties of pre-Hilbert B-module generated by a completely positive map are described and this section contains main theorems([Theorem 3.4], [Theorem 3.5]).

2. Properties of B-valued inner product

Definition 2.1. Let B be a C^{*}-algebra.
A pre-Hilbert B-module is a right B -module X equipped with a conjugate bilinear map [,]: $X \times X \rightarrow B$ satisfying:
(a) $[x, x] \geq 0 \quad \forall x \in X$;
(b) $[x, x]=0 \quad$ only if $x=0$;
(c) $[x, y]=[y, x]^{*} \quad$ for $x, y \in X$;
(d) $[x \cdot b, y]=[x, y] b \quad$ for $x, y \in X, \quad b \in B$.

The map [,] will be called a B-valued inner product on X.
The following simple facts are obvious:

$$
\begin{aligned}
& 1^{\circ}[x, y \cdot b]=b^{*}[x, y] \quad x, y \in X, b \in B . \\
& 2^{\circ} \text { if } B \text { has } 1, X \text { is unital (i.e., } x \cdot 1=x, x \in X \text {). }
\end{aligned}
$$

[^0]3^{0} defining $\|\cdot\|_{X}$ on X by $\|x\|_{X}=\|[x, x]\|^{1 / 2},\|\cdot\| X$ becomes a norm on X.
$4^{0}\|[x, y]\| \leq\|x\|_{X}\|y\|_{X}, \quad\|x \cdot b\|_{X} \leq\|x\|_{X}\|b\| \quad x, y \in X, b \in B$.
Definition 2.2. A pre-Hilbert B-module X which is complete with respect to $\|\cdot\|_{X}$ will be called a Hilbert B-module.

For a pre-Hilbert B-module X, we let $A(X)$ denote the set of operators $T \in B(X)$ for which there is an operator $T^{*} \in B(X)$ such that $[T x, y]=\left[x, T^{*} y\right]$ for $x, y \in X$. And for $x, y \in X$, define $x \otimes y: X \rightarrow X$ by $x \otimes y(w)=x \cdot[w, y]$.

The following simple facts are obvious:
$5^{0} A(X)$ is a $*$-algebra with involution $T \rightarrow T^{*}$.
6° if $T \in A(X)$, then $T(x \cdot b)=(T x) \cdot b$ for $x \in X, b \in B$ (i.e. T is a module map).
Lemma 2.3 .
(1) $x \otimes y \in A(X)$ with $(x \otimes y)^{*}=y \otimes x$.
(2) $T(x \otimes y)=T x \otimes y, \quad T \in A(X)$.
(3) $\{x \otimes y: x, y \in X\}$ spans a two-sided ideal for $A(X)$.

Proof. (1) For all $w_{1}, w_{2} \in X$,

$$
\begin{aligned}
{\left[w_{1},(x \otimes y) w_{2}\right] } & =\left[w_{1}, x \cdot\left[w_{2}, y\right]\right]=\left[w_{2}, y\right]^{*}\left[w_{1}, x\right] \\
& =\left[y, w_{2}\right]\left[w_{1}, x\right]=\left[y \cdot\left[w_{1}, x\right], w_{2}\right] \\
& =\left[(y \otimes x) w_{1}, w_{2}\right]
\end{aligned}
$$

For all $w \in X, b \in B$,

$$
(x \otimes y)(w \cdot b)=x \cdot[w \cdot b, y]=x \cdot[w, y] b=(x \otimes y(w)) \cdot b
$$

(2) $T(x \otimes y) w=T(x \cdot[w, y])=(T x) \cdot[w, y]$ (since T is a module map)

$$
=(T x \otimes y) w .
$$

(3) By (1),(2), it is clear.

We write X^{\prime} for the set of B-module maps from X to B which are bounded with respect to $\|\cdot\|_{X}$. We make X^{\prime} into a right B-module by defining

$$
(\lambda \tau) x=\bar{\lambda} \tau(x) \text { and }(\tau \cdot b)(x)=b^{*} \tau(x),
$$

for $\lambda \in C, \tau \in X^{\prime}, x \in X, b \in B$.
Each $x \in X$ gives rise to a map $\hat{x} \in X^{\prime}$ defined $\hat{x}(y)=[y, x]$ for $y \in X$.
We will call X self-dual if $\hat{X}=X^{\prime}$.

Theorem 2.4. Let X be a pre-Hilbert B-module.
(1) The B-valued inner product extends to $X^{\prime} \times X^{\prime}$ in such a way as to make X^{\prime} into a Hilbert B-module.
(2) Each $T \in A(X)$ extends to a unique $\tilde{T} \in A(X)$. Moreover, the $\operatorname{map} T \rightarrow \tilde{T}$ is a $*$-isomorphism of $A(X)$ into $A\left(X^{\prime}\right)$.
Proof. [7]
Let B be a von-Neumann algebra of operators on a Hilbert space H, and let $X \otimes H$ be the algebraic tensor product of X with H.
Define $<,>: X \otimes H \times X \otimes H \rightarrow C$ by $<x \otimes \xi, y \otimes \eta>=([x, y] \xi, \eta)$.
Let $Z=\{w \in X \otimes H:<w, w>=0\}$, so Z is a subspace of $X \otimes H$ and $K_{o}=X \otimes H / Z$ is a pre-Hilbert space with inner product $\left(w_{1}+\right.$ $\left.Z, w_{2}+Z\right)=<w_{1}, w_{2}>$.
Let K be the Hilbert space completion of K_{o}. For $T \in A(X)$, define a linear $\operatorname{map} \theta_{o}(T): X \otimes H \rightarrow X \otimes H$ by $\theta_{o}(T)(x \otimes \xi)=T x \otimes \xi$.
It is shown in 5.3 of $\{9]$ that $\theta_{o}(T)$ induces a bounded linear map $\theta(T): K \rightarrow K$ satisfying $\theta(T)(x \otimes \xi+Z)=T x \otimes \xi+Z$.

LEMMA 2.5. If A is a self-adjoint operator on H and $(A h, h)=0$ for all h, then $A=0$.

Proof. [3]
THEOREM 2.6. The map θ is a faithful *-representation of $A(X)$ on K.

Proof. By the above statements, it is clear that θ is a homomorphism. Also, for each $x, y \in X, \quad \xi, \eta \in H$,

$$
\begin{aligned}
\left(\theta\left(T^{*}\right)(x \otimes \xi+Z), y \otimes \eta+Z\right) & =\left(T^{*} x \otimes \xi+Z, y \otimes \eta+Z\right) \\
& =<T^{*} x \otimes \xi, y \otimes \eta>=\left(\left[T^{*} x, y\right] \xi, \eta\right) \\
& =([x, T y] \xi, \eta)=<x \otimes \xi, T y \otimes \eta> \\
& =(x \otimes \xi+Z, T y \otimes \eta+Z) \\
& =(x \otimes \xi+Z, \theta(T)(y \otimes \eta+Z)) \\
& =\left(\theta(T)^{*}(x \otimes \xi+Z), y \otimes \eta+Z\right)
\end{aligned}
$$

Let $T \in \operatorname{Ker} \theta$. Then $0=<T x \otimes \xi, T x \otimes \xi>=([T x, T x] \xi, \xi)$. Since $[T x, T x]$ is self-adjoint, by Lemma $2.5, T=0$.

3. Representation on a Hilbert B-module

Definition 3.1. Let B be a C^{*}-algebra, A a $*$-algebra and ϕ : $A \rightarrow B$ a linear map. We call ϕ positive if $\phi\left(a^{*} a\right) \geq 0, \quad a \in A$.

For $n=1,2, \cdots, \phi$ induces a map ϕ_{n} from algebra A of $n \times n$ matrices with entries in A (made into a $*$-algebra by setting $\left[a_{i j}\right]^{*}=\left[a_{i,}^{*}\right]$ for matrices $\left.\left[a_{i}\right] \in A_{(n)}\right)$ into the corresponding C^{*}-algebra B defined by $\phi_{n}\left(\left[a_{i j}\right]\right)=\left[\phi\left(a_{i j}\right)\right]$; we asy that ϕ is completely positive if each of the induced map ϕ_{n} is positive.

According to [10, p194], a linear map $\phi: A \rightarrow B$ is completely positive iff $\sum_{i j} b_{i}^{*} \phi\left(a_{i}^{*} a,\right) b \geq 0$ for $a_{1}, \cdots, a_{n} \in A, \quad b_{1}, \cdots, b_{n} \in B$. Let ϕ be completely positive and suppose in addition that $\phi\left(a^{*}\right)=$ $\phi(a)^{*}$ for $a \in A$. The map ϕ gives rise to a pre-Hilbert B -module as follows : Consider the algebric tensor product $A \otimes B$, which becomes a right B -module when we set $(a \otimes b) \cdot \beta=a \otimes b \beta$ for $b, \beta \in B, a \in A$.

Define $\ll, \gg(A \otimes B) \times(A \otimes B) \rightarrow B$

$$
\left(\sum_{j=1}^{n} a_{j} \otimes b_{3}, \sum_{i=1}^{m} \alpha_{2} \otimes \beta_{2}\right) \rightsquigarrow \sum_{i, j} \beta_{i}^{*} \phi\left(\alpha_{i}^{*} a_{j}\right) b_{j}
$$

for $a_{1}, \cdots, a_{n}, \alpha_{1}, \cdots, \alpha_{m} \in A, \quad b_{1}, \cdots, b_{n}, \beta_{1}, \cdots, \beta_{m} \in B$.
$\ll \gg$ is clearly well-defined and conjugate-bilinear. Since ϕ is completely positive, for all $x \in A \otimes B, \ll x, x \gg \geq 0$. Since ϕ is $*$-map, $\ll x, y \gg=\ll y, x \gg$ and $\ll x \cdot b, y \gg=\ll x, y \gg b$ for $x, y \in A \otimes B$ and $b \in B$.

Put $N=\{x \in A \otimes B: \ll x, x \gg=0\}$. Then N is a submodule of $A \otimes B$ and $X_{o}=A \otimes B / N$ is a pre-Hilbert B-module with B-valued inner product $[x+N, y+N]=\ll x, y \gg$ for $x, y \in A \otimes B$.

Theorem 3.2. Let A be a U^{*}-algebra with $1, B$ a C^{*}-algebra with 1 , and $\phi: A \rightarrow B$ a completely positive map. Then
(1) there is a Hilbert B-module X, a *-representation π of A on X, and an element $e \in X$ such that $\phi(a)=[\pi(a) e, e]$ for $a \in A$.
(2) the set $\{\pi(a)(e \cdot b): a \in A, b \in B\}$ spans a dense subset of X.

Proof. [7],[10].

In particular, note that $\pi(a)(x+N)=a \cdot x+N \quad \forall x \in A \otimes B$ and $\pi(a) \in A(X)$ (i.e., $\pi(a)$ is a B-module map), X a completion of X_{0}, also $e=1 \otimes 1+N$.
Let A be a U^{*}-algebra with 1 , and B a W^{*}-algebra. If X, π and e are as in Theorem 3.2, we may define a *-representation $\tilde{\pi}$ of A on the self-dual Hilbert B -module X^{\prime} by $\check{\pi}(a)=\pi(a)^{\sim} \in A\left(X^{\prime}\right)$ for $a \in A$ (see 2.4).

Suppose $\psi: A \rightarrow B$ is another completely positive map. We write $\psi \leq \phi$ if $\phi-\psi$ is compeletely positive and let $[0, \phi]$ denote the set of compeletely positive maps from A into B which are $\leq \phi$.
For $T \in A\left(X^{\prime}\right)$, define $\phi_{T}: A \rightarrow B$ by $\phi_{T}(a)=[T \tilde{\pi}(a) \hat{e}, \hat{e}]$. Notice that $\phi_{I}=\phi$ and that the map $T \leadsto \phi_{T}$ is a linear map of $A\left(X^{\prime}\right)$ into the space of linear transformations of A into B.

Theorem 3.3. Under the above circumstance,
(1) for each $T \in \tilde{\pi}(A)^{\prime}$ with $0 \leq T \leq I_{X}^{\prime}$, the formula $\phi_{T}(a)=$ [T $\tilde{\pi}(a) \hat{e}, \hat{e}]$ defines a completely positive map such that $\phi_{T} \leq \phi$.
(2) the correspondence $T \leadsto \phi_{T}$ described in (1) is a bijection of $\left\{T \in \tilde{\pi}(A)^{\prime}: 0 \leq X \leq I_{X^{\prime}}\right\}$ onto $[0, \phi]$.
(3) the correspondence preserves convex combinations, where $\tilde{\pi}(A)^{\prime}$ denotes the commutant of $\tilde{\pi}(A)$ in $A\left(X^{\prime}\right)$.

Proof. [2], 77].
Let A be a U^{*}-algebra with 1 , and B a W^{*}-algebra with 1 . We denote the set of completely positive maps $\phi: A \rightarrow B$ such that $\phi(1)=1$ by $\sum(A, B, 1)$.
Note that $\sum(A, B, 1)$ is a convex subset of the space of linear maps from A into B.

Theorem 3.4. Under the above circumstance, tha following conditions on $\phi \in \sum(A, B, 1)$ are equivalent:
(1) ϕ is an extremal point of $\sum(A, B, 1)$;
(2) the map $T \leadsto[T \hat{e}, \hat{e}]$ of $A\left(X^{\prime}\right)$ into B is injective on $\tilde{\pi}(A)^{\prime}$;
(3) If ψ is any completely positive map on A such that $\psi \leq \phi$, then $\psi=\alpha \phi$ with $0 \leq \alpha \leq 1$.

Proof. (1) \Longleftrightarrow (3) This follows immediately from (68.24) in [2].
(2) \Rightarrow (1) Suppose that the map is injective and let $\phi=t \phi_{1}+$ $(1-t) \phi_{2}, \quad \phi_{1}, \phi_{2} \in \sum(A, B, 1) \quad(0<t<1)$. then $t \phi_{1} \leq \phi$. i.e., $t \phi_{1}(a) \in[0, \phi]$.
By 3.3, there are $T \in \tilde{\pi}(A)^{\prime}, \quad 0 \leq T \leq I_{X^{\prime}}$ such that $t \phi_{1}(a)=[T \tilde{\pi}(a)$ $\hat{e}, \hat{e}] \quad \forall a \in A$.
Setting $a=1, t \phi_{1}(1)=[T \hat{e}, \hat{e}]$. By tha way, since $t \phi_{1}(1)=t$. $1, t \phi_{1}(1)=[T \hat{e}, \hat{e}]=t$. Therefore $[(T-t I) \hat{e}, \hat{e}]=0$. By the hypothesis, $T=t I$. Also,

$$
t \phi_{1}(a)=[t I \tilde{\pi}(a) \hat{e}, \hat{e}]=t[\tilde{\pi}(a) \hat{e}, \hat{e}]=t=t \phi_{I}(a)=t \phi(a)
$$

Thus, $t \phi_{1}=t \phi$ and $\phi_{1}=\phi_{2}=\phi$.
$(1) \Longrightarrow$ (2) Suppose that $\phi \in \sum(A, B, 1)$ is an extremal point.
Take $T \in \tilde{\pi}(A)^{\prime}$ such that $\mu(T)=[T \hat{e}, \hat{e}]=0$. i.e.,

$$
\begin{aligned}
\mu: \tilde{\pi}(A)^{\prime} & \subset \\
T & \sim \\
A & \mu\left(X^{\prime}\right) \longrightarrow B \\
\mu & \mu(T)=\left[T^{\prime} \hat{e}, \hat{e}\right] .
\end{aligned}
$$

Choose $s, t>0$ such that $\frac{1}{4} I_{X^{\prime}} \leq s T+t I_{X^{\prime}} \leq \frac{3}{4} I_{X^{\prime}}$ and set $F=$ $s T=t I_{X^{\prime}}$. Then, since $\mu\left(\frac{1}{4} I_{X^{\prime}}\right) \leq \mu(F) \leq \mu\left(\frac{3}{4} I_{X^{\prime}}\right)$, it follows that $\frac{1}{4} \leq t \leq \frac{3}{4}$.
Define $\phi_{1}(a)=[F \tilde{\pi}(a) \hat{e}, \hat{e}], \quad \phi_{2}(a)=[(I-F) \tilde{\pi}(a) \hat{e}, \hat{e}]$. Since $0 \leq F \leq$ $I_{X^{\prime}}$, By $3.3, \phi_{1}, \phi_{2}$ are completely positive. Also $\phi_{1}(1)=t \cdot 1, \phi_{2}(1)=$ $(1-t) 1,\left(\phi_{1}+\phi_{2}\right)(a)=\phi_{I}(a)=\phi(a)$. Since $t^{-1} \phi_{1},(1-t)^{-1} \phi_{2}$ belong to $\sum(A, B, 1)$, from extremality of $\phi, \quad t^{-1} \phi_{1}=(1-t)^{-1} \phi_{2}=\phi$.
In particular, $[F \tilde{\pi}(a) \hat{e}, \hat{e}]=\phi_{1}(a)=t[\tilde{\pi}(a) \hat{e}, \hat{e}], \quad \forall a \in A$. Thus $F=$ $t I_{X^{\prime}}$, and so $s T=0$.
Therefore $T=0$ and μ is injective on $\tilde{\pi}(A)^{\prime}$.
Theorem 3.5. If π is a -representation of A on a Hilbert B-module Y and $\phi(a)=\{\pi(a) e, e\}$ and if π_{ϕ} is constructed as in 3.2, then
(1) there exists an isometric mapping U from X into Y.
(2) $U \pi_{\phi}(a)$ and $\pi(a) U$ agree on X.

Proof. (1) By theorem 3.2, $\pi_{\phi}(A)\left(e_{\phi} \cdot B\right)$ and $\pi(A)(e \cdot B)$ are dense subspaces of X, Y, respectively. Now define $U_{o} \pi_{\phi}(a)\left(e_{\phi} \cdot b\right)=\pi(a)$
$\left(e_{\phi} \cdot b\right) \quad b \in B$.

$$
\begin{aligned}
\left\|\pi_{\phi}(a)\left(e_{\phi} \cdot b\right)\right\|^{2}= & \left\|\left[\pi_{\phi}(a)\left(e_{\phi} \cdot b\right), \pi_{\phi}(a)\left(e_{\phi} \cdot b\right)\right]\right\| \\
= & \left\|\left[\pi_{\phi}\left(a^{*} a\right)\left(e_{\phi} \cdot b\right), e_{\phi} \cdot b\right]\right\| \\
= & \|\left[\left(\pi_{\phi}\left(a^{*} a\right) e_{\phi}\right) \cdot b, e_{\phi} \cdot b \|\right. \\
& \left(\text { since } \pi_{\phi}\left(a^{*} a\right)\right. \text { is module map) } \\
= & \left.\left\|b^{*}\left[\pi_{\phi}\left(a^{*} a\right) e_{\phi}, e_{\phi}\right] b\right\| \quad \text { (by } 1^{o}\right) \\
= & \left\|b^{*}\left[\pi\left(a^{*} a\right) e, e\right] b\right\| \quad \text { (by the hypothesis) } \\
= & \left.\| \pi\left(a^{*} a\right)(e \cdot b), e \cdot b\right] \| \\
= & \|[\pi(a)(e \cdot b), \pi(a)(e \cdot b)]\| \\
= & \|\pi(a)(e \cdot b)\|^{2} .
\end{aligned}
$$

Thus U_{0} is well-defined and isometric on $X_{o}\left(=\pi_{\phi}(A)\left(e_{\phi} \cdot B\right)\right)$. Therefore U_{o} extends to an isometric mapping U of X into Y.
(2) By definition and continuity of U_{o}, it is clear.

References

1. W. B. Arveson, Subalgebras of C^{*}-algebras, Acta Math $123(1969)$.
2. S. K. Berberian, Lectures in functional analysıs and operator theory, SpringerVerlag, 1974.
3. J. B. Conway, A course in functzonal analysis, Springer- Verlag, 1985.
4. Kadison and Ringrose, Fundamentals of the theory of operator algebras, Academic Press Inc., 1983
5. T W. Palmer, *-representatzon of U^{*}-algebras, Indına Univ. Math. J. 20(1971), 929-933.
6. W. L. Paschke, Completely posttive maps on U^{*}-algebras, Proc. Amer. Math. Soc. (1972), 412-416.
7. W. L. Paschke, Inner product modules over B^{*}-algebras, Amer. Math. Soc., 1973
8. N. C. Phillips, Inverse hmets of C^{*}-algebras, Operator Theory J. 19(1988), 159-195.
9. M. A Rieffel, Induced representation of C^{*}-algebras, Indina Univ. Math. J., 1975.
10. M. Takesaki, Theory of operator algebras I, Springer- Verlag, 1979.

Department of Mathematics
Changwon National University
Changwon 641-773, Korea

[^0]: Received March 17, 1991.

