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REPRESENTATION ON A HILBERT B-MODULE

AN-KYUN KM

1. Introduction

Each cyclic *-representation gives rise to a state on a C*-algebra.
And it turns out that each state generates a cyclic »-representation that
reproduces it ({2, p261},[3}). But, if we replace a state by a completely
positive map, what happens? This paper is an investigation of a *-
representation (on a Hilbert B- module) generated by a completely
positive map.

In §2, we introduce some definitions and their properties which will
be needed in next section.

In §3, we show that a conipletely positive map gives rise to a pre-
Hilbert B-module in much the same way that a state gives rise to a
pre-Hilbert space. The properties of pre-Hilbert B-module generated
by a completely positive map are described and this section contains
main theorems([Theorem 3.4], [Theorem 3.5)).

2. Properties of B-valued inner product

DEFINITION 2.1. Let B be a C*-algebra.
A pre-Hilbert B-module is a right B-module X equipped with a conju-
gate bilinear map [, ] : X x X — B satisfying:
(a) [z,2z] >0 Vz e X;
(b) [z,2] =0 onlyifz =0
(¢) [z,y] =y,z]* forz,ye€X;
(d) [z -b,y] =[z,y}b forz,yeX, beB.

The map [, ] will be called a B-valued inner product on X.
The following simple facts are obvious:

1° {z,y b =b*[z,y] z,y€ X, beB.

2° if B has 1, X is unital (e, z-1=2z, z € X).
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3° defining || - ||x on X by {lzfix = |llz,z}i*/?, || - lIx becomes a
norm on X.

4° |llz, vl < li=lix lvlix, lz-dlix <l=zllx |6 =yeX, be B.
DEFINITION 2.2. A pre-Hilbert B-module X which is complete with
respect to [} - )jx will be called a Hilbert B-module.

For a pre-Hilbert B-module X, we let A(X) denote the set of oper-
ators T € B(X) for which there is an operator T* € B(X) such that
[Tz,y] = [, T*y] forz,y € X. Andfor z,y € X, definez@y : X = X
by 2 @y(w) =z - [w,y].

The following simple facts are obvious:

5° A(X) is a *-algebra with involution T' — T™.
6° if T € A(X), then T(z-b)=(Tz) -bforze X, be B(ie T
is a module map).

LEMMA 2.3.

(1) zQy € A(X) with(z®y)* =y ®=.
(2) T(z®y)=TzQy, Te A(X).
(3) {z®y: =,y € X} spans a two-sided ideal for A(X).

Proof. (1) For all w),w, € X,

[wla (x ® y)w2} = [wlaz : {wZ’yn = [w21 y]* [wla JJ]
=y, we] w1, 2] = [y - [wy, =}, wa]
= (v @ z)w1,w2)

Foralwe X, be B,

(s ®v)w b =2-[w- byl = 2w,y = (2 & y(w)) - b
YTz @ y)w =T(z- [w,y]) = (Tz) - [w, y] (since T is a module map)
= (Tz Q y)w.

(3) By (1),(2), it is clear.

We write X' for the set of B-module maps from X to B which are
bounded with respect to (| - [l x. We make X' into a right B-module by
defining )

(A7) = Ar(z) and (7 - b)(z) = b*r(x),
forXeC, reX', ze X, beB.
Each ¢ € X gives rise to a map 7 € X' defined i(y) = [y, z] for y € X.

We will call X self-dual if X = X'.
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THEOREM 2.4. Let X be a pre-Hilbert B-module.

(1) The B-valued inner product extends to X' x X' in such a way
as to make X' into a Hilbert B-module.

(2) EachT € A(X) extends to a unique T € A(X). Moreover, the
map T — T is a *-isomorphism of A(X) into A(X").

Proof. [7]

Let B be a von-Neumann algebra of operators on a Hilbert space
H, and let X ® H be the algebraic tensor product of X with H.
Define <,>: X@HXXQH —~»Cby<z®&y®n>=({z,yl¢,n)
let Z={weXQ®H :<w,w>=0},s0 Z is a subspace of X @ H
and K, = X ® H/Z is a pre-Hilbert space with inner product{w, +
Z,wy + Z) =< Wy, Wz >.

Let K be the Hilbert space completion of K,. For T € A(X), define a
linear map 0,(T) : X Q@ H - X QH by §,(T)z®¢& =Tz Q¢

It is shown in 5.3 of {9] that 6,(T) induces a bounded linear map
6(T) : K — K satisfying 0(T) (s Q¢+ Z2) =Tz ®¢+ 2.

LEMMA 2.5. If A is a self-adjoint operator on H and (Ah,h) = 0
for all h, then A = 0.

Proof. (3]

THEOREM 2.6. The map 9 is a faithful x-representation of A(X) on
K.

Proof. By the above statements, it is clear that 8 is a homomor-
phism. Also, for each z,y € X, £,p€ H,

Tz QE+2),y®n+2)=(T*zQ¢+ Z,yQn + Z)
=<T* 2 @&y ®n>=([T"z,y),n)
= ([z, Ty}, n) =< 2@ Ty®n >
={(z®¢(+Z2,Ty®@n+ 2)
={(z Q¢+ Z,0(T)y®n + Z))
=0TV (z®@£+2),y®@n+ 2Z).

Let T € Kerf. Then 0 =< Tz @ (,T2 @ £ >= ([Tz,Tz)¢,£). Since
[Tz, Tx] is self-adjoint, by Lemma 2.5, T = 0.



56 An-hyun Kim
3. Representation on a Hilbert B-module

DEFINITION 3.1. Let B be a C*-algebra, A a x-algebra and ¢ :
A — B a linear map. We call ¢ positive if §(a*a) > 0, a€ A.

Forn=1,2,---, ¢ induces a map ¢, from algebra A of nxn matrices
with entries in A (made into a *-algebra by setting [a,;]* = [a},] for
madtrices [a;,] € A(n)) into the corresponding C*-algebra B defined by
$n([a,;]) = [¢#{ai,)]; we asy that ¢ is completely positive if each of the
induced map ¢, is positive.

According to {10, p194], a linear map ¢ : A — B is completely
positive iff 3°,. b7 ¢(ale,)b > 0fora;,--- ,an € 4, by, ,ba € B.
Let ¢ be completely positive and suppose in addition that ¢(a*) =
¢(a)* for @ € A. The map ¢ gives rise to a pre-Hilbert B-module as
follows : Consider the algebric tensor product 4 ® B, which becomes
a right B-module when we set (a®b)-f=a®bf for b, € B, a € A.

Define <,>»:(A®B)x(A®B)— B

(E a,®b;,) 0, ® ﬁ;) ~ Y Bi¢(afa;)b,

=1 =1 5

for a;,--- y@ny, @1, ,0m € A, by,o--  ba, fi,000, Bm € B.

&, > is clearly well-defined and conjugate-bilinear. Since ¢ is com-
pletely positive, forallz € AQ B, <« z,z>»> 0. Since ¢ is x-map,
Lnyd>=kLy,zyand €z - by >=kK 2,y > bforz,y€c AQB
and b € B.

Put N={r € A® B :< 2,z »=0}. Then N is a submodule of
AQ®Band X, = A® B/N is a pre-Hilbert B-module with B-valued
inner product {z + N,y + N]| =< z,y > forz,y € AR B.

THEOREM 3.2. Let A be a U*-algebra with 1, B a C*- algebra with
1, and ¢ : A — B a completely positive map. Then

(1) there is a Hilbert B-module X, a *-representation m of A on
X, and an element e € X such that ¢{a) = [r(a)e,e] fora € A.
(2) the set {m(a)(e-b) : a € A, b € B} spans a dense subset of X.

Proof. {7],[10].
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In particular, note that 7{(a)(z+ N)=a-2+N Vz€ AQ B and
m(a) € A(X)(i.e., m(a) is a B-module map), X a completion of X,,
alsoe=1Q1+ N.

Let A be a U*-algebra with 1, and B a W*-algebra. If X, n and e
are as in Theorem 3.2, we may define a *-representation # of A on the
self-dual Hilbert B-module X’ by #{a) = w(a)™ € A(X') for a € A (see
2.4).

Suppose ¥ : A — B is another completely positive map. We write
P < ¢ if ¢ — ¢ is compeletely positive and let {0,4] denote the set of
compeletely positive maps from A into B which are < 4.

For T € A(X'), define ¢ : A — B by ér(a) = {T7(a)é,é]. Notice
that ¢y = ¢ and that the map T ~» ¢7 is a linear map of A(X') into
the space of linear transformations of A into B.

THEOREM 3.3. Under the above circumstance,

(1) for each T € #(A) with 0 < T < [, the formula ¢r(a) =
[T#(a)é, €] defines a completely positive map such that ¢ < ¢.
(2) the correspondence T ~» ¢ described in (1) is a bijection of
{Te#(A) : 0< X <Ix/} onto [0,4]
(3) the correspondence preserves convex combinations,
where #(A)' denotes the commutant of 7(A) in A(X').

Proof. [2],(7).

Let A be a U*-algebra with 1) and B a W*-algebra with 1. We
denote the set of completely positive maps ¢ : A — B such that
4(1) = 1 by S3(4, B,1)

Note that 3 (A4, B,1) is a convex subset of the space of linear maps
from A into B.

THEOREM 3.4. Under the above circumstance, tha following con-
ditions on ¢ € 3 (A, B,1) are equivalent:
(1) ¢ is an extremal point of 5 (A4, B, 1);
(2) the map T ~ [T¢, €] of A(X') into B is injective on #(A)';
(3) If ¢ is any completely positive map on A such that ¥ < ¢,
thenp =ad with0 < a < 1.

Proof. (1)<=>(3) This follows immediately from (68.24) in [2].
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(2)==(1) Suppose that the map is injective and let ¢ = t¢; +
(1 —-1t)pz2, 1,82 € 3(A,B,1) (0 <t < 1). then t¢; < ¢. ie.,
t¢1(a) € [0, ¢].
By 3.3, there are T' € #(4)', 0 < T < Ix: such that ¢ ¢;(a) = [T#(a)
€,€] VacA
Setting a = 1, t¢:(1) = [T¢,é]. By tha way, since t¢1(1) = ¢ -
1, t¢1(1) = [T¢, €] = t. Therefore [(T —tI)é,é] = 0. By the hypothesis,
T =1¢I. Also,

td1(a) = [tIF(a)e, E] = t{7(a)é, &) = t = td1(a) = t(a).

Thus, t¢) = t¢ and ¢; = ¢3 = &.

(1)==>(2) Suppose that ¢ € 3 (A4, B,1) is an extremal point.
Take T € #(A) such that (T = [T%,8] = 0. i.e.,

p o 7 (A) C A(X'y —B
T ~ w(T) =[T¢,é.

Choose 3,2 > 0 such that 1Ixs < sT + tIx: < 3Ix and set F =
sT = tIxs. Then, since p(;Ix/) < p(F) < p(%[x:), it follows that
1<t<d,

Define ¢1(a) = [F&(a)é, €], ¢2(a)=[{{I ~ F)7{a)é,é]. Since 0 < F <
Ix:, By 3.3, ¢1, ¢2 are completely positive. Also ¢;(1) =¢-1, ¢2(1) =
(1=1)1, (61 +2)(a) = ér(a) = §(a). Since 1y, (1—)~4; belong
to (4, B, 1), from extremality of ¢, ¢ 1¢; = (1 —t)" 1 = 4.

In particular, [F7{a)é, é] = ¢1(a) = t{7(a)é, &), Va€ A. Thus F =
tIx:, and so sT = 0.

Therefore T = 0 and u is injective on #(A)'.

THEOREM 3.5. Ifx is a *-representation of A on a Hilbert B-module
Y and ¢(a) = {x(a)e, ¢) and if my is constructed as in 3.2, then

(1) there exists an isometric mapping U from X into Y.
(2) Uny(a) and n(a)U agree on X.

Proof. (1) By theorem 3.2, 4(A)(ey - B) and n(A)(e - B) are dense
subspaces of X, Y, respectively. Now define U,74(a) (&4 - b) = 7(a)
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(64,'6) be B.

Img(a)(es - B)I? = [[[mg(a)(es - b), mg(a)(es - )|
= [[[rg(a*a)(es - b), s - ¥l
= {l(rg(a’a)ey) - b, ey - b||
(since ng(a*a) is module map)
= [0 {mg(a*a)eq, eglbl] (by 1°)
= ||6*[x(a*a)e,e]bl] (by the hypothesis)
= fl[x(a%a)(e ), e- bl
= [[[x(a)(e - b}, m(a)(e - B)i|
= {{r(a)(e- B)|*.

Thus U, is well-defined and isometric on X,(= 74(A)(e4 - B)). There-
fore U, extends to an isometric mapping U of X into Y.

[ I

10

(2) By definition and continuity of U,, it is clear.

References

. W. B. Arveson, Subalgebras of C*-algebras, Acta Math 123(1969).

. 8. K. Berberian, Lectures in funcitonal analys:is and operator theory, Springer-
Verlag, 1974.

. J. B. Conway, A course in functional analysis, Springer- Verlag, 1585.

. Kadison and Ringrose, Fundamentals of the theory of operator algebras, Aca~
demic Press Inc., 1983

. T W. Palmer, *-representateon of U” -aigebras, Indina Univ. Math. J. 20(1871},
929-933.

. W. L. Paschke, Compleiely positwve maps on U*-algebras, Proc. Amer. Math.
Soc, {1972), 412-416.

. W. L. Paschke, Inner product modules over B*-algebras, Amer. Math. Soc.,
1973

. N. C. Phillips, Inverse limsts of C*-algebres, Operator Theory J. 19(1988),
159-185.

.M. A Rieffel, Induced representation of C*-~algebras, Indina Univ. Math. J.,
1975.

. M. Takesaki, Theory of operator algebras I, Springer- Verlag, 1879.

Department of Mathematics
Changwon National University
Changwon 641-773, Korea



