
Pusan-Kyongnam Math. J. 7(1991), No. 1, pp. 37-43

OTE EXTENDED SEMATICS
FOR LOGIC PROGRAMMING

IN THE HIGHER ORDER CALCULUS

Hyang II Yi

1. Introduction
We require the concept of ordinal powers. First we recall some el­

ementary properties of ordinal numbers, simply ordinals. The first
ordinal 0 is defined to be 0. Then we define 1 = {0} = {0}, 2 =
{0,{0}} = {0, 1), 3 = {0, {0}, {0, ({0}}} = {0, 1, 2), and so on.
These are the finite ordinals, the non-negative integers. The first infi­
nite ordinal is u; = (0, 1, 2, • • • }, the set of all non-negative integers.
We can specify an ordering < on the collection of all ordinals by defin­
ing a V 0 if a C We will normally write n C 3 rather than n < u>.
H a is an ordinal, the successor of a is the ordinal a + 1 = q U {a},
which is the least ordinal greater than a. a + 1 is then said to be a
successor ordinal. If a is a successor ordinal, a — /? + 1, we denote g
by a — 1.

An ordinal a is said to be a limit ordinal if it is not the successor
of any ordinal. The smallest limit ordinal (apart from 0) is 3. After
3 comes 3 + 1 = 3 U (u?), u? 4~ 2 =(3 + 1) + 1)3 + & and so on.
The next limit ordinal is w2, which is the set consisting of all n and
all 3 + n where n € cu. Then comes 32 + 1： ^2 + 2,,u>3? u;3 +
1, , , • , 34, , • , , • , , ? CiJTly

2。 Unification algorithms
Resolutions play a fundamental role in problem solving based on

clausal forms as Prolog. In fact, resolvent must be obtained at every
execution step, and the efficiency of this operation affects crucially the
efficiency of the whole procedural interpreter.

We are interested in substitutions which unify a set of expression,
that is, make each expression in the set syntactically identical. The

Received March 5, 1991.

37

38 Hyang II Yi

concept of unification goes back to Herbrand in 1930. It was re击scov-
ered in 1960 by Prawitz and further exploited by Robinson for use in
the resolution rule.

Colmcrauer(1983) has proposed a novel theoretical model involving
occur checks, and has presented convincing models of the usefulness of
such semantics. He presents also corret algorithm for unification with
infinite terms of occur checks.

David(1984) presented a method for preprocessing Prolog programs
so that their operational sementics would be given by the first order
predicate calculus. The Prolog program can be preprocessed to add
tests at these places to cause subgoals to fail if they return terms with
loops.

Proposals have been recently put forward to extend logic program-
ming so as to deal with infinite terms efficiently. In this paper we
present extended semantics of the higher calculus for logic program­
mings to get rid of occur checks.

3< Formal Semantics
In this section we shell give some semantics of occur checks based

on the higher-order calculus. We introduce class ftmctional of fixed
objects in view of the theory of types.

DEFINITION 2.1. A FORMULA is defined recursively as an expres­
sion of propositions satisfying the following :

(1) If s is a term of type n and f is a term of type n +1, then s E t
is a formula, where n is a positive integer.

(2) If 4 is a formula, so is
(3) If A and B are formulas,then (A —> B) is a formula.
(4) If A is a formula and x is a variable, then Vx(X) is a formula.
(5) A formula is contructed by finite applications of (1)-(4) above.

Among the logical laws of the higher-order calculus the concept of
IDENTITY is the one which has the greatest importance. Leibniz first
stated the concept of identity as follows:

(LEIBNIZ'S Law). X = y if and only if x has every property which
y has, and y has every property which x has.

In the following formulation we employ the term "class" instead of
“property".

The extened sematic요 in the higher calculus 39

(LEIBNIZ’S Law), x = y if and only if every class which contains
any one of the things x and y as an element also the other as an element.
Now we may set up the following two axioms:

Axiom 2.1.
Vx (xEy^-xEz—^y = z)・

AXIOM 2.2. Fbr every formula F(x),

3y Vx (x F(x)).

We have a fundamental semantics of occur checks from the following
theorem.

THEOREM 2.1. For every mapping f respect to member x of type

크lg Vx , (z £ g M크 :r = /(x)).

Proof. If follows from the transitivity of identity and axiom 2.1. It
remains to show the uniqueness,

Vx (w € g 匚크 z = /(x)) and Vx (% € z H 工 = /(x))
一소(zfguECz-능 g = z)

By theorem 2.1, we get a term {x\x = /(z) } of type n + 1 whenever
x is of type n. Let us define the special members of type n+1 associated
with an occur checks.

DEFINITION 2.2. For every mapping f of type n,
(1) { x |x =： f(x) = (z) } = Bly Vx (z € g Hz = /(a:)).
(2) {x\x = J(x) = (x,a)) = 31y Vx (x E y x =

We have, by definition 2.2.,the following corollaries.

COROLLARY 2.1. For every mapping f of type n,

a £ {x\x = /(x) } H a = /(a)

40 Hyang II Yi

COROLLARY 2.2. For every mapping f and g of type n,

{x\x- /(x)} = {이g = p(x))
C흐니x (z = /(x) 匚흐 g = g(w))

匸흐 니x (/(x) = g(x))

Proof. Let g = {이$ = J(x) }. then we have

y 口 Vx (z E g z二흐 ⑦ = /(a:)).
Replacing g by { 죄z = g{x) }, we have
{x\x ~ /(x) } = {x\x ~ g(x)}

{x\x = g(x) 口 z = f(x))
w흐니h (x = g(찌 w크 刀 = y(x)).

COROLLARY 2.3. For every mapping f of type n,

{ ・f(z) \x = f(x) } = {이:r = f(x) }.

COROLLARY 2.4. For every mapping f of type n,

Vz (X = /(s) T 너* (z = /(/(/(- - • (/(x)) • • •))))).

Now let L be a set of type n. Then set inclusion is easily seen to
be a partial order on 2’ and 2L under the set inclusion is a complete
lattice. Moreover, the Cartesian product L = 1八乂1」2'乂*…xL、where
L^s (z = 1,2, • • • , fe) are complete lattices of type n, with the inclusion
relation defined as

(ai,fl2,••- ,afc) < (6i,&2,••-，就)iff a. < b,(i = 1,2,••- ,k) in Li

is a complete lattice. Next we shall consider the complete lattice L
defined just above.

DEFINITION 2.3. Let L be a complete lattice and / : L —> L be a
mapping. We say f is MONOTONIC if f(x) < /(y), whenever x < y.

The extened sematics in the higher calculus 41

x
—7 \i7 \l7 xlfz \)z x
—7

1
2
 3
 4
 5
 6

/(\ z(\ z(\ /
k
 z/k /l\

DEFINITION 2.4. Let L be a complete lattice and / : L —» L be a
mapping. We say / is CONTINUOUS if /(hib(X)) = lub(/(X)), for
every subset X of 乙 in which every finite subset of X has an up호e호
bound.

Now we can define the ordinal powers of /.

DEFINITION 2.5. Let L be a complete lattice and f : L L be
monotonic. Then we define

/T0 = ±.
/ t a = J(f t (a — 1)), if a is a successor ordinal.
/ T a == lub{ f T P : P < a}, if a is a limit ordinal.
no = ・「・ .
/ I a = f(f J, (a — 1)), if a is a successor ordinal.
/ 1 a = glb{ f I : /3 < a}j if a is a limit ordinal.

LEMMA 2.1. Let L be a complete lattice and f : L L be mono­
tonic. Then f has a least Gxpoint lfp(f) in L and a greatest fixpoint
g^P(f) L.

Next we give a characterization of lfp(/) and gfp(/) in terms of
ordinal powers of f.

LEMMA 2.2. Let L be a complete lattice and f : L L be mono­
tonic. Then for any ordinal a, / | a < lfp(f) and / j, a > gfp(f)^

LEMMA 2.3. Let L be a complete lattice and f : L L be contin­
uous. then lfp(f) = 了 T 3。

Proof, By Lemma 2.2, we have / u? is a fixpoint. Note that {ft
n : n £ a?} is directed, since f is monotonic. Then

/(/ T 3)= f(lub(/ I n : n G w}) = lub(/(/ f n) : n e w) = jf f w,

using the continuity of fa

Let p be a program. Then 2%)which is the set of all Herbrand
interpretations of p, is a complete lattice under the partial order of
set inclusion Ce The top element of this lattice i앙 Bp and the bottom
element is 0.

42 Hyang II Yi

THEOREM 2.2. Let p be a program. Let fp : 2Bp —> 2Bp be a map­
ping which has the property fp(I) = { A € : A 厶"厶幻 …,Am
is a ground instance of a clause in p and {A1^A2^ • • • , Am} C I} where
I is a Herbrand interpretation }. Then the least Herbrand model Mp
is the least fixpoint lfp(fp) and Mp is fp] uj.

Proof. First we must show the fact that the mapping fp is con­
tinuous, and hence monotonic. Let x be a directed subset of 2Sp.
Note that {AlyA2j - - - , Am} Q lub(x) iff {&，血，…,Am} C Z for
some I E X. In order to show fp is co표tinuous, we have to show
/p(lub(x) = lub(/p(x)). Now we have

A 6 /^(lub(x))
iff A Ai, A2, *' ■ , Am is a ground instance of a clause in p and
(A1,A2, • •- ,4m} 으 lub(x)
iff A Ai, A2, •' * , Am is a ground instance of a clause in p and
{A】.,厶2> • , • ,4m} 으 for some I E X
iff A G Jp(Z) for some I 으: X
iff A G lu&(£，(z)).
And we have [缶广的, … , Am} 으 I implies A G I iff fP(x) 으 I.

Then

Mp — glb(I : Z is a Herbrand model for p }
= glb{7 ：/p(I)C7}

=ifp(A)
= J) T 3. (by Lemma 2.3)

The mapping fp of Theorem 2.2 provides the link between the declar­
ative and procedural semantics of a program p. Now we consider the
efficient algorithms of occur checks, whenever a variable x of type n
occurs in a term and x is fixed by a function /, we may regard f as
a fixed function which is pairwise monotonic. Then the unification al­
gorithm can replace the fix point x by an undetermined object of type
n + 1. We suggest that logic programmings must take the semantics of
programs in the higher order language to run an efficient algorithms.

References
1. W. F. Clocksin and C. S. Mellish, Programming m prolog, Springer-Verlag,

1981.

마he extened sematics in the higher calculus 43

2. A. Colmerauer, Prolog and infinite trees ; Logic programming, Academic Press,
1982.

3. M. Filguiras, A prolog interpreter working With infinite terms; tn implementa­
tion of PROLOG^ J. Wiley and Sons, 1984.

4. S. Haridi and D. Sahlin, Efficient implementation of unification of cyclic struc­
tures; m implementation of PROLOG^ J. Wiley and Sons, 1984.

5. J. W. Liod, Foundations of log%c programmtngj Springer- Verlag, 1984.
6. A. Martelli and G. Rossi, Efficient untficatton wth infinite terms tn logic pro-

grammtngy Proc, of 아le Int. Conf on 5th G아leratKm Computer System, 1984.
7. K. Mukai, A unification algorithm for infinite trees, Proc, of the 8th Int. Conf,

on Artifical Intelligence, 1983.
8. D. A. Plaisted, The occur-check problem tn prolop. Proc, of the Int. Symp. on

Logic Programming, 1984.
9. A. Tarski, Introduction to logic^ Oxford Univ Press, 1941.

10. M. H. van Emden and R. A. Kowalski, The semantics of predicate logic as a
programming language, JACM, 1976.

Department of Applied Mathematics
National Fisheries University of Pusan
Pusan 608-737, Korea

