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ON EMBEDDED SURFACES
WITH CONSTANT NONZERO MEAN CURVATURE

CHANG-RIM JANG AND SEONG-KowaN HONG

1. Introduction

The mean curvature function H on an oriented surface S in R® is
defined at a point p in S to be H(p) = A1(p) + A2(p), where A1(p) and
Xo(p) are the principal curvatures of S at p. When H is constant, S
is called a surface of constant mean curvature. In this paper, if Sisa
surface of constant mean curvature H, we call § an MCH-surface. We
can (and will ) assume H > 0.

We consider properly embedded MCH-annulli A, which are homeo-
morphic to the punctured unit disc D\O in R%. Let F: D\O — A C
R® be a homeomorphism. Then f will be a proper map and F(y) — oo
as y — 0. Due to W. Meeks 111 [1], every properly embedded MCH
annulus A is cylindrically bounded, i.e., A stays a bounded distance
from one half infinite straight line. Recently, N.J. Korevarr, R. Kusner
and B. Solomon proved that every properly embedded MCH- annulus
is asymtotic to a Delaunay surface [2]. They also proved that if 3 is
a complete properly embedded MCH-surface and has two annular end,
then it 1s a Delaunay surface.

Modifying the method of three authors, we obtained some different
results about properly embedded MCH-annulli. Also, we proved that
if S C R? is a compact MCH-graph with 85 € z® =0 and if § has a
point p such that z3(P) = 2H~!, then S is a hemisphere.

We need some notations and definitions. Many of them arée due to
three authors.

(1.1). For 0 < R < o0, P € R?® and given a unit vector v the
disc with center P and normal v, is defined by D, r{P) = {y € R* :
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ly—P| < R, (y— P)-v =0)}. The solid half cylinder generated by
D, r(p) and v is

Cir(P)={y+zv:y€Dyr(p), 220}

Due to W. Meeks III, if A C R? is a properly embedded MCH- annulus.
then there exists Cy p(P) such that A C C} z(P). In this case, We
call v an axis vector of A.

2. Compcat MCH-graphs

In this section, we will prove that a compact MCH-graph with some
property must be a hemisphere.

PROPOSITION 2.1. Proposition suppose S C R? is a compact MCH-
graph with 35 C {z® = 0}. Then |z%(S)| < 2H~!. Futhermore, if §
has a point p such that z*(p) = 2H ' or —2H !, then S must be a
hemisphere. )

Proof. We may assume z3(S) > 0. By the Cauchy-Schwarz in-
equaity, the second fundamental form A and the mean ourvature H sat-
isfies 2| 4|2 - H? > 0. On a graph, the (upward) unit normal v satisfies
v* > 0. Combining these inequalities with the equations Az® = —Hv®
and Av® = —|A}?v?® yields the differential inequality A(Hz> —2v%) > 0
on S. Since Hz® — 2v® < 0 on 85, the maximum principle implies the
same inequality on S. The first result follows since v® < |[v| = 1. Sup-
pose z3(p) = 2H ™! at some point p € §. Then Hz3 — 2v® has an
interior maximum at p. The maximum principle implies Hz® — ~2¢3
must be constant and A(Hz® ~ 2v) = (2|A|? — H?)v? is constantly
zero. By continuity, we may conclude that 2|A|*> — H? = 0. Hence §
is a hemisphere with radius H.

REMARKS.
1. The first part of Proposition 2.1 are firstly overserved by Serrin

(3].

2. For the known examples, if § is an MCH-graph over a con-
nected closed (not necessarly compact) domain in {z* = 0}
with S C {z® = 0}, we expect S has the property mentioned
in Proposition 2.1.
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COROLLARY 2.2. Let S be a compact MCH-graph with8S C {2® =
0}. If S is not a hemisphere, then |23(S)| < 2H™!.

3. Properly embedded MCH-annulus

To prove our results, we need some argument which is similar to
three authors’. Let A be a properly embedded MCH-annulus and let
AC C’:: &{@)- We may assume ¢ = 0. The axis vector a is parallel to
positive zi-axis.

Fix a plane II C R?® with unit normal v, which is below annulus A
and is parallel to the axis vector a. Let L be the perpendicular line
given by L= {tv:t € R}. Fort € R and p € I define the II-parallel
plane II;, and the II-perpendicular line L, by

(3.1) I, = I + tv, L,=p+L.

For a point p € II, consider the line L,(3.1). Let p; = p + #1v be
the first point in L, N A as ¢ decreases from oo. If the intersection is
transverse and if L, meets A at p; = p + t5v secondly, { if L, meets

A at p, tangently, let p; = p;) then p is in the domain of Alexnadrov
function ay defined by

(3.2) ai(p) = (t1 + £2)/2.

If a; has an interior local maximum at p € II, then one can show
the plane Il,, (,) is a plane of symmetry for A[2, Lemma 2.6]. Three
authors observed that a; is upper-semicontinuous. Now, we state
three authors’ crucial lemma. They proved the following lemma by
using cylindrical boundedness of A, Alexandrov reflection technique
and upper-semicontinuity of a;.

LEMMA 3.1 (2]. Let A C C::R(O). Define the related Alexandrov
function & on A

(3.3) afz) = max oy(p).
pell
p-a=z2>0

Thena is not increasing. i.e., either a{z) is strictly decreasing, or else
A has a plane of reflection symmetry parallel to II.

By simple application of above lemma, we obtaind the following
result.



26 Chang-Rim Jang and Seong-Kowan Hong

PROPOSITION 3.2. Let A be a properly embedded MCH-annulus
and let A be contained in C:R(O) and 0A C D, p(0). If OA has a
line of reflection symmetry, and the portion of A above this line is a
graph, then A has a plane of symmetry parallel to a and to this line.

Proof. Consider some plane II which lies below A and is parallel to
a and the line of symmetry. The symmetry of 84 implies that a;(p)
is constant for all p € II with L, N 84 # @. This constant value is
equivalent to «(0). If A has not a plane of symmetry parallel to II,
then a;1(g) < a(0) for all g (at which oy can be defined) with ¢-a > 0.
Consider another plane II which lies above annulus A and is parallel
to II. Then the function « relative to II has the property a(0) < a;(g)
for all ¢ € II (at which oy can be defined) with ¢-a > 0. This is
contradiction to Lemma 3.3. Hence A has a plane of symmetry II,
paralle] to @ and the line of symmetry.

COROLLARY 3.3. Let A be a properly embedded MCH-annulus con-
tained in C} 5(0). If some plane aL which orthogonalto the axis vector

a makes a circle by intersecting the annulus A, then A is a Delauny
surface.

Proof. if a1 N A bounds a compact component of A, then we can
show that this component is a piece of sphere by using Alexandrov re-
flection technique. By annaliticity of MCH-surface, A must be a piece
of sphere. This is impossible. Hence we may assume al N A seperates
A into a compact annulus and an infinite annulus. Consider the infi-
nite part. This annulus has symmetry planes parallel to every plane
containing a by Proposition 3.4. But the center of mass of any cross-
section of ¥ perpendicular to @ must be contained in each symmetry
plane. Hence all symmetry planes intersect in a line parallel to a, and
this annulus has rotational symmetry about this line.
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