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ON EMBEDDED SURFACES
WITH CONSTANT NONZERO MEAN CURVATURE

Chang-Rim Jang and Seong-Kowan Hong

1. Introduction
모he mean curvature function H on an oriented surface S in R험 is 

defined at a point p in S to be H(p) = Ai(p) + 人2(P), where Ai(p) and 
A2(p) a호e the principal curvatures of S at p. When H is constant, S 
is called a surface of constant mean curvature. In this paper, if S is a 
surface of constant mean cnrvature 乩 we call S an MCH-surface. We 
can (and will ) assume H > Q.

We consider properly embedded MCH-aimtdli A, which are homeo­
morphic to the pimctu호ed unit disc D\0 in Let F : D\O —> A C 
J?3 be a homeomorphism. Then f will be a proper map and F(g) —> oo 
as g t 0. Due to W, Meeks III [1], every properly embedded MCH 
annulus A is cylindrically bounded, i.e., A st薄ys a bounded distance 
from one half infinite straight line. Recently, N.J. Korevarr, R. Kusner 
and B. Solomon proved that every properly embedded MCH- annulus 
is asymtotic to a Delaunay surface [2]. They also proved that if E is 
a complete properly embedded MCH-surface and has two annular end, 
then it is a Delaunay surface.

Modifying the method of three authors, we obtained some difEe호ent 
results about properly embedded MCH-annulli. Also, we proved that 
if S C ii3 is a compact MCH-graph with dS C x3 and if S has a 
point p such that x3(P) = the교 S is a hemisphere.

We need some notations and definitions. Many of them are due to 
three authors.

(1.1),  For 0 < J? < oo, P G JZ3 and given a unit vector v the 
disc with center P and normal is defined by DVfR(P) = { 卩 € R헝 :
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|y — P| W R)(y — P) • v = 0}. The solid half cylinder generated by 
DVjr(p) and v is

Cv,R(.P)= {y + XV : y e DVir(p), x>0}.

Due to W・ Meeks III, if A G i?3 is a properly embedded MCH- annulus, 
then there exists C^R(P) such that A C C^R(P). In this case, We 
call v an axis vector of 4.

2. Compcat MCH-graphs
In this section, we will prove that a compact MCH-graph with some 

property must be a hemisphere.

PROPOSITION 2.1. Proposition suppose S C JZ3 is a compact MCH- 
graph with dS C { x3 = 0}. Then |x3(S)| < 2^-1. Futhennore, if S 
has a point p such that z허 (p) = 2/f-1 or —2/T-1, then S must be a 
hemisphere.

Proof. We may assume 拼(S) > 0. By the Cauchy-Sdiwaxz in­
equality, the second fundamental form A and the mean ourvature H sat­
isfies 2|A|2 — H2 > 0. On a graph, the (upward) unit normal v satisfies 
电?허 > 0. Combining these inequalities with the equations 尹 = —Hu헝 

and Av3 = —|A|2v3 yields the differential inequality △(Hk — 2v3)^ 0 
on S. Since Hx3 — 2t户 < 0 on dSy the maximum principle implies the 
same inequality on S. The first result follows since v3 < |v| — 1. Sup­
pose x3(p) = 2H''1 at some point p G S. Then Hx3 — 2?户 has a교 

interior maximum at p. The maximum principle implies Hx3---- 2v3
must be constant and A(jffx3 — 2v3) = (2|A|2 — H2)v3 is constantly 
zero. By continuity, we may conclude that 2|A|2 - 方고 = 0. Hence S 
is a hemisphere with radius H.

Remarks.
1- The first part of Proposition 2.1 are firstly overserved by Senin 

[3]-
2. For the known examples, if S is an MCH-graph over a con­

nected closed (not necessarly compact) domain in { x3 = 0 } 
with dS C { x3 = 0 ), we expect S has the property mentioned 
in Proposition 2.1.
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Co효OLLARY 2.2. Let S be a compact MCH-graph with dS C {x3 = 
0). If S is not a hemisphere, then |x3(S)| V 2-ff-1.

3. Properly embedded MCH-annulus
To prove our results, we need some argument which is similar to 

three authors5. Let A be a properly embedded MCH-annulus and let 
A C C*氏(q)・ We may assume q = 0. The axis vector a is parallel to 
positive 勿-axis.

Fix a plane H U R허 with unit normal v, which is below annulus A 
and is parallel to the axis vector a. Let L be the perpendicular line 
given by L — {tv : t E R}. For t £ R and p e II define the Il-parallel 
plane nf, and the Il-perpendicular line Lp by

(3.1) Ilf = II + tv, Lp = p + Z.

For a point p € II, consider the line Lp(3,l). Let 勿 =p + t±v be 
the first point in n A as t decreases from oo. If the intersection is 
transverse and if Lp meets A at p2 = p 4- t2v secondly, ( if Lp meets 
-A at pi tangently, let p2 = Pi) then p is in the domain of Alexnadrov 
function 也 defined by

(3.2) %(p) = (tY + i2)/2.

If has an interior local maximum at p G II, then one can show 
the plane H处(,)is a plane of symmetry for A[2, Lemma 2.6]« Three 
authors observed that cq is upper-sendco교tinuous. Now, we state 
three authors5 crucial lemma. They proved the following lemma by 
using cylindrical boundedness of & Alexandrov reflection technique 
and upper-semi continuity of oq.

LEMMA 3.1 [2], Let A c CTr(0). Define the related Alexandrov 
function a on A

(3.3) a(x)= max %(p).
pen 

p-a=r>0

Thena is not increasing, i.e.? either a(x) is strictly decreasing, or else 
A has a plane of reflection symmetry parallel to IL

By simple application of above lemma, we obtaind the following 
result.
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PROPOSITION 3.2. Let A be a. properly embedded MCH^annulus 
and let A be contained in C^R(0) and dA C Z為,］훈(0). I£ dA has a 
line of reHection symmetry, 히｝d the portion of dA above this line is a 
graph, then A has a plane of symmetry parallel to a and to this line.

Proof. Consider some plane II which lies below A and is parallel to 
a and the line of symmetry. The symmetry of dA implies that o%(p) 
is constant for all p 6 II with Lp fl dA + 0. This constant value is 
equivalent to a(0). If A has not a plge of symmetry parallel to II, 
반len «i(g) V a(0) for all q (at which 也 can be defined) with q* a> 0. 
Consider another plane H which lies above annulus A 히id is parallel 
to II. Then the function a relative to II has the property a(0) < %(q) 
for all g € II (at which can be defined) with g ・ a > 0. This is 
contradiction to Lemma 3.3. Hence A has a plane of symmetry IIZ 
parallel to a and the line of symmetry.

COROLLARY 3.3. Let A be a properly embedded MCH-annulus con­
tained in C버:r(0). If some plane a丄 which orthogonalto the axis vector 
a makes a circle by intersecting the annulus A? then A is a Delauny 
surface.

Proof. If a丄 Cl A bounds a compact component of 瓦 then we can 
show that this component is a piece of sphere by using Alexandrov re­
flection technique. By annaliticity of MCH-surface, A must be a piece 
of sphere. This is impossible. Hence we may assume q丄 0 A seperates 
A into a compact annulus and an infinite annulus. Consider the infi­
nite part. This annulus has symmetry planes parallel to every plane 
containing a by Proposition 3.4. But the center of mass of any cross­
section of S perpendicular to a must be contained in each symmetry 
plane. Hence all symmetry planes intersect in a line parallel to a, and 
this annulus has rotational symmetry about this line.
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