ON EMBEDDED SURFACES WITH CONSTANT NONZERO MEAN CURVATURE

Chang-Rim Jang and Seong-Kowan Hong

1. Introduction

The mean curvature function H on an oriented surface S in R^{3} is defined at a point p in S to be $H(p)=\lambda_{1}(p)+\lambda_{2}(p)$, where $\lambda_{1}(p)$ and $\lambda_{2}(p)$ are the principal curvatures of S at p. When H is constant, S is called a surface of constant mean curvature. In this paper, if S is a surface of constant mean curvature H, we call S an MCH-surface. We can (and will) assume $H>0$.

We consider properly embedded MCH -annulli A, which are homeomorphic to the punctured unit disc $D \backslash O$ in R^{2}. Let $F: D \backslash O \rightarrow A \subset$ R^{3} be a homeomorphism. Then f will be a proper map and $F(y) \rightarrow \infty$ as $y \rightarrow 0$. Due to W. Meeks III [1], every properly embedded MCH annulus A is cylindrically bounded, i.e., A stays a bounded distance from one half infinite straight line. Recently, N.J. Korevarr, R. Kusner and B. Solomon proved that every properly embedded MCH- annulus is asymtotic to a Delaunay surface [2]. They also proved that if \sum is a complete properly embedded MCH -surface and has two annular end, then it is a Delaunay surface.

Modifying the method of three authors, we obtained some different results about properly embedded MCH-annulli. Also, we proved that if $S \subset R^{3}$ is a compact MCH-graph with $\partial S \subset x^{3}=0$ and if S has a point p such that $x^{3}(P)=2 H^{-1}$, then S is a hemisphere.

We need some notations and definitions. Many of them are due to three authors.
(1.1). For $0<R<\infty, P \in R^{3}$ and given a unit vector v the disc with center P and normal v, is defined by $D_{v, R}(P)=\left\{y \in R^{3}\right.$:

[^0]$|y-P| \leq R,(y-P) \cdot v=0\}$. The solid half cylinder generated by $D_{v, R}(p)$ and v is
$$
C_{v, R}^{+}(p)=\left\{y+x v: y \in D_{v, R}(p), x \geq 0\right\} .
$$

Due to W. Meeks III, if $A \subset R^{3}$ is a properly embedded $M C H$ - annulus. then there exists $C_{v, R}^{+}(P)$ such that $A \subset C_{v, R}^{+}(P)$. In this case, We call v an axis vector of A.

2. Compcat MCH-graphs

In this section, we will prove that a compact MCH-graph with some property must be a hemisphere.

Proposition 2.1. Proposition suppose $S \subset R^{3}$ is a compact MCHgraph with $\partial S \subset\left\{x^{3}=0\right\}$. Then $\left|x^{3}(S)\right| \leq 2 H^{-1}$. Futhermore, if S has a point p such that $x^{3}(p)=2 H^{-1}$ or $-2 H^{-1}$, then S must be a hemisphere.

Proof. We may assume $x^{3}(S) \geq 0$. By the Cauchy-Schwarz inequaity, the second fundamental form A and the mean ourvature H satisfies $2|A|^{2}-H^{2} \geq 0$. On a graph, the (upward) unit normal v satisfies $v^{3} \geq 0$. Combining these inequalities with the equations $\Delta x^{3}=-H v^{3}$ and $\Delta v^{3}=-|A|^{2} v^{3}$ yields the differential inequality $\Delta\left(H x^{3}-2 v^{3}\right) \geq 0$ on S. Since $H x^{3}-2 v^{3} \leq 0$ on ∂S, the maximum principle implies the same inequality on S. The first result follows since $v^{3} \leq|v|=1$. Suppose $x^{3}(p)=2 H^{-1}$ at some point $p \in S$. Then $H x^{3}-2 v^{3}$ has an interior maximum at p. The maximum principle implies $H x^{3}--2 v^{3}$ must be constant and $\Delta\left(H x^{3}-2 v^{3}\right)=\left(2|A|^{2}-H^{2}\right) v^{3}$ is constantly zero. By continuity, we may conclude that $2|A|^{2}-H^{2}=0$. Hence S is a hemisphere with radius H.

Remarks.

1. The first part of Proposition 2.1 are firstly overserved by Serrin [3].
2. For the known examples, if S is an MCH-graph over a connected closed (not necessarly compact) domain in $\left\{x^{3}=0\right\}$ with $\partial S \subset\left\{x^{3}=0\right\}$, we expect S has the property mentioned in Proposition 2.1.

Corollary 2.2. Let S be a compact MCH-graph with $\partial S \subset\left\{x^{3}=\right.$ $0\}$. If S is not a hemisphere, then $\left|x^{3}(S)\right|<2 H^{-1}$.

3. Properly embedded MCH-annulus

To prove our results, we need some argument which is similar to three authors'. Let A be a properly embedded MCH-annulus and let $A \subset C_{a, R}^{+}(q)$. We may assume $q=0$. The axis vector a is parallel to positive x_{1}-axis.

Fix a plane $\Pi \subset R^{3}$ with unit normal v, which is below annulus A and is parallel to the axis vector a. Let L be the perpendicular line given by $L=\{t v: t \in R\}$. For $t \in R$ and $p \in \Pi$ define the Π-parallel plane Π_{t}, and the Π-perpendicular line L_{p} by

$$
\begin{equation*}
\Pi_{t}=\Pi+t v, \quad \mathrm{£}_{p}=p+L \tag{3.1}
\end{equation*}
$$

For a point $p \in \Pi$, consider the line $L_{p}(3.1)$. Let $p_{1}=p+t_{1} v$ be the first point in $L_{p} \cap A$ as t decreases from ∞. If the intersection is transverse and if L_{p} meets A at $p_{2}=p+t_{2} v$ secondly, (if L_{p} meets A at p_{1} tangently, let $p_{2}=p_{1}$) then p is in the domain of Alexnadrov function α_{1} defined by

$$
\begin{equation*}
\alpha_{1}(p)=\left(t_{1}+t_{2}\right) / 2 \tag{3.2}
\end{equation*}
$$

If α_{1} has an interior local maximum at $p \in \Pi$, then one can show the plane $\Pi_{\alpha_{1}(p)}$ is a plane of symmetry for $A[2$, Lemma 2.6$]$. Three authors observed that α_{1} is upper-semicontinuous. Now, we state three authors' crucial lemma. They proved the following lemma by using cylindrical boundedness of A, Alexandrov reflection technique and upper-semicontinuity of α_{1}.

Lemma 3.1 [2]. Let $A \subset C_{a, R}^{+}(0)$. Define the related Alexandrov function α on A

$$
\begin{equation*}
\alpha(x)=\max _{\substack{p \in \Pi \\ p \cdot a=x \geq 0}} \alpha_{1}(p) . \tag{3.3}
\end{equation*}
$$

Then α is not increasing. i.e., either $\alpha(x)$ is strictly decreasing, or else A has a plane of reflection symmetry parallel to II.

By simple application of above lemma, we obtaind the following result.

Proposition 3.2. Let A be a properly embedded $M C H$-annulus and let A be contained in $C_{a, R}^{+}(0)$ and $\partial A \subset D_{a, R}(0)$. If ∂A has a line of reflection symmetry, and the portion of ∂A above this line is a graph, then A has a plane of symmetry parallel to a and to this line.

Proof. Consider some plane Π which lies below A and is parallel to a and the line of symmetry. The symmetry of ∂A implies that $\alpha_{1}(p)$ is constant for all $p \in \Pi$ with $L_{p} \cap \partial A \neq \emptyset$. This constant value is equivalent to $\alpha(0)$. If A has not a plane of symmetry parallel to Π, then $\alpha_{1}(q)<\alpha(0)$ for all q (at which α_{1} can be defined) with $q \cdot a>0$. Consider another plane II which lies above annulus A and is parallel to Π. Then the function α relative to Π has the property $\alpha(0)<\alpha_{1}(q)$ for all $q \in$ II (at which α_{1} can be defined) with $q \cdot a>0$. This is contradiction to Lemma 3.3. Hence A has a plane of symmetry Π_{z} parallel to a and the line of symmetry.

Corollary 3.3. Let A be a properly embedded $M C H$-annulus contained in $C_{a, R}^{+}(0)$. If some plane $a \perp$ which orthogonalto the axis vector a makes a circle by intersecting the annulus A, then A is a Delauny surface.

Proof. If $a \perp \cap A$ bounds a compact component of A, then we can show that this component is a piece of sphere by using Alexandrov reflection technique. By annaliticity of MCH-surface, A must be a piece of sphere. This is impossible. Hence we may assume $a \perp \cap A$ seperates A into a compact annulus and an infinite annulus. Consider the infinite part. This annulus has symmetry planes parallel to every plane containing a by Proposition 3.4. But the center of mass of any crosssection of Σ perpendicular to a must be contained in each symmetry plane. Hence all symmetry planes intersect in a line parallel to a, and this annulus has rotational symmetry about this line.

References

1. W. Meeks III, The topology and geometry of embedded surfaces of constant mean curvature, J Diff. Geometry 27(1988), 539-552.
2. N. J. Korevarr ,R. Kusner B. Solomon, The structure of complete embedded surfaces with constant mean curvature, J. Diff. Geometry 30(1989), 465-503.
3. J. Serrin, On surfaces of constant mean curvature which span a given space curve, Math. Z. 112(1969), 77-88.

Department of Mathematics
Ulsan University
Ulsan 680-749, Korea
Department of Mathematic Education
Pusan National University
Pusan 609-390, Korea

[^0]: Received January 15, 1991.
 This work was supproted by a research grant of the chief director of U.O.U

