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SOME Hp—THEOREMS FOR HYPERSURFACES

CHANG-RIM JANG

Let M™ n > 2, be an orientable compact rn-dimensional manifold
without boundary and assume z : M® — R"t! is an isometric im-
mersion. Sometimes, z will be considered as the position vector of
M™. For a globally defined unit normal vector field v of M", we call
p =<z, v > a support fuction of M™. Rotondaro Giovanni [2] proved
that if Hp has a constant value n, then M™ is a standard sphere cen-
tered at 0.(Here, H is the mean curvature function of M™.) In this
short note, we will prove Giovanni’s theorem by some different meth-
ods. Some of the calculation in this note was inspired by computation
in a paper by Gerhard Huisken{2].

1. Preliminaries

We need some definitions and lemmas. Many of them are due to [5].
V denotes covariant differentiation on R*t!, and V denotes covaniant
differentiation on M™.

DEFINITIONS.

(1) R{X,Y)=—< V.Y, v > for X, Y sections of TM™. h is the
second fundamental form of the immersion. <, > means the
usual inner product of R*t!.

(2) For an orthonormal framing (e, - ,en) of TM™,
H =3 h{e,,e,). This definition of H is independent of the

framing.
{3) The Coddazi equations, for X, Y, Z sections in TM™", are
(vl’h)(Y’ Z) = (Vyh)(X, Z)a

where

(VR)(Y, Z) = V,h(Y, Z) ~ k(V.Y, Z) - (Y, V.Z).
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(4) The Laplacian Af of a function f on M™ is given by Af =
29" V3V if, where (21, ,2,) is a framing of M™ and
(g'J) = (g;j)_l~

{5) The norm of second fundamental form |A)? is given by

AP =) 6% ¢* h(z,, 32) h{z;, 22)-

LEMMA 1.1. If M™ C R**! is immersed, then n{A{> > H?. Equal-
ity holds if and only if M™ is a sphere.

Proof. See [5].

LEMMA 1.2 (HOPF’S MAXIMUM PRINCIPLES). If a C*-function f
defined on M™ C R"*! has a strict maximum (resp. minimum) value

at p € M", then (Af)(p) < 0). (resp. (Af)(p)} > 0.)
Proof. See [1].

2. Proofs of Hp-theorem

If M™ C R"*! satisfies the equation Hp = n, then we may assume
H>0andp>0.

THEOREM 2.1. Jf M™ is compact and satisfies the equation Hp = n,
then M™ is a standard shere centered at 0.

Proof. We differentiate the equation p =< z,v > in an orthonormal
frame e, €9,-+ ,€, on M™. Then

Vep=<Vez,v>+<z,Vev>
=< e, v>+< :C,th.ez >
(1) =Y <z,e0> hy  (where  hy; = h(ey,¢,))

Ve, Ve,p= Z < v_e’a:,cl > hy +2 < x,_V_cl er > hy,
+ z <z,er>V,hy
=Y <ene>hy+ Y <z hav>h,
+ Z <z, e > Vih;,
@) =hu+pY hphi+) <ze1>Vihy
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Here we used again p =< z,v > and the Coddazi equation. (We
assume V, e, =0 for all 7, j.}
From (2) we obtain

Ap=H —plA + ) <z,e1 > ViH
=H-(n|A}/H)+ ) <z,a>ViH
=(H*-n|AP)/H+) <z,e0>ViH
< Z <z,e0>VH

Since M™ is compact, p has a minimum at some point ¢ € M™. And H
has a maximum value at ¢. Applying the Hopf’s maximum principles,
we conclude that p is constant and H? = n|A|?. This implies M" is a
standard sphere centered at Q.

REMARK 1. If M" C R**! is embedded and satisfies the equation

Hp = n, then we can directly derive the result by using Ros’ inequal-
ity{4] [n/H dA > nV and the formula f pdA = nV.

REMARK 2. If M? C R?® is noncompact and satisfies the equation
Hp = n, we expect M is cylinder.

REMARK 3. Gerhard Huisken[2] proved that if M™® C R"*! satisfies
the equation H = p, then M" is a standard sphere with radius /n.
His computation may be applicable in several directions.
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