SOME $H p-T H E O R E M S$ FOR HYPERSURFACES

Chang-Rim Jang

Let $M^{n}, n \geq 2$, be an orientable compact n-dimensional manifold without boundary and assume $x: M^{n} \rightarrow R^{n+1}$ is an isometric immersion. Sometimes, x will be considered as the position vector of M^{n}. For a globally defined unit normal vector field ν of M^{n}, we call $p=\langle x, \nu\rangle$ a support fuction of M^{n}. Rotondaro Giovanni [2] proved that if $H p$ has a constant value n, then M^{n} is a standard sphere centered at 0 .(Here, H is the mean curvature function of M^{n}.) In this short note, we will prove Giovanni's theorem by some different methods. Some of the calculation in this note was inspired by computation in a paper by Gerhard Huisken[2].

1. Preliminaries

We need some definitions and lemmas. Many of them are due to [5]. ∇ denotes covariant differentiation on R^{n+1}, and ∇ denotes covariant differentiation on M^{n}.

DEFINITIONS.

(1) $h(X, Y)=-<\bar{\nabla}_{x} Y, \nu>$ for X, Y sections of $T M^{n}$. h is the second fundamental form of the immersion. \langle,$\rangle means the$ usual inner product of R^{n+1}.
(2) For an orthonormal framing $\left(e_{1}, \cdots, e_{n}\right)$ of $T M^{n}$,
$H=\sum h\left(e_{t}, e_{2}\right)$. This definition of H is independent of the framing.
(3) The Coddazi equations, for X, Y, Z sections in $T M^{n}$, are

$$
\left(\nabla_{x} h\right)(Y, Z)=\left(\nabla_{y} h\right)(X, Z),
$$

where

$$
\left(\nabla_{x} h\right)(Y, Z)=\nabla_{x} h(Y, Z)-h\left(\nabla_{x} Y, Z\right)-h\left(Y, \nabla_{x} Z\right) .
$$

Received January 8, 1991.
(4) The Laplacian Δf of a function f on M^{n} is given by $\Delta f=$ $\sum g^{2} \nabla_{x i} \nabla_{x j} f$, where $\left(x_{1}, \cdots, x_{n}\right)$ is a framing of M^{n} and $\left(g^{9 j}\right)=\left(g_{i j}\right)^{-1}$.
(5) The norm of second fundamental form $|A|^{2}$ is given by

$$
|A|^{2}=\sum g^{i j} g^{k l} h\left(x_{i}, x_{k}\right) h\left(x_{j}, x_{l}\right) .
$$

Lemma 1.1. If $M^{n} \subset R^{n+1}$ is immersed, then $n|A|^{2} \geq H^{2}$. Equality holds if and only if M^{n} is a sphere.

Proof. See [5].
Lemma 1.2 (Hopf's maximum principles). If a C^{2}-function f defined on $M^{n} \subset R^{n+1}$ has a strict maximum (resp. minimum) value at $p \in M^{n}$, then $\left.(\Delta f)(p)<0\right)$. (resp. $(\Delta f)(p)>0$.)

Proof. See [1].

2. Proofs of $H p$-theorem

If $M^{n} \subset R^{n+1}$ satisfies the equation $H p=n$, then we may assume $H>0$ and $p>0$.

Theorem 2.1. If M^{n} is compact and satisfies the equation $H p=n$, then M^{n} is a standard shere centered at 0 .

Proof. We differentiate the equation $p=\langle x, \nu\rangle$ in an orthonormal frame $e_{1}, e_{2}, \cdots, e_{n}$ on M^{n}. Then

$$
\begin{align*}
& \nabla_{e_{i}} p=\left\langle\bar{\nabla}_{e_{1}} x, \nu\right\rangle+\left\langle x, \bar{\nabla}_{e_{\mathbf{e}}} \nu\right\rangle \\
& =\left\langle e_{2}, \nu\right\rangle+\left\langle x, \sum h_{h_{1} e_{l}}\right\rangle \\
& =\sum\left\langle x, e_{i}\right\rangle h_{l i} \quad\left(\text { where } \quad h_{2 j}=h\left(e_{i}, e_{j}\right)\right) \tag{1}\\
& \nabla_{e_{e}} \nabla_{e_{1}} p=\sum<\bar{\nabla}_{e,} x, e_{l}>h_{l_{2}}+\sum<x, \bar{\nabla}_{e}, e_{l}>h_{l_{2}} \\
& +\sum<x, e_{l}>\nabla_{j} h_{i t} \\
& =\sum<e_{j}, e_{i}>h_{l_{2}}+\sum<x, h_{j l} v>h_{e v} \\
& +\sum<x, e_{1}>\nabla_{l} h_{j 2} \\
& =h_{j_{1}}+p \sum h_{j l} h_{l i}+\sum\left\langle x, e_{l}>\nabla_{l} h_{j i}\right.
\end{align*}
$$

Here we used again $p=\langle x, \nu\rangle$ and the Coddazi equation. (We assume $\nabla_{e_{,}} e_{j}=0$ for all i, j.)

From (2) we obtain

$$
\begin{aligned}
\Delta p & =H-p|A|^{2}+\sum<x, e_{l}>\nabla_{l} H \\
& =H-\left(n|A|^{2} / H\right)+\sum<x, e_{l}>\nabla_{l} H \\
& =\left(H^{2}-n|A|^{2}\right) / H+\sum<x, e_{l}>\nabla_{l} H \\
& \leq \sum<x, e_{l}>\nabla_{l} H
\end{aligned}
$$

Since M^{n} is compact, p has a minimum at some point $q \in M^{n}$. And H has a maximum value at q. Applying the Hopf's maximum principles, we conclude that p is constant and $H^{2}=n|A|^{2}$. This implies M^{n} is a standard sphere centered at 0 .

Remark 1. If $M^{n} \subset R^{n+1}$ is embedded and satisfies the equation $H p=n$, then we can directly derive the result by using Ros' inequality[4] $\int n / H d A \geq n V$ and the formula $\int p d A=n V$.

Remark 2. If $M^{2} \subseteq R^{3}$ is noncompact and satisfies the equation $H p=n$, we expect M is cylinder.

Remark 3. Gerhard Huisken[2] proved that if $M^{n} \subset R^{n+1}$ satisfies the equation $H=p$, then M^{n} is a standard sphere with radius \sqrt{n}. His computation may be applicable in several directions.

References

1. D. Gilbarg and N. S. Trudinger, Eltaptsc partıal differential equatıons of second order, Springer, 1983.
2. R. Glovanni, On the H_{p}-theorem for hypersurfaces, Comm. Math. Univ Carolin 30(1989), 385-387.
3. G. Huisken, Asymptotic behavior for singularites of the mean carvature flow, J. Diff. Geometry 31 (1990), 285-299.
4. A. Ros, Compact hypersurfaces with constant scalar curvature and a congruence theorem, J. Diff. Geometry 27(1988), 215-220
5. M. Spivak, A comprehensive introduction to differential geometry, Publish or Perish Inc, 1970.

Department of Mathematics
University of Ulsan
Ulsan 680-749, Korea

