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SOME ZTp-THEOREMS FOR HYPERSURFACES

Chang-Rim Jang

Let Mn,n > 2, be an orientable compact n-dimensional manifold 

without boundary and assume x : Mn —> is an isometric im­

mersion. Sometimes, x will be considered as the position vector of 

Mn. For a globally defined unit normal vector field v of Afn? we call 

p =< x, p > a support faction of Mn. Rotondaro Giovanni [2] proved 

that if Hp has a constant value n, then Mn is a standard sphere cen­

tered at O.(Here, H is the mean curvature fu교ctio교 of Afn.) In this 

short note, we will prove Giovanni^ theorem by some different meth­

ods. Some of the calculation in this note was inspired by computation 

in a paper by Gerhard Huisken[2].

1. Preliminaries
We need some definitions and lemmas. Many of them are due to [5]. 

V denotes covariant differentiation on Kn+1, and V denotes covariant 

differentiation on Mn.

Definitions.

(1) h(X,y)= - < Vxy, u > for X, Y sections of TMn. h is the 

second fundamental form of the immersion. <, > means the 

usual inner product of 7강사'.
(2) For an orthonormal framing (ei, - - - , en) of TMn^

H = 22 A(et)et). This definition of H is independent of the 

framing.

(3) The Coddazi equations, for X)匕 Z sections in TMn^ are

(%K)(匕 Z)=(%/(X, Z),

where

(▽方)(匕 z) = vxh(y, z) — h(yxY, z) - ", vxz).
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(4) The Laplacian A/ of a function f on Mn is given by A/ =

勺 VcNcjh where (纣)•…,xn) is a framing of Mn and 

(g") =

(5) The norm of second fundamental form |A|2 is given by

I쇠2 = xk)h(xj, xt).

LEMMA 1.1. If Mn C is immersed, then 끼시2 > 丑2 Equal­

ity holds if and only if Mn is a sphere.

Proof. See [5].

Lemma 1.2 (Hopf's maximum principles). If a C2-function f 

defined on Mn C has a strict maximum (resp. minimum) value 

at p E Mn} then (A/)(p) < 0). (resp. (A/)(p) > 0.)

Proof. See [1].

2. Proofs of ifp-theorem
If Mn C R나' satisfies the equation Hp = n, then we may assume 

if > 0 and p > 0.

THEOREM 2.1. If Mn is compact and satisfies the equation Hp = n, 

then Mn is a standard shere centered at 0.

Proof. We differentiate the equation p =< x, v > in an orthonormal 

frame e15 e2, • - - ,en on Mn. Then

Ve£p =< ▽…，> + < x, Ve,^ >

=< et,p > + < £ hitej >

(1) = 2^ < x^ei > hu ( where hl3 = h，(e” 勺))
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Here we used again p =< x, v > and the Coddazi equation. (We 

assume VCte; = 0 for all i, j.)

From (2) we obtain

△p = H — p|A|2 + < xyei >

= H- (이쇠2/h)+ £ v z, 〉ViH

= (H2 - 찌」4|2)/H + e V

< < x,ei > 研H

Since Mn is compact, p has a minimum at some point q G Mn. And H 

has a maximum value at q. Applying the Hopf's maximum principles, 

we conclude that p is constant and H2 = n|A|2. This implies Mn is a 

standard sphere centered at 0.

REMARK 1. If Mn c 氏저e is embedded and satisfies the equation 

Hp = n, then we can directly derive the result by using Ros' inequal- 

ity[4] f n/H dA > nV and the formula J pdA — 시，.

REMARK 2. If M2 C JJ3 is noncompact and satisfies the equation 

Hp = n, we expect M is cylinder.

REMARK 3. Gerhard Huisken[2] proved that if Mn C satisfies 

the equation H = p、then Mn is a standard sphere with radius y/n. 

His computation may be applicable in several directions.
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