Pusan-KySngnam Math. J. T7(1991), No. 1, pp. 15-18

A NOTE ON DECOMPOSITION
SPACE OF MAPPINGS

V. P. SINGH, R. P. GIHARE AND G. 1. CHAE

1. Introduction

For topological spaces X and Y, let f : X — Y be any map. We
define the relation K(f)in X by z ~ 2’ if f(z) = f(«'). This is clearly
an equivalent relation in X and therefore we have the quotient mapping
Q:X — X/K(f). X/K(f) is called the decomposition space of f.
From Theorem 7.2 {2, Page 130} if f is continuous open surjection then
X/K(f) is homeomorphic to Y. Starting with separation properties
of the decomposition space, we have mentioned several other topolog-
ical informations regarding the same linking these with known results
available in the literature. We have discussed some results in [5] and
[6).

2. To begin with, we investigate some seperation properties of the
decomposition spaces. Let us illustrate by an example that underlying
spaces of a mapping may satisfy separation properties upto normality
1.e Ty axioms where as the decomposition space of the mapping under
consideration, need not be even Tj:

EXAMPLE 2.1. Let R be the set of real numbers equipped with
standard topology and f: R — R be defined as

1 ,if z is rational,

f(=) = {0 , if z 1s irrational.

R/K(f) is indiscrete which is not even Ty where as R satisfies all the
separation axioms T,,z = 0, 1,2, 3, 4. However in the positive direction,
we prove the following results.
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PROPOSITION 2.1. Let f : X — Y be the mapping with closed
graph. Then X/K(f) is a T space.

Proof. f has closed graph. ie., G5 = {(z, f(z)) : ¢ € X } is closed
in X x Y and hence from {3] point inverses are closed in X. i.e.,
{z'€X : f(z') = f(z)} = Q@ 1Q(z)) is closed in X. i.e., each point
of decomposition space X/K(f) is closed. i.e., X/K(f) is a T}-space.

While dealing with T, seperation property of X/K( f), we make use
of following lemmas.

LEMMA 2.1.1. Let f : X — Y be the continuous mapping with

closed graph. Then the relation K(f) is closed in the product space
X x X.

Proof. To this end it sufficies to show that for any point (z,y) ¢

K(f) = (z,y) ¢ K(f). Now (z,y) ¢ K(f) = f(z) # f(y). Since
graph of f is closed in X X Y, so there exist neighborhoods U of z and
V of f(y) respectively such that f(U)NV =§. Since f is continuous
so we have a neighborhood W of y where f(W) C V.

FONV =8= fUNFW) =0= (UxW)nK(f) =0,

Or (z,y) ¢ K(f) and hence the Lemnma holds.

LEMMA 2.1.2. Let f : X — Y be an open (closed} continuous
mapping. Then the quotient mapping @ : X — X/K(f) is an open
{closed) mapping.

Proof. From 4.2 of [2, Page 125], it is sufficient to show that for any
open set U {closed) in X, K(f)(U) is open (closed) in X. Now

K(f{U)=U{K(f)u) :uelU}
={z: f(z)= flu)forue U}
={z :z € fTI(f(U)}
= f~Y{f(U)) which is open in X.

since f is continuous and open. Similarly, it can be shown that if
S+ X =Y is closed continuous mapping then @ is an closed mapping.
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PROPOSITION 2.2. Let f: X — Y be the continuous open mapping
with closed graph. Then X/K(f) is a T-space.

Proof. From Lemma 2.1.1, the relation K(f) is closed in X x X
and from Lemma 2.1.2, the quotient mapping Q is open and hence the
proposition follows directly from Theorem 11 of {1, Page 98].

PROPOSITION 2.3. Let f : X — X be the self continuous open
surjection. Then G is the quotient space X/K(f).

Proof. From (4] G5 is hormeomorphic to X. For completeness, we
prove the same. Oviously, P* : G; — X defined as P*(z, f(z)) = =,
for any z € X is bijective. P* being the restriction of the projection P :
X x X — X is continuous. It remains to prove that it is open. To this
end let (z, f(z)) € Gy be any arbitrary point. Then it suffices to show
that for any open set (U XV )NG; containing (z, f(z)), P*{(UXV)ING)
15 open. Suppose

(t, F(£)) € (U X VINGy) => t € U and f(t) € V.

Since f is continuous so there exists a neighborhood U; of ¢ such that
f(Uy) C V. Setting W = U, NV. We have f(W) C V and P*((
WXV )NGs) =W C P*{( Uy xV )NGy)ie, P* is open and hence
homeomorphic. From Thoerem 7.2 [2] X/K(f) is homeomorphic to X
which in turn is heomorphic to Gy.

From Lemma 2.1.2,if f : X — Y is closed continuocus mapping then
the quotient mapping @ : X — X/K(f) is closed and the following
properties of X are easily transferred to X/K(f).

(1) X is paracompact = X/K(f) is paracompact.
(2) X is normal = X/K{(f) is normal.

If we consider the mapping f : X — ¥ with compact fiber then as
the definition of the quotient mapping, Q : X — X/K(f) has its each
fiber compact and hence if f : X — Y is a perfect mapping then by
Lemma 2.1.2 Q : X — X/K(f) is perfect mapping, so by Theorem 5.3
[2, Page 236] we have the following properties;

(1) X/K(f) is paracompact <==> X is paracompact.
(2) X/K(f)is compact <=+ X is compact.
(3) X/K(f) is ¢ountably compact <= X is countably compact.
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(4) X/K(f) is Lindelof <= X id Lindelof.
(6) X/K(f) is locally compact <= X is locally compact.
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