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ASYMPTOTIC BEHAVIOR OF
PERIODIC LIPSCHITZIAN

EVOLUTION OPERATORS IN BANACH SPACES

Jae Ug Jeong and Jong Yeoul Park

1. Introduction
Let X be & real Banach space and let X* be its dual, that is, the 

space of all continuous linear functionals on X. The value of / G X* 
at x 6 X will be denoted by < x,f >. With each x € Xy we associate 
the set

= ：< X,f>= II께2 = ||刊2}.

Using the Hahn-Banach theorem, it is readily verified that J(x) 尹 , 
for any x G X. The multi-valued map J : X -스 X* is called the duality 
map of X・ Let B = {x E X : ||x|l = 1} be the unit sphere of X. Then 
a Banach space X is said to be smooth provided the limit

⑴ lim 盹브에 二四

exists for each x^h E B. In this case, the norm of X is said to be 
Gateaux differentiable. It is said to be Frechet differentiable if for each 
x in B, limit (1) is attained uniformly for h in B. The space X is said 
to have a uniformly Gateaux differentiable norm if for each h E B) 
limit (1) is attained uniformly for x E B. The norm of X is said to be 
uniformly Frechet differentiable (and X is said to be uniformly smooth) 
if limit (1) is attained uniformly for (x;h) in B X B. It is well known 
that if X is smooth, then the duality map J is single valued. It is also 
known that if X has a Frechet differentiable norm, J is norm to norm 
continuous.

Let {Ct}t>o be a family of nonempty closed convex subsets of a 
Banach space X, and let U = : 0 < 5 < t} be a Lipschitzian
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evolution operator constrained in {G}, i.e., be a family of mappings 
U(tys): C$ t Ct such that

U(t,s)U(s”) = {7(t,r)517(r,r) = I,
+ "s)z -U(mT + 私 s)训 < - y||

fbr 0 < r < 3 < t and x, ?/ € Ca, where m € JV, T is a fixed positive 
number, and km > 0. Such a Lipschitzian evolution operator U is said 
to be T-periodic(꼬 > 0) if

C.t = Ct and U(t + T,s + T) = U(tys)

for 0 < s < t.
A function u : [0, oo) —> X is said to be an almost semitrajectory of 

U if for each s in [0,8)and u(s) G Cs,

lim sup ||u(t) 一 U(以 5)u(5)|| = 0.
18 t>S

In what follows, let J7 be a T-periodic Lipschitzian evolution op
erator constrained in {Ct} and set un(t) = u(nT + t) fbr t € [0,7], 
n E N.

If F(Ut) = {z : t7(7 4- t^t)z = z for 0 < f < T} is nonempty, 
then we have that F(S) is a closed convex subset of Ct, and we see 
나lat

卩쁘% 恥。) 一 圳 = p(t)

exists for every z e F(Ut).
The objective of 나lis 사lapter is to study 나蛇 asymptotic behavior 

of a T-periodic Lipschitzian operator with limsupn kn < 1 where kn 
is the Lipschitzian constant of U(nT +1, s). We prove that if u is an 
almost s이nitrajectory of U and un(/) = u(nT + i), then the closed 
convex set

「出허%«)顷 登} n 即向
k

consists of at most one point, where co{un(/) : n > k} is the closed 
convex hull of {un(/) : n > k}. We also prove that if P is the metric 
projection of X onto F(Ut)y then the strong limit of Pun(t) exists.
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2. Lemmas

THEOREM 1. Let (Ct)t>0 be a family of nonempty closed convex 
subsets of a uniformly convex Banach space X, and let U = {U(攝): 
0 < 5 < t} be a 꼬-periodic Lipschitzian operator constrained in {Ct} 
with limsupt kt < 1. Then F(Ut) is a closed and convex subset of C，.

Proof. The 시。sedness of F(l7t) is obvious. To show convexity it is 
sufficient to show that z = (” + v)/2 G F(Ut) for all € F(Z7t). If 
lim“_»8 U(nT +1丄)z = z, then

U(T + t^ t)z = lim Z7((n + 1)T + t, nT + t)U(nT + t, i)z n一>8
=lim L7((n + 1)T + t^t)z n—roo
=2.

i.e., z E F(U*). Hence, it suffices to prove that limn_>oo U(nT + tjt)z — 
z. If not, there exists e > 0 such that for any n > 0, there is nf with 
nr > n and

4||l7(nzT + t,t)z - 끼I = ||2(U(n'7 + - u)
- 2(0 - + t孩)z)||

> &

Choose d > 0 so small that

(R + d)(l-5(自)) 
K + a

where R=[|u —이 |>0 and 6 is the modulus of convexity of X. Since 
limsupi kt < 1, there is no such that

이|u-에 W (II”一 에 +涉)

for n > n0- Put u1 = 2(U(nT + t)t)z — u), v1 = 2(v — U(nT +
Then

||u‘ 一 VZ|[ = 쉬+ — 히I > €.
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Furthermore, if n > n0, then we have

阪』=2 归(成1 + 泰)z— 메

< 2시|z - 떼
< + </,

II训I = 기"一卩(次厂 + 7)헤
< 2fcn||z- v||
V R + d.

So, we have
II 복므 ||E丑+ d)(lT(万刀)

2 lt+ CL

and hence

lg-애 = 11 보勺 

夂 R + d)(】 — 5(京)) 

v R = ||u — 이L

This is a contradiction. Therefore, U(nT + "Z)z = z. The
proof is completed.

We prove some lemmas which are crucial for our argument.

LEMMA 1. Let (Ct}t>0 be a family of nonempty closed convex sub
sets of a uniformly convex B히*，사】 space X and let U = (I7(t, 5): 0 < 
s < t} be a T-periodic Lipschitzian evolution operator constrained in 
(Ct} with lim supt kt < 1. I£ u is an almost semitrajectory of U and 
z £ F(Ut)y then the limit of ||un(<) — z|| exists.

Proof. Put

机n) = sup||um+n(t) - U((m + n)T + t,nT + 却妬(圳|
m
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for n,m > 0. Then, by the definition of semitrajectory, limn—j-oo <^(n)= 
0. Since, for any n, m > 0,

||Wm+n(f) 一 히I V ||%n+n(t) — U((m + 7Z)꼬 + " 彼T + t)un(t)||
+ ||Z7((m + n)T + t, nT + t)un(i) — 히 |

< ©3) +人시gn(t)— 기I，

we have

inf sup ||ur(i) 一 히I <(j>(n) + (inf sup kr)\\un(t) 一 께 
m m<r m jn<r

< <加) + M(t) - 히I，

and then
inf sup ||ur(t) — 히I < sup inf ||un(i) — z|| 

m m<r m m^n
Thus, limn_>8 ||un(i) — z|| exists.

Lemma 2. Let X be a uniformly convex Banach space and let 
U = {U仏 s) : 0 < s < t} be a 꼬-periodic Lipschitzian evolution 
operator constrained in {Ct} with lim supt kt < 1. Let F(Ut)寸二 如 
y € F(Ut)> 0<a</3<l,r = limn—8 ||wn(i) 一 g||? and u is an almost 
semitrajectory ofU. Then, for any e > 0, there exists n0 > 0 such that

^U(mT + i, f)(Aun(i) + (1 — 시 y) — (XU(mT + i)un(t)
+ (1 — 시，)II V @

for all n,m > no and A e R with a < A < /3.
Proof. Let r > 0. Then we can choose J > 0 so small that

(「+ d)(l — c5(—^-)) = r0 < r, 
r + a

where 8 is the modulus of convexity of the norm and c = min{2A(l—A): 
ot < X < 疗}. Let a > 0 with m + 2a V r. Then we can choose* no > 0 
such that

- y|j > r - a, for n > n0, 
|gm+n(" — U(mT + t, t)un(t)j| < a, for n > no and m > 0, 

km < 2, for m > no,
幻n||u“(£) 一 训 <r + d, for n,m > n0.
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Suppose that

+ i,t)(Aun(t) + (1 - A)y) 一 (入U(m꼬 +

+ (1 ~ 시，)II Z G

for some m, n > no and A E R with a < A < /?. Put u1 = (1 — 
X)(U(mT + — y) and vf = X(U(mT + — U(mT + t)Z)z),
where z = Aun(t) + (1 — X)y. Then

|"|| <(1 一 시*:시切 一 训

% 入(1 — A)(r + d),

II이I < 시;시|z-un(圳

< A(l-A)(r+ d).

We also have that

一 이I = ||U(n迓 +1, t)z — (XU(mT +1, i)un(f)
+ (1 - 시，)II

> &

and
入 u' + (1 — A)v# = A(1 — A)(EJ(7tiT +1, — y)-

So, by using the Lemma in [3], we have

A(1 - 시修+ — 训

= ||Au* + (l-A>/||
< A(1 一 시(r + d)(l - 2A(1 - 入)敏一勻))

W 入(1 一 시(r + d)(l •- c^( -- "•))r + a
= A(1 - 시r(),

and hence
||U(mT +1, t)u』t)-训 < r0.
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This implies

||Um+n(^) - y\\ < Ihm+nW 一 U(mT + i,f)un(t)||
+ ||i7(mT +1, t)Un(i) 一 训

< a + r0
< r — a.

This contradicts the fact ||un(t) 一 g]| > r — a for all n > no- In 
the case when r = 0, let y G F(Ut) and A E R with 0 < A < 1. From 
lim supt kt < 1, there exists 九 2 0 such that km < 2 and 训 < &
for all n,m > to* Hence, for n,m > to and X E R with 0 < A < 1,

^J(mT + t,t)(Mn(" + (1 - 시g) — (XU(mT+ t.t)un(t) + (1 - 시g)||
< 시+ i, i)(Atzn(f) + (1 一 人)g) - U(mT +1, i)un(t)||

+ (1 — 入끄 + f, ^)(Aun(t) + (1 - 시;) — y|[
< AA:m|jAun(t) + (1 - X)y -临(圳I

+ (1 — 入*쉐人 Un(t) + (1 — A)y — 训
=2A(1 一 X)km^un(t) 一 vll
< £.

So, we obtain the desired result.

For G X, we denote by [z,y] the set (Az +(1 — A)y ： 0 < A < 1}. 
모he following lemma is proved in [4];

LEMMA 3. Let C be a closed convex subset of a uniformly convex 
Banach space X with a Frechet differentiable norm and {xa} a bounded 
net in C. Let z G「板布{电：a Z 8}, y E C, and {阳} a net of elements 
in C with ya € [y,xca] and |jya 一 히| = min{||u - 히| : 莒 € 切双시}. If 
ya 一) y, then y = z.

LEMMA 4. Let X be a uniformly convex Banach space with 
a Frechet differentiable norm and lei U = {U0s) ： 0 < 3 < t} be a T- 
periodic Lipschitzian operator constrained in {Ct} with limsupf kt < 1. 
Let F(Ut)丰知 z C Djtco(un(t) : n > fc} A F(Ut), y G F(?7t) and u be 
an almost semitrajectory of U. Then, for any € > 0, there is no > 0 
such that

< Wn(t) - 饥 J(y 一 z) >< 이]g — 히I
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for all n> n°.

Proof. Let z G Qfcco(un(t) : n > fc) A F((7t), y G F(Ut) and e > 0. 
If g = z, this Lemma is obvious. So, let y z. For any n > 0, 
define a unique element yn such that yn € [y,un(/)] and ||yn 一 圳 = 
min{||u — z|| : tz G [，,％")]}. Then, since y z, by Lemma 3, we 
have yn t y. Thus, there exists c > 0 such that for any n > 0, there 
is n1 > n with ||yn/ -训 > c. Setting yn> = an>un>(t) + (1 - an>)y, 
0 < ant < 1. We also bbtain co > 0 so small that an> > co- In fact, 
since

c < \\yn> 一 y\\
= a시|如，- y||
< an> sup IIun(i) -y||, 

n
C

we may put c0 = ------ n——----- - Since the limit of jlun(i)— 训
. . supn^un(t) - y\\

exists, putting k = 1血卩一*8 ||wn(^) —y||, we have k > 0. If not, we have 
un(t) t y and yn —> 饥 whidi contradicts yn t y.

Let r be a positive number such that e > r and k > 2r. Choose 
a > 0 so small that

(氏+力(1一顔器-))<氏，
lt + a

where S is the modulus of convexity of the norm and R—^z — > 0.
Fix a! V a. By Lemma 2, there exists nx > 0 such that

꼬 + i,i)(coun(i) + (1 - c0)y) 一 (cQU(mT +
(2) +(1 — 勺)折||〈疽

for all n,m > n±. Fix n2 > 0 with 叼 > ni and 一 y|| > 2r
히id ||um+n2(t) — U(mT + t,t)un2(<)|| < r for all m > 0. Furthermore, 
since limsup* kt < 1 and R + af < R + ay we can 산loose n3 such that 
ksR + 시 W R + a for all s > n^. Now, let n0 > 0 with no > nl5 
i = 1,2,3. Fix n1 > no- Then since anr > co, we have

Co%/ +(1 -Co)y € [y, an>uni(t) + (1 - an»)y]
=切"用].
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Hence

|[coun/(^) + (1 - Co)y - z|| < max{||z — 训,||z - yn> |j} 
=\\z~y\\ 
=R.

By using (2), we obtain

^cqU^ttiT + (t) + (1 — co)y — 기 |

< ]\U(mT +1 J)(q)s(t) + (1- co)y - 헤
+ 꼬 + t5i)un/(i) + (1 — co)y 
一 U(m꼬 + t?t)(coun<t) + (1 - c0)y)!|

< ^U(mT + 执t)(q)u#(t) + (1 - q)g) — 히| + a
V %세編j(t) + (1 — c0)y — 21) + ar
< kmR + a1
< J? + a,

for all m > n().
On the other hand, since — z^~R<R + a and

II아)끄 + t,i)un/(i) + (1 — aj)g 一 y\\ 
= c새贝诚厂 + 匕, 却知 一 y\\ 
—Co(||Um+7,(*) J 2/||

一脸m+/Z) — U(mT+ tyt)unf(t)\\)
> cor

for all m > n<), it follows

^(c0U(mT + i,i)un/(i) + (l - c0~)y - z) + ：(g-•세

= II응。(m? +1, t)un(t) + (1 - 응); - 헤 

<(7? + a)(l-6(^-))
十a

< R
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for all m>nQ. This implies that if um = 을"(诚「+ (i) + (1 —
믈)g, then

Ihm + a(、y - Um) - 께 > 腼 - 헤

for all a > 1. By Theorem 2.5 in [2], we have

< Um + a(y - um) -y, J(y-z) >> 0

and hence
< um -y, J(y - z)><0

for m > no. Therefore, for m >n(),

< um+n>(t') -y, J(y-z)>
< \[um+n>(t)-U(mT + 私圳頌(圳IIW — 헤

+ < U(mT + t,t)un>(t) -y,J(y - z) >
< r||y-z||
< 이出一 히 l・

This completes the proof.

3・ Asymptotic Behavior

THEOREM 2. Let X be a uniformly convex Banach space with a 
Frechet differentiable norm and let U = {Z7(t,5): 0 < s < t} be a 
T-periodic Lipschitzian evolution operator constrained in {Ct} with 
limsupf kt < 1. Let u be an almost sewitrajectory ofU. If F(Ut) =4 如 
then for any n £ N)the set

P| cd{un(t) : n > F(Ut) 
k

consists of at most one point.
Proof. Let y,z € co(un(t): n > fc} Q F(i7t). Then, since 쁘흐 6 

F({7f), it follows from Lemina 4 that for every £ > 0, there exists 
no > 0 such that

y + z 7fy + z . “y + z"—，乃—厂f)>&|成手

= "*ll
£
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for all n > n0. Since y E co{un(t) : n > A;}, we have

< I 으F J(쁳으 -히 x 諏 -헤 
厶 厶 £

and hence

<y-z,J(y-z) > = ||i/- 괴 I?
으 2에y - 희|.

Thus ||g — 히I < 2e. Since ；is arbitrary, we have y = z.

We denote by <v(un(t)) the set of all weak limit points of subnets of 
나le net (un(t) : n G N}.

THEOREM 3. Let X be a uniformly convex Banach space with a 
Frechet differentiable norm and let U (U(tys) : 0 < s < t} be a 
T-periodic Lipschitzian evolution operator constrained in {(%} with 
limsupt 知 < 1. Let u be an almost semitrajectory ofU. If F(Ut) + G 
and cu(un(t)) C F(Ut), then the sequence (un(i) : n € N} converges 
weakly to some z G F(U七).

Proof. Since F(Ut)尹奴(un(i) : n G N} is bounded. So, the 
sequence {un(/)} must contain a subsequence {unt(t)} of {«□(')} which 
converges weakly to some z € C«. Since u>(un(t)) C F(Ut) and z G 

cd{un(t) : n > k}^ we obtain.

z e Qco{un(t) : n >
k

Therefore, it follows from Theorem 2 난\at {un(t) : n G JV} converges 
weakly to G F(D・

THEOREM 4. Let X be a uniformly convex Banach space.and let 
U 二二s) ： 0 < s < t} be a T-periodic Lipschitzian evolution 
operator constrained in {(%} with lim supt kt < 1. Let u be an almost 
semitrajectory of U. Let P be the metric projection of X onto F(Ut)- 
If + <f), then the limnT8Un(t) exists and Iimn_+Oo =而, 
where zq is a unique element of F(Ut) such that

lim ||un(i) - = min( lim ||un(^) - 헤 : z € F(lQ}.n—^oo n—+8
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Proof. Since F(Ut) + 如 we know that {un(<) : n G N} is bounded, 
and lim”—* ||wn(i)—圳=p(z) exists for each z G F(Ut). Let R = 
min{p(z) : z G 1구(0)}. Then, since p is convex and continuous on 
F(Ut) and p(z) t 8 as ||z|| —)oo, there exists zq 6 F(Ut) such that 
p(^o) = -R； see [1, p79]. Since P is the metric projection of X onto 
F(Ut), we have

llun(i) - P«n(t)|| < ||«n(t)-训

for all n € IV and y G F(Ut\ and hence

睡。lhn(<) - P*(圳I < R.

Suppose that lim”—8 ||un(f) — Pun(i)|| < R. Then we may choose 
& > 0 and n0 > 0 such that ||un(t) — Pun(i)|| < R — e for all n > n0. 
Since

||wm+n(0 —知(圳 I
< ||wm+n(i) _ ”(伽 + ?1)끄 + £*꼬 + 圳如(圳|

+ ||U((m +끼/ + t,nT + t)un(t) 一 Fun(f)||
< 顿心 + km^Un(t) 一 P«n(<)||

and 岳以_*8 ©(n) = 0 where <^(n) = supm ||s„+n(Z) — + n)T +
t^nT 4- f)un(i)||, we can 사loose n > n0 such that

||«m+n(<) - R妬(圳I < + 知n||”n。)- P«n(i)||
厶

< 5 + 幻3(氏-£). 
厶

Therefore, we obtain that

lim ||um(t) - Pun(t)|| = inf sup ||ur(t) - Pun(t)|j 
m—8 m m<T

< 4- (lim sup km)(R - e)
Z m

V R_ =
_ 2 
< R.
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This is a contradiction So, we conclude that

lim ||un(Z) - Pun(Z)|| = R. n—>8
We 시aim that limn-^oo Pun(t) = If not, the효 there exists e > 0 
such that ||Pun/ (t) — z0|| > e for some nf > n. Choose a > 0 so small 
나lat

(B + a)(l-5(-^-)) = JR1<B, 
上［十a

where 8 is the modulus of convexity of the norm of X. We also have

||un/(f) _ Punt(t)^ < R + a

and
- 치| <R + a

for all large enough Therefore we have

||S，-竺呼彳II <(i2 + a)(l - 3(嘉)) 
厶 n十a

=

Since the points a;nr(t) = :竺顼呼너% belong to as in the above,

||Um+n-(i) - + km^Un^t) - 3"(圳|

for all m > 0. Since limn-^oo G3) = 0, there is no such that
■R — Rl 

||«m+n»(i) 一 3” (圳I < 知n||*，(t) — 3顷，(圳 T--- ---
厶

.__ R — -Rj< kmRx + —- ----

for all n > no and hence

lim ||um(t) - 3”，(圳=inf sup ||ur(/) - wn/(t)|| m-+8 rn m<r
< (limsup km)Ri + 丑 了生 

m Z
VR

This is a contradiction. Therefore lim%_+8 Fsjt) = zo- Consequently, 
it follows that the element zq 6 F(Ut) with /기爲) = min(p(z) : z € 
F(Ut)} is unique. The proof is complete.
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