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DYNAMIC TIME WARPING METHOD
AND ITS APPLICATION

Youn, Sang-Youn*
Kim, Woo Youl**

Abstract

Dynamic Time Warping (in short DTW) is a kind of sequence comparison method.
It is widely used in human speech recognition, The timing difference between two
speech patterns to be compared is removed by warping the time axes of the speech
pattern by minimising the time - normalised distance between them, In the process
of finding the minimum time - normalised distance, the efficient method is dynamic
programming problem. This paper describes the concept of dynamic time warping

method, mathematical formulation and an application .

1. INTRODUCTION

Dynamic time warping is a widely used method in human speech recognition. In human
speech, the speaking rate is different from person to person. The different speaking rate
causes a variation in time axes when the spoken word is expressed as a waveform feature

vector in accordance with time, The elimination of speaking rate variation, or speaking

* Combined Forces Command,
** Dong-Shin University.

- 105 -



time - normalisation, has been one of key problems in human speech recognition. The re-
moval of variation can be achieved by introducing an appropriatevFransformation of time
axis, This transformation is called time warping. In an early .stage of human speech
recognition linear transformation was used, But several reports showed that the linear
transformation, which strictly changes the time scale by linear compression or expansion,
is not only insufficient for deai'mg with__the wéveform speech féatﬁré véctors but it does
not give a high rate of correct recognition . »

To compensate for the local compression or expansion of the time scale nonlinear time
warping is required, For this purpose, the algorithm known as “Dynamic Time Warping”
method has been developed and improved the accuracy of speech recognition. In DTW,
timing difference between two speech patterns to be compared is removed by warping the
time axes of the speech pattern by minimising the time - normalised distance, the efficient

method is a dynamic programming. So we call the algorithm Dynamic Time Warping.

2. FORMULATION OF DTW ALGORITHM

DTW works by mapping the axis of a test pattern onto the axis of a reference pattern
by minimising the resulting dissimilarity or diétane between two patterns, The problem is
to find the best way to minimise the dissimilarity between two patterns by scale change of
a test pattern relative to the reference pattern., The scale is changed by appropriate local
compression, expansion and matching of a test pattern relative to the reference pattern.
In the course of finding the best local compression aﬂd expansion DTW finds a one -to -
one corresponding axis which achieves the resulting minimum distance between two
patterns. The connection of the one -to-one corresponding axis constitutes a path on the
grid point set. Thus, DTW can be formulated as a path finding problem over a finite set
of- grid points such as shown in figure 1, where the path parallel to m—éxis. n - axis and
diagonal path represent expansion, compression and matching, respectively,

Let us consider two patterns of R and T which represent reference and test pattern,

respectively.
R=r,r - 1p -1y (1a)
T=1{t.t,--- t,.- - -ty (1b)

The goal of DTW is to find the optimal path,
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P=c(),c@,---,ck,---, cK). @

which is a sequence of grid points in the {m, n) plane which minimises the weighted total

distance D(R, T) of the form

K
DR, T) = X wk)d(ck) (3)
=1
where c(k) = (i(k), j({k)), d(c(k)) is the local distance between two vectors rj(k) and t;
(k) and wi(k) is the weight assigned to c(k). In figure 1(a) the global path P is a

sequence of local path segments which are in monotonic increasing on the grid points,
P=pQ), p@,---, p@.p®

where
p()
p(2)

segment from grid point (0, 0) to grid point (1. 1)
segment from grid point (1, 1) to grid point (2, 2)

i

p(8) = segment from grid point(5, 6) to grid point (6, 7)

If we ignore the starting grid points and write

c() = (1, 1
c(2 = 2, 2
c@® = 6.7

then eduation (2) holds.
Now, assign a weight to each path segment. Then, the equation (3) for the path of fig-

ure 1(a) becomes
DR, T) = W(l)d_(r.. t) + w@d(r.. t) +, -, + w(@d(., t;)

If weights w(i), i=1, 2, - - -, 8, and distance function d(.) are defined we can obtain
the total distance D(R. T). However, the problem is how wé can find the optimal path P.
There are so many possible routes to reach grid poiht 6, 7) from grid point (0, 0).
Among them we can find the optimal path efficiently by dynamic programming formulation

suitably define the possible path (local path type). legal region of the path (barrier
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constraint) and weights, Details are described in the subsequent sections,

2.1 WARPING FUNCTION AND GLOBAL PATH
The path P forms a sequence of points on the grid of poinfS in the (m, n) plane. Each
grid point on the path P is matched by mapping the reference pattern axis via a function {

(.). that is

n = f(m) “

The function (4) is called “warping function” .

Let us consider' the formulation (4) and also consider the path P in (2) . The warping
function f( .) makes a sequence of points in (m. n) plane, where reference pattern R and
test pattern T are depicted in m-axis and n-axis, respectively, We seek to create a

common axis k, expressing the axes m and n as a function of k,

m=ik,k=1,2,---,K
T
K

n=jk.k=1 2 ---

where K is the length of common axis, (K = 8 in figure 1)

The path P, which is a sequence of points of (i{k). j(k}} with length K of common axis,
and which is created by the warping function £( ), is called “global path.,” We can obtain
the’relationship between warping function f{ ) and the common axis k. Setting equal two

fh.n-ctions of (4) and (5) yields
jk) = n = f(m) = fik) ‘ (6)

Thus, in DTW, to obtain the best global path P in (3) is equivalent to obtain the best
function f( ) in (4) . To obtain the optimal path or best warping function in (m, n) plane,

we are to consider several factors affecting DTW in the subsequent sections,

2.2 CONSTRAINTS ON DTW
ASSUMPTION

Given a reference pattern R and a test pattern T, both patterns being measured in fixed
intervals of time, distance, etc., then the comparison or matching of these two patterns is
a problem of scale alignment in order to give the best similarity between two patierns,

2.2.1 ENDPOINT CONSTRAINTS
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Let M and MF be the initial and final points of the reference pattern and Nj and Nf
denote those of the test pattern, Then the warping function defines the alignment of two
endpoints .
2.2.1:1 STRICT ENDPOINT CONSTRAINTS (STANDARD DTW-METHOD)

If we assume. that all endpoints (both initial and final points) are clearly known then the

endpoints are matching and can be written in the form.

f(M) = f(1) = N, = 1 (for the initial point)
)

f(Mp) = f(M) = N = N (for the final point) —

Or

i(1) = M; =1, j(1) = N, = 1 (for the initial point)
' (7)
i(K) = Mg = M, j(K) = Np = N (for the final point)

Under these endpoint constraints, DTW works from the low left initial grid point c(1) =

(1. 1) and reaches the top right final grid point c(K) = (M, N)_

2.2.1.2 RELAXED ENDPOINT CONSTRAINTS

If the endpoints are not clearly defined, then imposing strict endpoint constraints may
cauée errors in endpoint matching, Thus the alignment of test and reference patterns may
not be perfect if the strict endpoint constraints are applied. In speech recognition, if
certain words have similar sounds and particularly if the sounding differences between the
words exist at the beginning or the end, then the strict endpoiﬁt constraints may decrease
correct recognition rate_ In order to reduce such inaccurate matching Rabiner et al. (3)

considered endpoint relaxed methods.

UNCONSTRAINED ENDPOINTS
In this method, the endpoints of  (7) are relaxed for a certain number of frames. So,the

new endpoint constraints are as follow
1¢f(1) {1+ (8a)
N-6 (f(M) (N (8b)

where & represents the maximum anticipated range of mismatching in time frames between

two patterns to be compared.
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UNCONSTRAINED ENDPOINTS WITH LOCAL MINIMUM

This is a version in which both of the endpoints are relaxed. The beginning endpoint
constraint is the same as (8a), but no constraint is directly introduced in the final frame
matching, The final frame matching is dependent on the global path, The global path is
allowed to follow the legal region defined by n* and & for each reference frame m, where
n* is the test frame number which achieves the minimum cumulative distance to the grid
point (m-1,n), n=1, 2, - --, N. Thus, for each reference frame m DTW works in the

legal region defined
n*-vdgngn*+6 (9)_

where n* = (n; Dc =min (Dc (m-1, n))), § is the specified range and Dc is the cumu-
lative distance from the beginning grid point to the grid point (m-1, n)
So, the final frame matching has flexibility which is dependent on the locally minimum

global path.

TWO PATTERNS RELAXED ENDPOINT CONSTRAINTS

In real life, a pattern may subject to contraction and/or expansion. The streiching or
contraction especially at the endpoints may be expected during the data acquisition, We
want to compensate the stretched and/or contracted endpoints on DTW . If a pattern is
expanded at the initial - end or final-end we may cut off the expanded endpoint by a few
frames, On the contrary, if both or either endpoint is contracted we do not need to match
the amount of contracted frames of the patiern. Thus. we may ignore a few frames of
reference profile, We may reflect these basic considerations in our. DTW formulation .

In standard DTW (S-DTW) two endpoints should be matched, That is, DTW begins
from grid point (1, 1) and finishes on the grid point (M, N). But if we allow flexibility on
endpoints by.relaxation then the beginning and finishing grid points are not fixed It is
determined by the data, ie, it is dependent on the test pattern structure, There are sev-
eral alternatives; either both endpoints are expanded or contracted, or one is expanded
and one is contracted, or none of them are expanded or contracted, For example, if we
assume a test pattern is expanded by 2 frames at the initial - end also that it is contracted
by 2 frames at the final-end, then DTW should be designed to find the minimum distance
between iwo patterns from grid point (1, 3) to grid point (M-2, N). However, in

general, we do not know which patterns are expanded or contracted by how much. Thus,
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DTW may be modified o find the minimum distance between two profiles including all the
above possible cases. i_,e_, we assume any pattern may be contracted or exp_anded at any
endpoints.. But for convenience of, calculation we, assume that the maximum.amount of
contraction and/or expansion is limited to a specified number of frames,

Our new endpoint relaxation constraints are written in the fo;m
1f (1+a) {1 + 8 (10a)

N-g (f (M7) <N (10b)

were

0<a, B, 7,8 {2z zis a fixed integer indicating the maximum amount of frames for

relaxation, and

if @2 1then g =0
if 52 1then a =0
fr>z1thendé =0
if 62 1then7r =0

Thus, DTW starts from one of the bottom-left grid points
a1neneEn---(l)
1’2 a,3---3a.8
and finishes one of the top-right grid points
M, N) (M-1, N) (M2, N} --- (M7, N)
(M, N-1) (M-N-2) - - - (M, N-3)
Figure 2 shows different type of global path according to the different type of endpoint
constraints.

2.2.2 LOCAL CONSTRAINTS

The global path P is a succession of local paths. The local compression and/or ex-
pansion of the test pattern with relative to the reference pattém depends on how the local
paths are constructed, The-local constraints are used to avoid excessive local expansion

or compression of the scale and to form a connected path from the initial grid point to the

final point,

- 111 -



2.2.2.1 CONTINUITY CONSTRAINTS
The DTW path links the grid points (figure 2(a) global path) . The grid points on the

global path are connected under restriction by a set of continuity constraints of the form

f(m+C,) - f(m) {C,
C.. C, ) 0, integer (11)

m=1,2---,M-C,

The bounds C, and C, define the amount of local compression or expansion allowable in
the warping, Too large a value of C, and too small C, may cause severe expansion. On
the contrary too large value of C, and too small C, may cause severe compression, Figure
3 shows an example of how the grid points are connected and how the warping works
using the constraint (11).

In this example, C, and C, are defined as

The continuity constraint (11) can be written in another way by expressing it in terms of

the common time axis k in the form

0<i k+1) -i (k) £C,
] (12)
0<jk+tl)-jk £C,

From (12) the inéqualities_
itk+1) > i(k)
j (13)
ik+1) ) jk)
hold and are called the monotonity conditions,

The paths in figure 3 can be written in the form of (12),

ik+1) -ik) =1

1<jk+1) -jk) <3, if j(k) = (k1)
0 <jk+1) -jk <3,if jik} = (1)
k=12 --- KI.

Therefore, C=1 and C may take a value 0, 1, 2, or 3.
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2.2.2.2 LOCAL PATH TYPE .

Suitably chosen bound values in the continuity constraints ‘guarantee a good matching.
Different bound values may produce a different recognition result, So, they have to .be
determined to provide good results;. The bound values in (11) or (12) allow movement
along the grid points. They define the possible single grid movements from a grid point to
next grid point, A local path type is the collection of all possible types of movement
defined by the bound values in (11) or (12). DTW does not seek a global compression or
expansion but a local compression or expansion allowable. The amounts of local
compression and/or expansion are dependent on the local path type.

Figure 4 shows several local path types which have been proposed for use in DTW_ The
first four types were proposed by Sakoe and Chiba (5) and are called 'slope constraint’ (,
1/2, 1 and 2, respectively. Because if we define a and b as the number of consecutive
movements in the direction m (or n) and diagonal direction, respectively, then s = b/a
becomes the slope. For the type (a). the simplest type, the path movement may occur in
three directions; parallel to n-axis, diagonal direction or parallel to m-axis. However,
there is no restriction on the number of consecutive movements parallel to m - axis or n-
axis. To prevent such unrestricted movements parallel o m or n-axis, another three
types of path or more may be considered, Types (b), (c) and (d) are extensions of type
(a) . All these three types involve the intermediate points., The grid points (m-1, n) and
(m, n-1) are intermediate points for type (c) and (d), and two more points (m-2, n)
and (m, n-2) are intermediate points for type (b). The méximun expansion allowed by
each of these four types is oo, 3, 2 and 3/2, respectively, Or, inversely the minimum
expansions are 0, 1/3. 1/2 and 2/3, respectively. The last t}pe (type (h)) is proposed by
Itakura (1). In this type, any two consecutive movements parallel to m-axis are
prevented, However, no movement parallel to the n - axis is allowed, »

The remaining three types (e), (f) and (g) are proposed by Myers et al. (2). Type (e)
has the same initial and final grid points as type (c). But the paths reach directly to the
grid point (m, n) without going through the intermediate grid point (m-1, n) or (m, n-
1). Type (f) is an extended version of type (h) . The difference is whether the movement
from (m-1, n) to (m, n) is allowed or not when the best path to the grid point (m-1, n)
is coming from the grid point (m-2, n)., For type (h), whenever the best path reaching

the grid point (m-1, n) comes from the grid point (m-2, n) it is not permitted to reach
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grid point (m, n) from the point (m-1. n). Therefore, the path is completely deleted
from all subsequent paths. However, for type (f), even if the best path reaching to the
grid- point (m-1, n) comes from the grid point (m-2, n); it is possible to reach to the
grid point (m, n) from the grid point (m-1, n). Type (g) is a more expanded version of
type (f). Form type (e) to type (h), the maximum compressions are 2, 2, 3 and 2,
respectively,

Sakoe and Chiba (5) reported that (c) showed the best discriminant results for the
speech recognition. Three path movements, pl, p2 and p3, constitute local path type (c).
Local path movement pl represents a matching and an expansion, p3 represents a
matching and a compression, p2 represents just a matching. Let us consider each local
path movement separately, For local path movement pl, the (n-1)th test element is
matching to the (m-2)th reference element, and the n th test element is matching to both
the (m-1)th and m th reference element, that is, the n th test element is expanded, For
local path movement p2, the (n-1)th test element is matching to the (m-1) th reference
element . For local path movement p3, the (n-2)th test element is matching to the (m-1)
th reference element, and both the (n-1) th and n th test element is matching to the m th
reference element, that is, the (n-1) th and n th test elements are compressed into a

single element .

2.2.3 BARRIER CONSTRAINTS

The barrier constraints are used either to include certain parts of the (m, n) plane from
the region where the optimal path may lie (Myers et al.(2)) or to avoid excessive
compression or expansion between two patterns (Sakoe and Chiba (5)) .

Let us assume that warping works from the grid point (1, 1) to the grid point (M, N) .
Then, the link of the local path grid point {1, 1) to grid point (M, N) forms a global
path. Figure 5 shows an example of the legal region of DTW. Two straight lines a and a’
represent, respectively, the boundaries formed by path with the maximum conpression and
the maximum expansion frorﬁ the initial grid point (1, 1). Whereas, two straight lines b
and b’ represent, respectively, the boundaries formed by paths reaching to the final grid
point (M, N) with the maximum compression and the maximum expansion, Thefefore, the
parallelogram ABCD constitutes a legal region of the global path, From any grid point out

of the region of the parallelogram, no combination of local paths can reach the final grid
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point (M, N} with the given path type,

A set of relations can be obtained for expressing the boundaries of the legal global
path, Let Smax be the maximum slope of the local path type and assume that the min-
imum slope_ is the reciprocal of the maximum slope., The straight lines a, a’, b and b’ are

expressed as

linea : m = Smax (n-1) + 1 (14a)
linea” : m = 1/Smax (n-1) + I (14a")
lineb : m = Smax (n-N) + M ‘ o (14b)
line ' : m = 1/Smax (n.-N) + M . (14b)

By substituting m and n as i(k) and j(k), respectively, and combining both two

equations (14a) and (14a’), (14b) and (i4b’) together a set of inequalities are obtained

1
—— (-1 + 1<) ¢ Smax ((K)-1) + 1 (15a)
Smax

1
Smax (i(k)-N) + M ¢ jl0) ¢ ()N) + M (15b)

Smax

The ‘inequality (15a) restricts the range of grid points which can be reached from the
initial grid point (1, 1), whereas (15b) restricts the range of grid points from which the
final grid point (M, N) can be reached,

Another barrier constraint to the giobal path, proposed by Sakoe and Chiba (5), takes

the form
Fik) -jk) | <r (16)

Whereris a nqnnegative integer and is the maximum allowed ffame difference between
test and reference paitern, Inequality (16) is called by Sakoe .and Chiba (5) th
'adjustment window condition.’ This constraint (line ¢ and < in figuré 5) is introduced to
limit the maximum possible misalignment at any stage between two patterns, and cuts off
the corneré of the parallelogram, If  we introduce the ‘constraint (16). then DTW can be

done within the hexagon AEFCGH of figure 5.
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2.4 DISTANCE MEASURE

The dissimilarity between two patterns to be compared ‘is defined by the
distance. If one of the patterns is a reference pattern for a certain group this
distance is used to recognise or to classify a test battern into that group:

A general form of the distance function is

K
S widc &)
k=1 ‘ an.

D(c()) =
v(w)
where c(k) = (ik), jk)), d(c(k)) is the local distance between rj(k) and tj
k), w(k) is the weighting function of the k the local path of the global path p
and v{w) is a normalisation factor which is a function of the weighting function
w(.). Therefor. D{(c(X)) is a function of a set of functions and reflects the
normalised distance along the global path P of length K. The optimal path can
be defined as the global path that minimises the distance D(c(K)) of equation
an.
Let Dopt be the nomalised distance of the optimal path, then holds,

Dopt = min D(c (X))
{c(k)} (18a)
Or .
Dopt = min D (c(k)) ' (18b)
P

For the computation of (18) the functions; the local distance d(.), weighting

function w(.) and normalisation factor v{.) must be specified,

2.4.1 LOCAL DISTANCE

Several kinds of local distance measure have been used or can be used in
DTW;
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Chebyshev norm (city bolck distance)
Chebyshev norm with local difference

Euclidean norm

The Chebyshev norm, used by Sakoe and Chiba (5), finds the absolute value
of difference between ri(k) and t;(k) and sums the entire differences along the
global path. Instead of the absolute value of difference, the Euclidean norm
finds the Euclidean distance between rj(k) and t;(k) .

The Chebyshev norm with local difference is proposed one for this study, The
Chebyshev norm does not give sufficiently good cléssification result in
chromosome data. Because it does not measure the difference between two
chromosome optical density profiles (patterns) efficiently. Even though test
pattern looks similar to a reference pattern R, too low or too high optical den-
sity profile than -the true group reference profile causeé quite big distance be-
tween two optical density profiles, This may cause ’_a».‘-.misclassification_ To

ey

recover from this situation, we modified the local distan.c‘e"“f&nction as
di, j) = | i -ri-p) - @& - t-p | (19)

= | &rg - At
This distance function measures the difference of local: difference between two
patterns. Now, let us call this local distance function as the Chebyshev norm
with the local difference and DTW with the distance function as DTW with the
local difference distance (in short LD-DTW)
2.4.2 WEIGHTING FUNCTION
The weighting function w depends on the movement of the local path : parallel
to the n-axis, parallel to the m-axis or a diagonal movement. Several types of

weighting functions have been used. Sakoe and Chiba (5) proposed four types

of weighting functions :

Type 1 @ wl (®) = (K -itk-1 + (& -jkl)
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Type 2 © w2 (k) = i(k) - i1
Type 3 : w3 (k) max (k) -ik-1), jk) -jk1)).
Type 4 : w4 (k) min (k) -ik-1), j&) - jk1))

]

The weighting function type (1) weights the arcs according to the.sum of grid
units moved to m and n directions. The weighting function type (2) weights the
arcs according to the grid units moved along m-axis only. The weighting
function type (3) weights the arcs according to the maximum grid movements
along m or n axis, that is, the maximum expansion or compression, For
weighting function type (4), the weights are determined according to the min-
imum grid inciement to m-axis or n-axis. Therefore, all arcs parallel to any
axes have zero weights.

The weighting function type (2) and (4) may cause Q0 weight on some arcs,
In such cases, the local distance does not contribute to the total distance. To
prevent such nonphysical factor, a smoothing function on the weights may be
applied, The smoothing function give each arc the average weights along the
multiple arcs of the local path, Figure 6 shows an example of the original

weights and smoothed weights on local path type (c).

2.4.3 NORMALISATION FACTOR

The normalisation factor is used to obtain the average local distance from the
total cumulative distance. The resulting distances obtained from the comparison
of a test pattern with several different group réferehce patterns withv different
length may be different because 6fl the lengtﬁ, To eliminate the distance
difference caused by the different length it is appropriate to find the average
distance according to the lengths of test and reference patterns. It assures fhat
the average local distance is independent upon the lengths of test and reference
pattern and the length of any particular global path P. We define the
normalisation factor v(w) as the sum of weights applied to each local path

movement, Thus, it takes the form
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K
viw) = 25 wi(k) » (19)
k=1 o

For weighting function type (1) and (2)

viw) = 2 (ik) -ik-D) + (&) - jk1)) 20y
k=1
= ik) -1(0) + jk) - j(0)
=M+ N
K
viw) = 2 (k) -ik1) 21)
k=1
= i(k) -i(0) = M

For above two cases, the normalisation factors can be obtained easily and
fixed, However, for type (3) and type (4). the normalisation factors dependent
on the global path. Thus, last two types require extra calculation rather than

first two types. So, D(.) can not be normalised enroute.

2.5 CALCULATION OF DTW NORMALISATION DISTANCE
In order to do dynamicv time warping,v let us express the path finding prbblem
as a standard dynamic .programming recurrence' relation. For any grid point (m,

n) which lies within the barrier constraints, can be expressed as

Minimize D(m, n) = min )Ié', (w(k)d(ck)) (22)
k=1"
Subject to
ck) = (k. jk)
ik) =m
ik) = n

"1<m<Mand1<n<N
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K : length of global path

where d(c(k)) is the local distanice between two elements and w(k)d(ck))
serves as the weighted local distance, Thus, D(m, n) is the cumulative
weighted distance and can be obtained by dynamic programming, For local path

type (c) and type (1) weight we can write DP recursion as

D(m-2, n-1) + 2d{m-1, n) + d{m, n)
DM, N) = min D(m-1, n-1) + 2d(m, n) (23)

D(m-1, n-2) + 2d(m, n-1) + d(m, n)

If m = M and n = N then the normalised distance D(M, N) can be obtained

by

B DM, N)
DM, N) = ———
v(w)
K
min { X2 wk)d(c(k)))
k=1 (24)

v{w)

If the normalisation factor v(w) is independent of the global path, then v(w)
can be fixed as a constant r. Thus, (24) can be written as
1 K

min X (w{k)d(c(k))) (25)
r k=1

DM, N) =

The solution of (25) can be found by a procedure:
Step 1 : initialization
SET D1, 1) : = w()d(, 1)
= 2d(1, 1

Step 2 : recursion

computer D(m, n) recursively for 1 { m {( M, 1 { n { N by the
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recursion {23)

Step 3 termination
If m = M and n = N then find the normalised

distance D(M, N)
Step 4 : backtracking the optimal path

An optimal path is a global path which gives the best local compression, ex-
pansion and matching between two patterns or which gives the minimum
distance between two patterns., We can obtain the optimal path by backtracking
the local path movements along the global path which gives the minimum
distance between a test pattern and a reference pattern. This is an optional
step to find the correct normalisation factor for the endpoint relaxed DTW

(section 2.2.1) .

Step 4-1

Step 4-2 : backtracking the DP recursion (Eq. 23)

k : =1i#DE J) =DA-2, J-1) + 241, J) + d@, J)
2if DA, J) = DA-1, J-1D + 240, J)
3if DA, J) = DA-1. J-2) + 2dd, J-1) + 4, ]

i.e. k indicates the local path movement type which gives the minimum
distance to the grid point (I, ]J) from three predecessors (I-2, J-

D, (-1, J-1) or (-1, J-2).

IFk=1
MPATH (I-1.]) =1 {variable MPATH indicates the grid
MPATH (I-2, J-1) =1 point which lies on the optimal

path}

- 121 -



[=1-2

J=17-1
GO TO STEP 4 - 3
IF k=2
MPATH (-1, J-1) = 1
I=1-1
J=7J-1
GO TO STEP 43
IF k = 3

MPATH (I, J-1) =1

MPATH (I-1, J-2) =1

I=1-1

J=17-2

STEP 4-3
IFIl=7J=1
obtained the optimal path
ELSE GO TO STEP 4-2
By defining the variable MPATH we can easily distinguish the optimal path.

At any grid point, if variable MPATH takes the value 1, then the grid point lies
on the optimal path,.

. APPLICATION

We applied DTW to human chromosome optical density profile comparison, An optical
density profile is a kind of waveform feature vector whose shape is different according to
the chromosome‘ group. A normal hu‘manvcell contains 46 chromosomes, The female has
23 pairs of .c.hromosomes whereas the male has 22 pairs and an X and 2;1 Y chromosome
A test pattern was compared to several different group reference patterns, In each time

the distance between a test pattern and a reference pattern was calculated by the method
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described above. Figure 7 shows an example of sequence (pattern or profile) comparison
result where we can see that DTW well matches the peaks and valleys, between two
patterns. The length difference between two patterns is removed by the best local
compression and expansion, Some parts of the test pattern are stretched -while some other
parts are compressed  with relative to the reference pattérn, DTW .results a distance and
sequence (pattern) matching results which indicate the éorrespdnding (matching) eleménts
between two patterns.. ' ‘

For a pattern classification by using the DTW method the obtained distance (similarity)
between two patterns are used, Normally a test pattern _is classified into a.reference pat-

tern group which gives the minimum distance.

V. DISCUSSION

In this paper we considered DTW method, In section 2, we considered DTW method and
its mathematical formulation. Two improvements are described : new local distance
measure and new endpoint relaxation method, In experimeﬁts our new Jocal distance
measure, the Chebyshev norm with local difference, finds ﬁlore accurate similarity be-
tween two patterns. Especially when a test pattern is similar in shape to the reference one
but the magnitudes are too low or too high relative to the re;ference one. New endpoint
relaxed method also contributed to find more accurate similarity between two patterns,
The expansion and/or contraction of an image may trivially appear in real life, Thus, our

new endpoint relaxed DTW may usefully be applied to other application area.
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Figure 1.
(a) An example of grid point (centre)
A global path P = ¢(1), c(2), - - -, c(8), and warping function f(m) .

(b) A numerical example of i(k), j(k) and c(k) as functions of common axis k.

And the warping function n = f(m)
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Figure 2. lllustrations of DTW method by different endpoint constraints
(a) Standard DTW (strigt endpoint constraints)
(b). Unconstrained endpoint
(©) Ijnébnstrained endpoint with lotal minimum
(d) New endpoint relaxation : final endpoint C, (M, N) of D can be reached from

initial endpoint A, (I, 1) or B:
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Figure 3. An example showing the continuity constraints (11) .

Form'poirit P, 4 pbints Q, S, Tand U cah be reached, From point Q, the movment

{o the grid point R is not allowed .

(a> (b> «)

o—3e (m, D) '-—-ao——-oo (m, . 0—-’0 <m, )

ST S
R

ed Y (g

'/.1' {m, n) . o—>e (m, n) L o—n——-o (m, n)
L] ./ R J ‘ * O/". A ///

Figure 4. Local Path Types
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Figure 5. An example of thev barrier constraints

weighting function type original weight smoothed weight

1

_ 2/2
1 4 /221 3/2
W1 = (2 o~ (k=1)+§ () —F (k=1)) /

W2(x)= i) —- 1(x-1):0

. Lol G4 -1
v3 (k)=mx[ .
3 Y-k (k-1

1 Qo> ~1<k-1)
V4(k)=min[ T e e
3 =4 (k-1)

Figure 6. An example of weighting functions and smoothed weights
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Figure 7, An example of showing sequence comparison (pattern matching) .
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