A Novel Prosapogenin from the Methanolyzate of *Melandrium* Crude Saponins Eun Hee Woo and Won Sick Woo Natural Products Research Institute, Seoul National University, Seoul 110-460, Korea **Abstract**—Two compounds were isolated from the methanolyzate of the butanol-soluble fraction obtained from the whole plants of *Melandrium firmum* (Caryophyllaceae) and identified as $3-\beta$ -D-glucuronopyranosylmelandrigenin methyl ester and 2β , 21β -dihydroxy-16, 23-dioxo-28-norolean-13(18)-ene. **Keywords**—*Melandrium firmum* · Caryophyllaceae · $3-\beta$ -D-glucuronopyranosylmelandrigenin methyl ester · 3β , 21β -dihydroxy-16, 23-dioxo-28-norolean-13(18)-ene Melandrium firmum (caryophylaceae) has been known as a saponin-bearing plant¹⁾ and several sapogenins were isolated such as gypsogenin, gypsogenic acid, quillaic acid and melandrigenin recently.^{2,3)} This paper deals with the isolation and characterization of a prosapogenin(1) and a minor sapogenin(5). Acid hydrolysis of a butanol-soluble fraction in methanol and column chromatography yielded compound 1 and 5 in addition to the previously reported sapogenins.^{2,3)} Compound 1, mp 286°, gave a yellow coloration in the Liebermann-Burckard test. Its IR spectrum showed the presence of a hydroxy group (3440 cm⁻¹), three kinds of carbonyl function (1750, 1715 and 1705 cm⁻¹), a double bond (1660 cm⁻¹) and a glycoside bond (1000 \sim 1100 cm⁻¹). The glycosidic nature of 1 was clearly indicated by many resonances in the region of δ 3. 1 \sim 4. 2 ppm in its ¹H-NMR spectrum and δ 71. 3 \sim 75. 8 ppm in its ¹³C-NMR spectrum. Its $^{1}\text{H-NMR}$ exhibited six tertiary methyl signals at δ 0.77 \sim 0.98, one olefinic proton at δ 5.38, accountable for a trisubstituted double bond very similar to the corresponding signal in β -amyrins, and one aldehyde proton at δ 9.33, one methoxy carbonyl protons at δ 3.65 and an anomeric proton at δ 4.14 ppm (d, J=7.5 Hz), indicating the presence of one sugar residue. The 13 C-NMR spectrum of 1 showed 36 carbon resonances including those for one aldehyde (δ 206.4), one ketone (δ 212.7), one methoxy carbonyl function (δ 169.2 and 51.6), six secondary OH groups (δ 71.3 \sim 80.7), one anomeric carbon (δ 103.2), six methyls (δ 9.4 \sim 18.2, 24.9 and 29.1) together with a trisubstituted double bond (δ 116.9 and 141.8), which strongly suggested the nortriterpene skeleton with 17α -hydrogen-trans-D/E ring junction. 3 , 4 0 Acid hydrolysis of 1 afforded an aglycone(3), identified as melandrigenin from its MS spectral data and by ¹H-and ¹³C-NMR spectra of its acetate(4). ³⁾ As a sugar, glucuronic acid was detected in the hydrolysate by TLC. The position of attachment of the sugar to the aglycone was established as C-3 position by comparison of ¹³C-NMR spectra of the prosapogenin acetate(2) and melandrigenin acetate(4). All the chemical shift values of both acetates, but those for C-3 were almost identical with each other. β-Configuration of glycosidic linkage was deduced from the coupling constant of the anomeric proton and the chemical shift value of the anomeric carbon. Therefore, the structure of 1 was elucidated to be 3-0-β-D-glucurono-pyranosyl melandrigenin methyl ester. Compound 1 can be considered to be a prosapogenin formed during methanolysis of the saponin, since it is known that the glucuronosidic bond are cleaved with greater difficulty than glycosidic bonds of aldoses. 5) Compound 5, mp 252~256°, gave negative result in the Liebermann-Burchard test. Its IR spectrum showed the presence of a hydroxy group (3, 400 cm⁻¹), two kinds of carbonyl functions (1735 and 1660 cm-1) and a double bond (1640 cm⁻¹) and its UV spectrum showed simple carbonyl absorption with 285 nm. It gave a diacetate(6) on acetylation. The 1H-NMR spectrum of 6 showed six tertiary methyl signals at δ0.87~1.06, which was reminiscent of the oleanane type triterpene, two acetoxy singlets at δ 1.95 and 2.03, two oxymethine protons at δ 4.79(1H, dd, J=5.5 and 12.0 Hz, H-21) and 4.93(1H, dd, J=7.5 and 9.0 Hz, H-3) and one aldehyde proton at 89.26. However, no olefinic proton was observed, suggesting that compound 5 seemed to be an olean-13(18)-ene. The 13 C-NMR spectrum of 6 not only showed the presence of 33 carbons, indicating a nortriterpenoid, but also showed the presence of one aldehyde (δ 204.2), one ketone (δ 208.7), two secondary OH groups (δ 73.3 and 78.7) and a tetrasubstituted double bond (δ 124.9 and 132.8), which supported the location of the double bond. The MS fragmentation patterns of 5, clearly showed an olean-13(18)-ene skeleton and the presence of one hydroxy and one aldehyde on rings "A/B and of the second hydroxy and one ketone on rings D/E, lacking one methyl group.6) Signals adjacent to the hydroxy groups were fundamentally identical with those of H-3 α and H-21 α of 4 (see Experimental). Moreover, the carbon signals for rings A, B and E of 6 are similar to those of 4. In the light of the above observations, the structure of 5 was established as 3β , 21β -dihydroxy-16, 23-dioxo-28-norolean-13(18)-ene. However, compound 5 was not assumed to be a genuene sapogenin but an artefact formed from melandrigenin by an acid-induced isomerization. ## Experimental General procedures—Melting points were determined on a Mitamura-Riken apparatus and uncorrected. IR spectra were recorded on a Perkin-Elmer 283B spectrophotometer. UV spectra were recorded on a Gilford system 2, 600 UV-VIS spectrophotometer. NMR spectra were obtained on a Varian FT-80A spectrometer. EIMS spectrum were determined on a Hewlett-Packard 5985B GS/MS system. Extraction and isolation—The powdered dry whole plants of *M. firmm* were refluxed with MeOH. The MeOH extract was partitioned with hexane, CHCl₃, EtOAc and BuOH, successively. The BuOH–soluble fraction was hydrolysed with 5% H₂SO₄ in MeOH for 5 hr, added to water. The precipitate was filtered, washed with water, and dried to give a brown solid, which was chromatographed over an SiO₂ column with the solvent of CHCl₃–MeOH (gradient). The fractions were monitored by TLC and from the collected fraction compound 1 and 2 were obtained together with the preriously isolated sapogenins.^{2,3)} Compound 1—crystallized from MeOH as needles, mp. 286°, UV λ_{max}^{MeOH} nm(loge), 298.5 (2.51); IR and ¹H-NMR, see text; ¹³C-NMR, see Table I. $$R_{1}O$$ CHO CHO COMe R_{2} $R_{1} = A_{1}O$ $R_{2} = A_{2}O$ $R_{3} = A_{4}O$ $R_{4} = A_{5}O$ $R_{5} = A_{5}O$ $R_{6} = A_{5}O$ $R_{7} = A_{5}O$ $R_{1} = A_{5}O$ $R_{2} = A_{5}O$ R2= Ac **Compound** 5—crystallized from MeOH as needles, mp. $252\sim256^{\circ}$, UV $\lambda_{\rm max}^{\rm MeOH}$ nm(log ε), 285.0(2.15); MS(70ev)m/z (rel. int.): $456\,({\rm M}^+, 43.6)$, $234\,({\rm D/E}$ rings via cleavage of 8-14 and 9-11 bonds, 6.4), $221\,({\rm A/B}$ rings, 30.5), $220\,({\rm D/E}$ rings via cleavage of 8-4 and 11-12 bonds, 18.5), $203\,(221$ -H₂O, 90.5); IR and 1 H-NMR, see text; 13 C-NMR, see Table I. Acetylation of compound 1—A sample of 1 (100 mg) was treated with Ac₂O/pyridine(1: 1) at room temperature overnight. Workup in the usual way, followed by column chromatography (hexane-EtOAc, 1% to 10%) afforded 2, as an amorphous powder, ¹H-NMR (CDCl₃) δ: 1.87(6H, s, acetate×2), 1.97(3H, s, acetate), 2.01(3H, s, acetate); ¹³C-NMR, see Table I. Acid hydrolysis of compound 1—Compound 1(50 mg) was refluxed with 5% $\rm H_2SO_4$ in 60% dioxane for 5 hr, added to crushed ice. The precipitate was filtered, washed with water, crystallized from MeOH to give 3 as needles, mp. 294°, MS(70eV), m/z(rel. int.): 456 (M⁺, 30.5), 234 (RDA with rings D/E, 65.2), 221 (RDA with rings A/B, 12.9). Acetate(4), mp. 267~268°; MS(70eV) m/z (rel. int.): 480 (M⁺–HOAc, 59.4), 276 (RDA with rings D/E, 29.5); 1 H-NMR (CDCl₃) δ : 0.83~1.05 (Me×6), Table I. ¹³C-NMR chemical shifts of compound 1, 2, 4 and 6 (20 MHz in CDCl₃) | | 2, 4 and 6 (20 MHz in CDCl ₃) | | | | |------------------|---|---------|-------|---------| | Carbon
No. | 1* | 2 | 4 | 6 | | 1 | 37.1 | 37.8 | 37.6 | 38.0 | | 2 | 24.0 | 24.6 | 22.4 | 22.5 | | . 3 | 80.7 | 83, 1 | 73.3 | 73.3 | | 4 | 54.2 | 54, 7 | 54.1 | 54.2 | | 5 | 46.6 | 48.0 | 48.0 | 48.2 | | 6 | 19.6 | 20.3 | 20.5 | 20.7 | | 7 | 31.6 | 32.3 | 32, 3 | 33.7 | | 8 | 38.4 | 39.0 | 39.0 | 43.4 | | 9 | 46.3 | 47.1 | 47.1 | 51.1 | | 10 | 35.6 | 36, 2 | 36.1 | 36.3 | | 11 | 22.6 | 23. 2 | 23.2 | 22.0 | | 12 | 116.9 | 118.2 | 118.1 | 20.6 | | 13 | 141.8 | 141.5 | 141.8 | 124. 9 | | 14 | 42.2 | 42.6 | 42.6 | 41.0 | | 15 | 43.4 | 42.6 | 42.7 | 43.7 | | 16 | 212.7 | 212.3 | 212.1 | 208.7 | | 17 | 47.7 | 48.8 | 48.0 | 52.0 | | 18 | 35.6 | 36.2 | 36.1 | 132.8 | | 19 | 42.2 | 43.7 | 42.8 | 38.0 | | 20 | 35.0 | 34.5 | 34.5 | 36.8 | | 21 | 74.8 | 78. 1 | 78.1 | 78.7 | | 22 | 31.2 | 27.7 | 27.7 | 24.1 | | 23 | 206.4 | 205.8 | 203,9 | 204.2 | | 24 | 9.4 | 9.8 | 9.4 | 9.2 | | 25 | 15.0 | 15.4 | 15.5 | 16.6 | | 26 | 16.3 | 16.8 | 16.8 | 17.7 | | 27 | 24.9 | 25.7 | 25.7 | 24.0 | | 28 | | | | | | 29 | 29. 1 | 28.8 | 28.8 | 27.9 | | 30 | 18, 2 | 19.2 | 19.3 | 19.5 | | 1' | 103.2 | 101.9 | | | | 2' | 73, 2 | 71.0 | | | | 3' | 75.8 | 72.4 | | | | 4' | 71.3 | 69.5 | | | | 5' | 75.3 | 72.0 | | | | 6' | 169. 2 | 167.0 | | | | OAc | 103.2 | 20.0 | 20.8 | 21.0×2 | | OAC | | | | 21.072 | | | | 20.3×2 | 20.9 | | | | | 20.9 | 100.0 | 100 00 | | | | 169.1×2 | 169.8 | 169.8×2 | | | | 169.8 | 170.2 | | | | | 170.4 | | | | OCH ₃ | 51.6 | 52.6 | | | ^{*} Recorded in DMSO-d₆ 1.93(3H, s, acetate), 2.02(3H, s, acetate), 4.57(1H, dd, J=4 and 12 Hz, H-21), 4.98 (1H, dd, J=7 and 9 Hz, H-3), 5.45(1H, m, H-12), 9.28(1H, s, CHO); ¹³C-NMR, see Table I. Acetylation of 5—A sample of 5(70 mg) was treated with Ac₂O/pyridine(1:1) at room temperature. Workup in the usual way afforded 6, as an amorphous powder, ¹H-NMR, see Text; ¹³C-NMR, see Table I. Acknowledgements—This work was supported in part by the research grant from KOSEF. (Received Dec. 2, 1991: Accepted Dec. 15, 1991) ## Literature Cited - Shin, K.H., Woo, W.S. and Lee, C.K.: Kor. J. Pharmacogn. 16, 1(1985). - 2. Woo, W.S., Choi, J.S. and Chang, H.S.: Arch. Pharm. Res. 8, 133(1985). - Chang, H.S., Han, Y.B., Woo, W.S., Kang, S S., Lotter, H. and Wagner, H.: Planta Med. 55, 544(1989). - 4. Woo, W.S.: Arch. Pharm. Sci. 14, 160(1991). - 5. Kondratenko, E.S., Putieva, Z.M. and Abuba kirov, N.K.: Chem. Nat. Compd. 17, 303(1981). - Budzikiewicz, H., Wilson, J.M. and Djerassi C.: J. Am. Chem. Soc. 85, 3688(1963).