Flavonoids from the Rhizomes of Belamcanda chinensis

Ha Sook Chung and Won Sick Woo

Natural Products Research Institute, Seoul National University (Received November 28, 1991)

Abstract ☐ Two flavonoids were isolated from the rhizomes of *Belamcanda chinensis* and identified as kanzakiflavove-2 and 2R:3R-dihydrokaempferol-7-methylether, respectively.

Keywords \square *Belamcanda chinensis*, Iridaceae, flavonoids, kanzakiflavone-2, 2R: 3R-dihydro-kaempferol-7-methylether.

The rhizomes of *Belamcanda chinensis* (Iridaceae) have been used as a Chinese drug to treat throat trouble such as tonsillitis¹⁾. Recently, it was found that this drug contained a number of isoflavonoids by intensive phytochemical investigations^{2–4)}. This paper deals with the isolation and characterization of a flavone 1 and a dihydroflavonol 2 from the drug.

Repeated column chromatography of the chloroform soluble fraction of the methanol extract gave compounds 1 and 2 in addition to previously isolated isoflavones^{2,4}).

Compound 1, mp>310°C, gave positive FeCl₃ and Zn+HCl tests and showed the presence of a hydroxyl (3250 cm⁻¹), α, β-unsaturated ketone (1680 cm^{-1}), aromatic system (1600, 1470 cm⁻¹) and a methylenedioxy function (928 cm⁻¹) in its IR spectrum. Its UV spectrum exhibited typical absorption maxima of flavone at 287.0 and 338.5 nm. Appearance of two one proton signals at δ 6.84 and 6.93, assignable to H-3 and H-8, respectively, and a pair of two proton ortho-coupled doublets (J=8.8 Hz) at 8 6.92 and 7.93, accountable for 4'-substituted B ring protons and a two proton singlet at δ 6.15 indicating the presence of a methylenedioxy group in its proton NMR (DMSO-d₆) suggested that compound 1 be a 5,6,7,4'-tetraoxygenated flavone. The bathochromic shift of UV band I and II in the presence of AlCl₃ and appearance of an exchangeable proton signal at δ 13.0 indicated the presence of free 5-hydroxy group, thus compound 1 was identified as 5,4'-dihydroxy-6,7-methylenedioxyflavone (kanzakiflavone-2)⁵⁾. The ¹³C-NMR spectrum and MS spectrum are in complete agreement with the structure of this compound.

Compound 2, mp 187-189°C, gave positive FeCl₃, Mg+HCl, Zn+HCl tests and showed the presence of a hydroxyl (3400 cm⁻¹), α, β-unsaturated ketone (1645 cm⁻¹), aromatic system (1600, 1510, 1465 cm⁻¹) in its IR spectrum. Its UV spectrum showed an absorption maximum at 290 nm, suggesting to be a 2,3-dihydroflavonoid. Its proton NMR (DMSO-d₆) showed a two proton broad singlet at δ 6.08, assignable to H-6 and H-8 and a pair of two proton ortho-coupled doublets (J=8.5 Hz) at δ 6.77 and 7.31 corresponding to 4'-substitute B ring protons, all accountable for a 5,7,4'-trisubstituted flavonoid. Appearance of a doublet (J=11.4 Hz) at δ 5.10 and a double doublet (J=11.4 and 6.0 Hz) at δ 4.57, of which the latter was collapsed to a doublet by an addition of D2O, indicating the presence of a hydroxyl group at C-3. The NMR showed clearly three hydroxyl groups at δ 11.83 (1H, s), 9.51 (1H, s) and 5.76 (1H, d, J=6.0 Hz), all exchangeable by D_2O and one methoxyl group at 8 3.77 (3H, s). A detailed examination of its MS spectrum, showing retro-Diels-Alder fragments at m/z 136 and 166, revealed the presence of one hydroxyl and one methoxyl on ring A and one hydroxyl on ring B. The bathochromic shift of the UV band in the presence of AlCl₃ or AlCl₃+HCl indicated the presence of free 5-hydroxyl group. As expected, however, its UV absorption was not changed on addition of NaOAc. Finally its ¹³C-NMR spectrum showed sixteen carbon atoms possessing multiplicity and chemical shifts in perfect agreement with the proposed struc-

Table	I.	¹³ C-NMR	chemical	shifts	of	compounds	1	and
		2 (DMSC						

Carbon	No.	1	2	Carbon	No.	1	2
2		163.9	83.4	1'		121.0	127.7
3		106.6	71.8	2',6'		128.3	129.9
4		182.3	198.6	3',5'		115.9	115.3
5		153.6	163.3	4'		161.1	158.0
6		129.4	95.3				
7		141.1	168.0				
8		89.3	94.2	O			
		CH ₂ 102.6					
9		152.3	162.9	O			
10		106.6	101.7	OCH	3		56.3

ture. All the spectral data together with its optical value led to the conclusion that compound 2 was 2R: 3R-dihydrokaempferol-7-methylether⁶). This is the first record on the occurrence of dihydroflavonol in this family.

EXPERIMENTAL

Isolation of compounds

The CHCl₃ soluble fraction of the MeOH extract from the dried rhizomes of *B. chinensis* purchased in a drug market, was chromatographed over an SiO₂ column and eluted with CHCl₃-MeOH (gradient) and then the fractions containing compounds 1 and 2 subjected to SiO₂ column chromatography using hexane-EtOAc (gradient) to give each compound.

Compound 1 (kanzakiflavone-2)-crystallized from MeOH as pale yellow needles, mp>310°C, UV $\lambda_{max}^{\text{MeOH}}$ nm (log ϵ): 287.0 (4.38), 338.5 (4.57); $\lambda_{max}^{\text{MeOH+}}$ MeONa 294.0 (4.25), 305.0 (4.25), 361.5 (4.58); $\lambda_{max}^{\text{MeOH+}}$ NaOAc 284.0 (4.34), 336.5 (4.57); $\lambda_{max}^{\text{MeOH+}}$ NaOAc + H₃BO₃

284.0 (4.34), 336.5 (4.57); $\lambda_{max}^{\text{MeOH+AlCl}_3}$ 304.0 (4.43), 368.0 (4.62); $\lambda_{max}^{\text{MeOH+AlCl}_3+\text{HCl}}$ 302.5 (4.43), 360.5 (4.58); MS m/z (rel. int.): 298 (M+, 100), 180 (RDA with A ring, 25.5), 118 (RDA with B ring, 19.4); IR, ¹H-NMR: see text: ¹³C-NMR: see Table I.

Compound **2** (2R: 3R-dihydrokaempferol-7-methylether)-crystallized from CHCl₃ as yellow needles, mp 180-182°C, $[\alpha]_D^{26}+30.9$ °C (c=0.11, MeOH); UV $\lambda_{max}^{\text{MeOH}}$ nm (log ϵ); 290.0 (4.37); $\lambda_{max}^{\text{MeOH+MeONa}}$ 289.5 (4.34), 359.0 (3.96), $\lambda_{max}^{\text{MeOH+AIOA}}$ 290.5 (4.44); $\lambda_{max}^{\text{MeOH+AIOI3}}$ 314.5 (4.48); $\lambda_{max}^{\text{MeOH+AICI3}}$ 312.0 (4.40); MS m/z (rel. int.): 302 (M⁺, 2.7), 167 (RDA with A ring +H⁺, 100), 166 (RDA with A ring 4.5), 136 (RDA with B ring, 22.8), 134 (167-CH₃-H₂O, 53.3); IR, 1 H-NMR: see text; 13 C-NMR: see Table I.

ACKNOWLEDGEMENT

This work was supported in part by the research grant from KOSEF (881-0302-026-2).

LITERATURE CITED

- 1. Perry, L. M.: Medicinal plants of East and Southeast Asia, MIT, Cambridge, pp 181 (1980).
- Lee, S. O., Woo, W. S., Woo, E. H. and Kim, K. S.: Isoflavonoids of *Belancanda chinensis*. Kor. J. Pharmacogn., 20, 219 (1989).
- Yamaki, M., Kato, T., Kashihara, M. and Takagi,
 Isoflavones of *Belamcanda chinensis*. *Planta Med.*, 56, 335 (1990).
- Eu, G. H., Woo, W. S., Chung, H. S. and Woo,
 E. H.: Isoflavonoids of *Belamcanda chinensis* (II).
 Kor. J. Pharmacogn., 22, 13 (1991).
- Arisawa, M., Kizu, H. and Morita, N.: Studies on constituents of Genus *Iris*. VIII. The constituents of *Iris unguicularis* Poir. (2). *Chem. Pharm. Bull.*, 24, 1609 (1976).
- Chiappini, I., Fardella, G., Menghini, A. and Rossi, C.: Flavonoids from *Dittrichia viscosa. Planta Med.*, 44, 159 (1982).