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Abstract

The control of deterioration processes for which only incomplete state information is available

is examined in this study. When the deterioration is governed by a Markov process, such processes
are known as Partially Observable Markov Decision Processes (POMDP) which eliminate the

assumption that the state or level of deterioration of the system is known exactly. This research

investigates a two state partially observable Markov chain in which only deterioration can occur

and for which the only actions possible are to replace or to leave alone. The goal of this research

is to develop a new jump algorithm which has the potential for solving system problems dealing

with continuous state space Markov chains.

1. Introduction

It is a common practice to periodically inspect
a system that deteriorates over fime as a part of
a program to keep it operating efficiently and to
reduce operating costs. Often, such inspections
do not provide perfect information regarding the
system status due to the inaccessibility of important
system component or due to the expense of a detai-
led inspection. Therefore it is worthwhile to exa-
mine the control of deterioration processes for
which only incomplete state information is availa-

ble. When the deterioration is governed by a Mar-

kov process, such a process is known as a Partially
Observable Markov Decision Process {POMDP)
which is a generalization of a Markov Decision Pro-
cess (MDP). POMDP eliminates the assumption
that the state or level of deterioration of the system
15 known exactly.

A wide variety of controlled systems are often
quantitatively modeled because of elements of un-
certainty in their dynamic behavior. For many of
these systems, only imperfect observations of the
process subject to control are permitted. For exam-
ple, a physician determines a freatment plan for

a patient on the basis of symptams and laboratory
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test results that are only probabilistically related
to the state of the patient. With respect to machine
maintenance and quality control, an operator deci-
des on the machine.

The study of a POMDP is difficult because the
process that is observed is not Markovian. In an
effort to develop an efficient approach for obtaining
optimal policies for partially observable Markov de-
terioration processes, a simple structure is assu-
med. In this research, we investigate a two state
partially observable Markov chain in which only
deterioration can occur and for which the only ac-
tions possible are either to replace it or to leeave
it alone. The problem discussed in this paper has
grown out of an attempt to introduce a new app-
roach that has potential for solving other problems
dealing with continuous state space Markov chains.
The objectives for this research is to develop the

system replacement policies under a new approach

which is a called the jump algorithm.

The problem considered in this research is defi-
ned mathematically in section 2, along with some
of the basic descriptive measures of the process.
A new optimization procedure is given in section

3. In section 4, conclusions are presented.

2. Statement of Problem

The partially observable Markov chain consists
of a core process and an observation process. The
core process, (X, n=0.1, -}, is a Markov chain
===y L}. The Markov
matrix P=[py] gives the transition probabilities

with state space E={1, 2,

for the core process, that is

Pi=P{X,.,=j| X,=i} for i, j=E.

The observation process, {Z,, n=0, 1, -}, with
state space ©®=1{1, 2. ---, M} is obtained from
the core process through the probabilities given
in the matrix R=[rol. If X,=i, then Z,=¢ with

probability re. that is
n=P{Z,=8| X,=i} for iSE. 0€0, ...... (3. 2)

The matrix R completely describes the output pro-
cess. If the core process is completely observable,
the matrix R is an identity matrix, and the POMDP
will be the same as the MDP.

The conceptual idea of these processes is that
the core process cannot be directly observed. Ins-
tead, the observation process is seen, and the rela-
tion between the observation process and the core
process is probabilistic. Although not directly obse-
rved, control is desired for the core process. The
most that can be known about the core process
is the probability that it is in a given state based
on knowledge of the observation process. The pro-
babilities for the core process at time n will be

given by the vector w,, that is
WD =P{X, =il Zo -, Zd}.

Sondik{ 1971, 1978] shows that these vectors, {wa,
w1, **}, form a Markov chain called the core pro-
bability chain, and thus the control problem will
be based on these probabilities. We shall refer to
w.E=W as the state of knowlédge of the partially
observable Markov process, where the state space
W is the Cartisian product of the intervals [0, 17.
The control problem is defined through actions and
their associated probability matrices and costs. The
action space considered in this research contains
only two elements and is denoted by A={1, 2},
where the action a=1 represents the action “not

to replace” and a=2 represents the action “to rep-
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lace.”

The action is always taken after the observation
process has been observed. If action a is taken,
the next transition for the core process is according
to the matrix P*, and then the observation process
will be determined according to the matrix R*. For
the replacement problem considered for this resea-
rch, P!is an upper triangular Markov matrix, and
P? is a matrix whose first column is ali ones and
all other elements are zero. The matrix R is a
matrix defined in (2.2} such that the diagonal ele-
ment is the largest element in the row, and R?
is the identity matrix. The implicatioins of these
conditions are that under the “not to replace” ac-
tion, the core process cannot improve and under
the “to replace” action, the core process is retur-
ned to State 1, and its state is known with certai-
nty.

Because of the complexity of the optimal replace-
ment POMDP, we only consider the simplest of
problems in an effort to obtain an efficient algori-
thm. The state space is restricted to contain two
elements. State 1 represents a new system and
State 2 represents a fatled system. The cost struc-
ture is defined on the process by a function C,
where ¢(i) is the cost incurred for each time period
that the core process is in state i with c(1)<c(2).
Additionally. there is a cost of replacement denoted
by .

A policy is a decision function, d. that maps
the state space of the core probability chain, W
into the action space. A. The set of all decision
function is denoted by D. For a fixed decision func-
tion, a cost is incurred based on the movernent
of the core process. Therefor. the control problem

can be stated as

p—y
inf ¥.,= inf{Iim—"‘E:[c(Xﬂ) +clism=alls

ash d=ED m—reu

R OV

where A. is the action taken at time n and I is
an idicator function.

Since decisions are based on the core probability
chain, some helpful quantities regarding the proba-
bility chain are now preseated- It is helpful to de-

fine the matrix

Ry=diaglrw, =+ rp] for acA, 60,

For the control problem, the sequence of events
is as follows : The decision maker knows the cur-
rent probability vector. w,. that gives the core pro-
cess state probabilities. The decision maker then
chooses an action, A,=a, and based on that action,
the core process changes according to P, He then
observes the next state of the observation process,
Za1=0, according to R*. The probability vector
is now updated(based on Bayes' rule) according
to the transformation given by Sondik[1978]

Tlwa | 8, 2)=wor,=wPR%PLO| w., a},

where P{0 | w,, a} is a shorthand notation used
by Sendik to denote the conditional probability that
the next ohservation state will be 8, and it is defi-
ned by

{9 | Wos a} =w PPRYG 1, cererrrarenriiiiinan (2_ 7)

where 1 is a vector of all ones.
For a fixed decision function, d. the process
{ws n=0, 1, -} is a Markov chain and its proba-

bility transition function is given by



4 Kim Chang Eun EETEE
Plw.+:=B | wn=w} = z ted by
8IT(w !0 diw})=E
FB(Xv Y)EPS{Y:ﬁlSy | Yn:)(}
P{olw, 4 ,
81w dwl for x, 50, 1], wveeeeeeerens (2. 10)

where B is a {measurable) set in the state space
of the core probability chain. For the basic descrip-
tive measure of the process. the following quanti-

ties are specifically defined :

[ 1—p} 1 0
SE R

Ky I ] 1 ¢

T 1‘12—‘ . 1 0:|
Rl: RJ:

Ty Iml LU 1

fe(n ] F&(D}
Ci= ; Ci=

Lc{2) | ct+e(2)

where >t and r2>15-

The decision process is based on the probabilities
{ws. Wy, -} where the components of the vector
w are (1—x, x). Since only two states are being
considered, the probability vectors can be reduced
to scalars by only looking at the second component
of the vector w. Thus, a new Markov chain, {Ys.
Y., -}, with continuous state space [0, 1] is defi-

ned by

Yo=wa(2) for n=00 L . eeeeemeeren (2.9)

Sondik proved[1978. Theorem 1] that a certain
level of deterioration § exists to minimize the cont-
rol problem (2.4). Let B=[0. 5] be a region in
the state space where & ¢ [0, 1] denotes the policy
to use A.=1 when Y,=B, and to use A,=2 when
Y.&ZB. The value & is referted to as the control
limit.

The Markov chain Y=1{Ys Y. -~} is a conti-
nuous state Markov chain with probability transi-

tion function under the control limit policy & deno-

Before giving an expression for (2.10). it is hel-
pful to rewrite the transformation of (2.6) for the
process Y. This is accomplished by substituting
(1- Y., Y,) for w, and then only using the second
compenent of the resulting vector. In particular,
we now let T(Y. | 8, 8} denote the value of Y+,
after 9 is ohserved and the control limit & is used :
thus

T(Y. 1 8, 8)=
[(1~P)+PYn]rm
O Y)prot [(—p) t oY, OF <8
0 for Y.>8.
.................................................. (2.1

An expression for the probability transition func-

tion (2.10) is similarly obtained from (2.8) and

is given as
Fs(x, y)=
Zo:rx sl (1—x)pru+ for x<(3,
{(1—p)+ px}ra]
1 for x>>§.
................................................... (2.12)

We let @;( - } be the invariant probability function
of F3 that is

O5(y) = [t 1 B(dOF(x, y) and d:(1)=1.

We derive the expression for F(x, v) and @( - )
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to find the optimal control policy in section 3. Un-
der the existence of these functions, we can derive
the optimal long-run average cost for the optimal

control policy & based on the process Y.

Theorem (2.1). Under the policy 8, the long-run

average cost is given by
¥=c{D(1—p) +c(2)ut (1-D:(8) e,

cernees (2, 14)

where p=Jup. 12 x®s(dx).

Praof. For a fixed policy 8. the expected average
cost per unit time can be divided into two catego-
fes . (1) to use A.= 1 with a cost vector C' when
xEB, and (2) to use A.=2 with a cost vector C*
when x&B. Therefore, by the ergodic property
of Markov chains, the long-run average cost camn

be given by

¥ = [res B:(d{(1-%) (D +x (2]
+ [res B(d (1— (D +ed-+xle(2) +elt
= [iero 1 ®s(dx)L(1—x) (D) +x ¢(2)]
+[yem Bs{d0C.
=D (1~ wW+ec@u+c 1~ (8)).

The optimization problem (2.4) restated in te-
rms of the controt limit is to find the control limit.

8", such that
W, =inf(¥, 0 B 5 [0, 1T}, cermrerrvmnoens (2.15)

where ¥, is defined by Equation (2.14).

The invariant function @; will be fully exploited
to find the long-run average cost defined by Theo-
rem (2.1). This method is a new approach that
has potential for solving other continuous state

space Markov chains. It is not based on Markov

decision theory. The problem in this research is
to develop an algorithm to compute 8 based on
an entirely new concept and compare its efficiency

to Sondik’s algorithm.
3. Optimization Procedure

In this section an algorithm is developed which
can be utilized to find an optimal replacement policy
defined by Equation (2,15). The approach used
by Sondik and others has been based on an iterative
procedure derived from Markov decision theory.
For a given policy. the cost is not directly determi-
ned because the core probability Markov chain has
a continuous state space. Although the invariant
distribution for continuous state processes is diffi-
cult to determine, it makes the new algorithm sim-
ple for finding the optimal repiacement policy. In
order to compute the long-run average cost defined
by Theorem (2.1}, we need an expected value
of invariant function and a value of ®(3-). In the
process of algorithm development, the invariant
function @s will be fully exploited to find a long-

run average cost for an optimal replacement policy.

3-1. Analysis of Invariant Function

In this section we return to the function Fs(x,
y) defined by Equation (2.10) and derive some

of the invariant function’ s characteristics.

Theorem (3.1). The function Fs(x, y) is defined,
for x<(3, as

FS(X' y) =

0 if y<al)
(1-Opmt+ q+pora i el <y<B
1 if y>8(0).
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Proof. The probability transition function Fis(x,
y) exists in only three cases according to the indi-

cator function L (x,y) such that :

Case 1

Lx, ¥=1, L& y=1
Fu(x. y)=§l(l—x)prlo+(q+px)rm}lo(x, y)

={(1_X)PT11+((1+IJX)1'21} 1+ {(1—x)
prot+(q+pOr} « 1=1.

Case 2. Lix v)=1, Lix, y)=0

F:(x, y)=0-®pr;+(g+pora.

Case 3! Lix, ¥=0. L{x, =0

Fslx. y)=0.

Next, the finvariant function @:( - ) defined by
Equation (2.13) is examined. It will play a key
role in the development of the algorith.

We will construct the invariant function ®5( - )
as a step function to find a long-run average cost
given by Thoerem (2.1). We need to find the ex-
pected value y of the invariant function and the
value of @{5—) to find the optimal control limit.
Let y; be a jump point of &®s between 0 and 1.
Also, let ¢; be the jump size at y; and ¢*; be
the jump size at B(ys), o=¢{yy) ~¢(y;—) and
0*=o(By)) —o(Blys) ). It is also helpful to
define the following notations. for simplicity from
Fig. L

Definition (3.2). The following quantities, for i,
j=1, 2, -, are defined :

1. 0=0s 2 0=p(0),

v = aly. s Ve o= B0 s

F(yir y)=f=1—yprat+{q+p viira
for aly) <y<p(ys.

5= Pelyy) —Bs(yy— ),

0" =0, (Blys) —O:(Bly) —).

lim Vi n:Y’.__'YL Tis

n—x

where 1; is the smallest integer such that | y*—v,

b i <8!

lim Yoo 0— ].EYk 0

m—o

where k is the smallest integer such that | 1—w.

o|<£.

4-2. The Structure of the tnvariant Fun-

ction

First. we need to find a value of the first jump
which occurs at zero. If y<{al0), we can derive
the following equation :

(Ds(y) zij[o. 1] ‘I’s(dx) Fs(}b }') =
Jx‘E[D‘ 51 @s(dx) - 0+J’,E[5, g Bldw) ¢ 1
=1=&(8—) for y= [0, al0))
®5(0)=1—Ds(5).
Now we will construct the next jumps as follows.

Lemma {3.3).
L, -+, L—1 is given by

The jump size at y.. o1 for =0,

& 1= D0 £ S<PL0).
Proof. If a(0)<y<a(y. ), then
D5(y) = freto. 0 BeFslxs ¥) = fomto. e
®:(dOFs(x, ¥) +[sete 1 @)
=D (0)F:(0, y)+0:(0) =Ds(DF,, o+ D, (0)
RS NG R ACARE T A A

where on. 0= (L= fi. n-2) 1. 20 If alyn. ) <y<aly
. 2}, then

d’s(?)zjge[u. 1 (I’s(dX)Fs(Xs Y)z
_[:E[l]. a-1{y}] ¢5(dX)F§(X; }')"'I;e[a, 11 (Ds(dx)
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=P (01, ot o ofn 1+¢5(0)
b1, 2= By, 2 —Bs(y, 2‘“)=¢1‘ i1

Assuming that ¢,, . =Bs(0Im™"— f;.; is true, this
implies that 1. »=s(¥1. 0 — Ps{y1 .= ) =D (0)n™-
o &1 s when a(y. ») <y<aly. ). Then. if aly.
2D <y<alys at1)s
B5(y) = [seto. 1 Ds(dRIFo(X, ¥) = [eato a1 Ps{dx)

Fo(x, ¥) + fxzts 0 @a(dx) =@5(0)f1. o
+ay, uf o+
+@,(0)
&1, w1 =Ps(¥1, 222) ~ Po(F1. 0+1= ) = du, ofs
=@5(0) " 4= 1, fi. o (FPr ,=Ds(0)
| § LA

+ ¢1. n-lfl. n—1+¢l. nfl‘ n

=&,(0) I 1. .

i=0

Thus the lemma is proved by induction.

Lemme (3.4). The jump size at f{y.. ) for n=1.
2, 5 1 is given by

¢ =016, o T f o 5_<_B(0).

Proof. The jump size, ¢*; .. can be calculated
in the following manner . the jump size of ¢ .
is first calculated by Lemma (3.3} and then multi-
plied by (1—f. .) to obtain the jump size at f{y.
o from v, s

Theorem (3.5). The jump sizes at Vu. o and B(yn
o) for m>1 are "

n—1
¢m. n: ¢m, ] n fm. i Ym. 0§_6<Ym+1. L1}
=0 n—1
¢*m. n:¢m. 0(1—fm. n) II i s Y. oS§<Ym+1‘ 0

=0
Proof. It is easily proved by combining Lemma

(3.3) and Lemma (3.4).

F(1, 1)

! )’l.: 2
¥ 1

Yo
Flo, 0)

Fo, 1)

Fig. 1. Anoiysis of Invariont Function.
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temme (3.6). The sum of all jumps beiow 3,
if 5<B(0), is
limn—'m 2“}:@1. i
1+ limeee Z=gy,

&(E—)=

Proof. To find @5{8—) such that limyww "=yt
=®s(8—) when 8<B(0), let ¢, =1, Then, it
follows that (1—@(8—))limy—e Z=otn. i —Ds(8

—). It is proved by solving the equation for @

(3—-).
Lemma (3.7). The sum of all jumps below 5,
if By k—])£6<B(Y1. W is

limeme ¥ a1 o, §
1+ M 2 =1 2% =0 G

$;(8—)=

Proof. If ﬁ(}ﬁ. 0)§8<13(Y:. U, to find ®:(8—)
such that lime. Zo=eltn itz J=F:E—), let
¢1. o=1. Then.
D5~ )=~ De(6= ) 1lim T (. i+ )
nm IS0
_ lim—n Efa=1Z%=0 Om. i

T 1t limes S5m0 Om

If Blyr <<8<Bly1.2)» the same procedure as gi-
ven above is followed. To find @s(8—) such that
limpes Z=0{@r. i T 0o 1+ J=Ds(8—), Tet ¢ o=
1. Then.

Di(p—)=(1-:(5—)) lim T
(8 s do it sy e =0
B it o= 1 2=, |

1+ ime-n X1 2%0 & ¢

In general, if By i-1)<<S<B(y. ), the same
procedure as induction is used to obtain this Le-

IIIMa.

Lemma (3.8). The expected value of § defined
by Theorem (3.1) is:

‘1:
ooy H % ¢ Bl D) . <8<y o

limn—-w Ekm=lzni=£l{¢m. ¥m i

+6% 0 i Blyw 2}, e o8P, o

where ¢* . 1= 0. (11, .

Proof. The expected value of the step function
is the summation of the product of a jump peint
and a jump size since E[x]=[,aq. 1 x®(dx)= Z-
x4(x:), where x: is a jump point and ¢(x) = ®{(x;)
—d(x—).

Now, we are ready to compute the long-run ave-
rage cost defined by Theorem (2.1). To search
for the minimum of ¥ defined by Equation (2. 15,
we use a procedure based on the Golden Section
Search method. This procedure will be called the
jump algorithm.

Algorithm {3.9). The jump algorithm te find the
optimal contrel limit defined by Equation (2.1%)
is as follows :

(1) Set £=0.0001.

(2) Generate the jump points, vi. . and Ve o
as defined by Definition (3.2) for n=1, 2, -,
1, and m=1, 2, -, k, where k and 1, are also
defined by Definition (3.2).

(3) Set the control limit value, §, equal to 0.
3819 for which the long-run average cost. ¥, defi-
ned by Theerem (2.1} is to be evaluated.

(4) Temporarily set ¢.. ¢=1 and ¢s{0)=1.

(4.1) If < (0}, then calculate ¢, , and ¢,
+++, 1, using Lemma (3.3) and Le-
mma (3.4), and the jump points generated in Step
(2).

(4.2) I §2>8(0), then calculate ¢n. . and ¢*,.

» for m=2, 3.

n for n=1, 2v

*» kand n=1, 2, . 1. using

Theorem (3,5), and the jump points generated
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in Step (2).
(5) Evaluate the value of ¢:(8—) using Lemma
(3.6) and Lemma (3.7).

(6) Set &y ,=1—®(5—) from Step (5), then
recalculate &, o and ¢*w. o as in Step {4).

(7) Calculate the expected value, u. using Le-
mma (3.8). then evaluate the long-run average
cost. 5, using Theorem (2.1).

(8) Determine 8, acoording to the Golden Sec-
tion Search method, where 8€(0, 1]. I | 8-&
| <l¢, then STOP: otherwise, let =& and re-
turn to Step (4),

4. Conclusions

The importance of this research lies in the appli-
cability of replacement models and the practical
difficulty of their optimization algorithms. In order
to obtain data for replacement models and the other
controlled systems, statistical data and imperfect
instrumentation must frequently be used to estab-
fish the state levels. Such information always leads
to a partially observable Markov decision process.

The jump algorithm appears fruitful because of
the current limited knowledge in optimizing partia-
lly observable processes. It is entirely a new app-
roach to obtain the invariant distribution for a con-

tinuous state Markov chain and use it for optimizing

such processes, We observe that the structure of
the invariant function derived in Section 3 enabled
the development of a very simple algorithm.

The properties in Theorem (3.1}, Lemma (3.3}
and Lemma (3.4) played a significant role in the
new algorithm. '

This research has posed some recommendations
that may be fruitful areas for future research. First
of all, broadening the Markov matrix greater than
two by two would be extremely useful in many
applications. It would give the jump algorithm more
flexibility in its application to real problems. Se-
cond, the computational time of the jump algorithm
may aiso be reduced with a new search method
using the structure of the invariant function. In
addition. the analysis of the optimizing problem
should be extended to include uncertainty about

the process parameters.
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