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ABSTRACT

In this article, several problems inherent in histogram estimate of unknown probability density
function are discussed, Those include so called sharp corners and bin edge effect. A resolution
for these problems occurred with histogram is discussed, The resulting estimate is called kernel
density estimate which is most widely used by data analysts, One of the most recent and reliable
data-based choices of scale factor (bandwidth) of the estimate, which has been known to be
most crucial, is also discussed,

1. Introduction

As a tool for exploring the unknown distributional structure of a population, histogram is
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well-known even to non-experts in statistics, However, histogram is known to have two serious
defects, Those are called sharp corners and bin edge effect,

This article is intended to introduce for non-experts one of the existing and promising methods
which does not have the above difficulties and is widely used by many data analysts, The
estimate is called kernel density estimate and it is in essence a smoothed version of histogram,
In section 2, this estimate is introduced as a resolution of the two problems occurred with
histogram,

Kernel density estimate at a point is a weighted average of observations around the peint, It
is determined by two parameters, One of them determines shape of weights and the other
controls amount of local averaging, Effective use of kernel density estimate is known to highly
depend on the choice of the second parameter, bandwidth, Section 3 discusses this issue and
introduces one of the most recent and reliable data-based methods for selecting bandwidth,

In the next section, the two problems with histogram are discussed,

2. The Problems and a Resolution

Let X, -+, X, be a random sample from a population with probability density function f,
Histogram estimate 7 of f is constructed as follows ;

Step 1 : Partition the real line into subintervals called bins indexed by =1, -, m,
Step 2 : For a point x, count the unmber of X;’s in the bin which x belongs to, call it bin
frequency,

Step 3 : f(x) =bin frequency / [#Xbin width],

Sharp Corners

Suppose a point x is on the boundary of two adjacent bins, For this x, histogram estimate for
S (x) uses data only on one side of x and so creates bias because most data used to estimate f
(x) have different means from f(x). This will be clear if we calculate the expected value of f

(x). Suppose the point x belongs to the j** bin, Let 4, B; and f; denote the bin width, the j
bin and the frequency of the j* bin, respectively. Then

~ _____1_ '
Ef (x) =+ E[f]
=1 ‘
= nP(X <€ B;]
:% fB ’f( t)dt,
Hence the expected value of F(x) is the average of f values over the j** bin and generally this

— 128 —



1990+ 113 MESKETARRLE A18Y 23

tends to be more distant from f(x) as x comes closer to the boundary,

This phenomenon of creating bias is typical for nonparametric estimators, However, the point
is that the bias of histogram estimate is more severe than other nonparametric competitors,
especially, than kernel density estimate given below,

Bin Edge Effect
A more important problem is concerned with grid location of histogram, The following figures

show two different histograms constructed from the same set of data but with different grid
locations,
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Figure |. Histogram estimates constructed from the same set of data (x denotes a data point)
but with different grid locations.

As is clearly seen in Figure 1, the first histogram catches the bimodal structure but the second
does not. Thus histogram estimate may creat significantly different pictures about the same
population depending on where one puts the grids, Furthermore, there is no objective rule t¢
determine the grid location, This is the major defect which is inherent in histogram,

Kernel Density Estimate

A possible remedy for the first problem is to treat each point x as a bin center, which is
introduced by Rosenblatt(1956), In other words, instead of using pre-determined bin B;, one
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uses [x—h/2, x+h/2], With this, f(x) can be defined by

f@=dBr LX) _ @1
where
_{L if x€A;
“")"{o. otherwise,

The estimate f (x) in (2.1) is a weighted average of observations around the point x with equal
weights, It can be re-expressed as

-

f=1xig

& (x— X))

1a1
n [—h/2, &/2)
181

=u B2 n!

fa]

5 )

Note that I _ | /2]( +) is the probability density function of Uniform[—1/2, 1/2].

This estimate still has one drawback, which is that it gives rough edges and this is not
appropriate to estimate a smooth probability density function, One can overcome this difficulty

by using a smooth probability density function K instead of I » which gives

[~1/2, 1/2

f=L3lr(24), (2.2)

The estimate defined in (2,2) is called kernel density estimate and it is introduced by Parzen

(1962).
For the second problem, averaged shifted histogram introduced by Scott(1985) cna be used to

eliminate the bin edge effect, The essential idea is to pool informations contained in several
“shifted” histograms, In particular, note that histogram estimate can be written as

Foy=s23 Sl () I (X0,

i=1 j=1

Let ﬁ(x), [=1, -+, m, the I** shifted histogram which is constructed by shifting the ordinary
bins to the right by the amount /A/m, Then

~ 1 n o0
fi(x) =T{EZ-“, ;:-1'1 Ia,+u/m(x)la,+n/m(x‘)-
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Averaged shifted histogram is defined by

-~

fay=s Bi).

o~
0

It can be shown that this estimate again becomes the kernel density estimate defined in (2, 2)
with

K@ =1-|xh71 (x)

[-1, 1]

when m goes to infinity,

3. Choice of Bandwidth

Observe that the kernel density estimate defined in (2, 2) is determined by two parameters, K
and k, The fact that the choice of kernel function K is not so important is illustrated in
Rosenblatt(1971), A common practice is to use the standard normal density for K., The more
important and crucial parameter is %2 which is called bandwidth or smoothing parameter, Figure
2 shows how kernel density estimate depends on the choice of bandwidth,

As one can see it in Figure 2, smaller bandwidth yields more wiggling estimate and larger
bandwidth yields smoother estimate, In fact, it is known that when the bandwidth is small, the
kernel density estimate has small bias but has large variance and when the bandwidth is large,
it has large bias but has small variance instead, Hence the optimal choice of the bandwidth &
is the trade-off point between bias and variance, However, the optimal bandwidth is not
available since it depends on the unknown probability density f,

There is a huge literature dealing with data-based bandwidth selection and all the methods are
attempts to be close to the theoretical optimum, See Marron(1988) or Park and Marron(1990)
for a survey of such methods proposed up until 1987, Recently many improved and reliable
data-based bandwidth selection methods are proposed, Those include Hall, Marron and Park
(1989), Hall, Sheather, Jones and Marron(1989), Sheather and Jones(1990) and Jones, Marron
and Park(1990). Among these, only SJ(after Sheather and Jones) bandwidth selector is present-
ed here because it has been found that SJ] outperforms the other bandwidth selectors in the
extensive simulation study conducted recently by Steve Marron, A full set of the simulation
results is available from the author, A ready-to-use iterative algorithm for SJ bandwidth
selec}or is now given and it is based on the use of the standard normal density kernel function
for f in(2,2).
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Figure 2. The solid curve denotes the true density (N (0, 1)), Kernel density estimates
displayed ( ) are constructed using 50 data generated from N (0, 1) with

K(x)=(15/8) (1 —4x%) I{_1s2, 121 {x) and (a) A=1.0 (b) h=2.0,

Iterative algorithm for SJ bandwidth selector

First, compute the sample standard deviation SD of X,, --

a=1,241SDn""",
b=1,2318Dn""",

Compute
A=[Sa)/TH]V

where

S@=[r(n—D"a3 Fla (X—X))],

— 132 —

, Xn. Set

3.00



1990 119 MG EERR 4L A8 A2

T(B)=—[n(n-D"b7"3% 26 (X—X)].

and ¢ is the »** derivative of the standard normal density function,
Iteration ( . Start with

hy=1,102SDn 1"
Iteration % : Compute

=1 357TA"" hap-,*",

&&)
Qr ’

Se=[n(n—-1) ;-la;*‘;:}uzf}] g™ (

hk: [27[.1/25’!]» usn~1/5_

Stop iteration when |k h.—1|<S where & is a pre-specified criterion value,
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