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A CLASS OF GENERALIZED TRANSFORM
AND THEIR APPLICATION IN THE
BOUNDARY VALUE PROBLEM OF HEAT
CONDUCTION

A. Siddique

1. Definition and Inversion Formula

We consider the self adjoint Bessel differential equation as:
d
P(z)

dz
with the conditions

Q)2 + [R(x) + S(@)ly = 0, (1.1

y(a) + hiy'(a) = 0 (1.2)
y(b) + hay'(b) = 0
where P(z) = (z)'*%, Q(z) = (2)'%, R(z) = A23%2%¥ 5(z) = (a? -
v?3?), and a, b are the inner and outer radii of the cylinder and &y, h, are

the independent radiation constant.
The general solution of (1.1) can be written as

y(z) = 2%[C1J,(Az?) + C,Y, (Az?)] (1.3)

where C; and C; are arbitrary constants and J, (Az?) and Y, (\z?) are the
Bessel’s functions of first and second kind respectively.

We want to obtain solutions of (1.1) which satisfies the conditions (1.2).
Hence we have

Caldo(2a®) + %{a.},(,\aﬁ) +ABa% 0 (Aa*)}] + (1.4)

Cy[Y, (M) 4 %{a}’;(,\aﬁ) + A\Bd?Y,.(Ad?)}] =0
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206 A. Siddique
and
ol (%) + E{QJ (Ob7) + ABH T, (AP)}] + (1.5)
Co[Y, (A°) + {aY (AY%) + ABYPY, (AP)}] =

From (1.4) and (1.5), we can deduce that

G L) + B {ad,(Ad®) + ABa"J,i(Aa”)}] (16)
C: — [Y(Aaf) + 2{aY,(Ae?) + ABaPY,:(Aa?)}] '
__[RO) + B2 {ad, (AF) + ABY 0 (M) }]
T Y008 + B {aY, (AbF) + ABBSY,(ADF)}]

Thus the function given by (1.3) is the solution of the equation (1.1),
with the conditions (1.2), if A; is a root of the transcendental equation

[J.(A\e?) —{aJ (Aa®) + ABa® J,.(Aa®)}]
Y, (A7) + ?{O‘Yu()\b‘a) + ABYY,(AD7)}] (1.7)
—[¥,(Ae?) + %{ayy(xaﬁ) + \3aPY,(Aa")}]
[ (AP + %{QJ,,(/\bﬁ) + ABP T (AP)}] =0
Now introducing the following notations

0, (X)) = [L(X®) + %{aJu(Aa’B) + ABa” J,(Aa”)}]
®,,(Ad”) = [Y,(Ad®)+ %{a}’,(z\aﬁ) + ABa?Y,,(Aa®)}]
0, (M%) = [Y,(W) + %{aYy(Abﬂ) + ABYPY, (A6P)}]
(M) = [L(A6°) + %E{QJ,,(W) + A8 I, (A6°)Y]

(1.7) can be written as

[7,(Aa?) + @1, (Xa®)][Y, (A7) + Q1 (A7) (1.8)
—[¥, (Aa®) 4 @4, (Aa®)][L (M) + Qo (M%) = 0
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Let A;(t = 1,2,---) be the positive roots of the equation (1.8). Then from
(1.4) and (1.5), we have

[ (Aiz®) @4, (Aid®) — Y, (Aiz®)®; ,(Mid®)]

and
yi(z) = %[qu(
Then the following functions are the solution of the equation (1.1) with
the conditions (1.2) :
Colhrsha, Xid®) = [@5,(Nd®) + R, AW (A2”)  (1.10)
—[@1.,(Miad®) + Q1. (A7), (Niz?)
Now according the theory of sturm-Liouville [1], the functions of the sys-

tem (1.10) are orthogonal on the internal [a,b] with weight function z,
that is

227)00, (AP = Y, (i), (AP)] (1.9)

b
| 2Cuha, o, Aa?)Co (i, b, Az =0 i (111)

a
b .
[ 2C2 o, AiaP)da = [[Colhy, B, Ao
Using some well known properties of the Bessel’s functions [2, pp. 634,

968, 969] we can easily derive

1C, (b, by AzP)|2 = %Mz()q,a:ﬁ,a,b){bgP(A,-:cﬁ;b;V)

—a*P(M\zPia;v) — N2, a,b)N(\z, a,b)
{sz(Aixﬁ, bv) — azQ(/\‘-J:'B,a,u)} (1.12)
r2
+%(A,~xﬁ, a, b){V R(Nz® b,v) — a®R(N\iz”,a,v))
where
M(A;mﬁ,a,b) = @l‘u(/\iaﬁ) + Ql‘,()\,'bﬁ)
N(/\,-:cﬁ,a,b) &= [Qg,y(kgaa) + Qg',,(z\,-bﬁ)]
P(Aia®,p,v) = [2) = L) Joa(Aip®)]  (1.13)
Q(A;:ﬂﬁ,p., V) = [Jv’(Aiﬂﬁ)}’L—l(Aiﬂ’ﬁ)

1
_ B il
—AiﬂﬁJu,l()\,:c Yo (hip”)

— o (Aip®) Y (Ni?)]
RO\, pv) = [VEi’) = Your Qi)Yo (Ain?)]
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where a, b= pu
If a function f(z) and its first derivative are piecewise continuous on
the interval [a, b], then the relation

T(f(z),a,bv; ] = fy()\) (1.14)
= fazf( \C, (hy, ha, NizP)dz

defines an integral transform, where A; are the positive roots of the equa-
tion (1.8). To obtain the inversion formula, let

Ea, h;,hg,,\x ) (1.15)
1=1
multiplying both sides by zC,(hy, hs, Axz?), (k fixed), integrating with
respect to = between a and b, we get

a8; = f: :Ef(:r (hlahhA T )dl‘
J ICu (s hay A2
fo(Aiz?)

= ]]CU(hl,hz,Aja:ﬁ)“Z’ 3=1,2,3--

Cy(hy, ha, Aj2°) (1.16)

Hence

Z ] (et h1 ha /\).'1:!3 ||2G”(h1=h2v\j$‘3) (1.17)

where summation is taken over all the positive roots of the equation (1.8).

2. Some Properties of the Generalized Integral Trans-
forms

The following properties can be easily verified from the definition of
the transform

(i)

Tlaf(z) + Bg(z),a,b,v; A (2.1)
=aT|[f(z),a,b,v: N+ BT[g(x),a,b,v; A

T[f(az), a,b,v; ] = ér[ ), 8, B 8 (2.2)
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(iii) Transform of

d*f ldf v

g(z) = 12 o= - ;f (2.3)

Let

i = /ﬂba:[f”(m)—l—% F@)]Colhy, by, Mia®)dz
- mef"(m)ou(hl,hz,,\ixﬁ)dg;+/: F1(2)C, (b, b, Mia®)dz
= {2C,(hy, ha, hie®) f'(2)}E —)\-ﬂ/bxﬁO’ ha, kg, Aia®) () diz
f FLDC s Bas Ne d:r:-{-j F(@)C, (h, hay Nie®)de
= {2[C0(h, b2, iz®) /()] - [Azﬁwﬁ();(hl,hz,/\,-;cﬁ)f(;c)]}g
+ / a0 (hyy hay 2i2®) + NC(h, hay Aiz®)|f () dz

As the function C, (hy, he, Aiz”) satisfies the Bessel’s differential equation.
We have

g.(A) = /b:c(f” + if’ = if)C (hy, ho, Aiz”)dz (2.4)
= {2[C0h1, ha, Mia®) f'(2)] = [NBC (b, ha, Xia®) f ()]}
_)‘?fuf( 2)
which on simplication gives
) = 20 ke APIS + ey (2.5)

+XiaCy(ha, hay Mia®) f(a) — A2 (M)

Transform of z¥. From the definition we have
b
T[2",a,b,v; \] = / 210, (hy, by, NizP)dz
using the result [2, p. 634]

]:1:"“2(9:)033: =X Z,1(x)
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where Z,(z) is one of the Bessel functions, and after the simplification, we
obtain

v+1
T[:ruaasbsv;ki] = . 2 [ + h]Cv(hlah%’\ibﬁ) (26)
av+l
+5Colha, b2y Aib)

(v) Transform of a constant. We can easily derive

6
)\2[
+aX;Co(hy, hs, )\ia )-

b
T[6,a,b,0,\] = Colha, ha, AibP)]

3. Particular Cases

If we take « =0 and 3 =11in (1.1) and h; =0 in (1.2), then it would
correspond to a known result [3, pp. 149-154]. Several other cases can be
derived by specializing the parameters in (1.1) with respect to the choice
of the boundary conditions.

4. Problem of heat conduction in the cylinder

Let us consider a cylinder of radii a, b, height A and symmetrical along
z—axis, having a heat source inside which leads axially symmetrical tem-
perature distribution. Let (r,0,z) be the cylindrical coordinate system
and the heat is conducted symmetrically with respect to z—axis. The
temperature function @ is the function of space and time.

The heat conduction equation is given as

pcg—q = kV?0 + £(r, 2,1, 0) (4.1)

where £(r, z,t,8) is a source function.
The use of substitutions

&(r,z,t,0) = O(r,z,t) + €(t)0(r, 2, 1) (4.2)

u(r,2,1) = 0(r, 2, ) exp{ - [ y)dy} (4.3)
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o(r2,1) = 0(r, 2, ) exp(~ [ e(y)dy) (4.4)
the heat conduction equation (4.1) reduces to
Ju s P(r,z,1)
_— = 4.
5 kVu + - (4.5)

where k = K/pC, k the diffusivity, K the thermal conductivity, p the
density and C is the specific heat, and boundary conditions are

u(a, z,t) + hl(,%u(a,z,t) = fafz,t)forall0 <z < h,t >0 (4.6)

u(b, z,t) + hggu(b,z,t) = m(z,t) forall0 <2< h,t>0

where h; and h, are independent radiation constants. The initial condi-
tions are

u(r,h,t)=0foralla<r<b, t>0 (4.7)
u(r,o,t)=0foralla<r<b, t>0

and
u(r,z,0) = up(r,z), foralla<r<b0<z<h (4.8)

where 7,(z,t),m5(2,1) and ue(r, z) are the known functions.

First phase. Let us consider that the density p of the cylinder is constant.
Then equation (4.5) becomes

*u  10u 32 du
2 +—8 )—l—{(r z,t) — = {] (4.9)

K(— N

Applying (1.14) in (4.9) with respect to r and taking a = 0 = v due to
the choice of the boundary conditions

Pu Ou

ou 2
K= — o £k, 2,8) — KA+ ki (2, 1) (4.10)

where

aCo(hy, ha, Aia®)na(z,1) _ bCo(h1, hay Aib%)my(2,t)

¥(z,1) = - 5
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Now using finite Fourier sine transform to equation (4.10) with respect to
z, using (4.7), we have

d_s 2.2
;m(mh,f + A, (n, m,t) = —kipy(m,t) + €, mat)  (4.11)
where b P S
u , mnz m?x
A @sm( ; )dz = 2 us(n,m,t)
k mnz
zbs(m,t):/(; ¥(z,1) sin( 7 )dz

and

k
£(hiy m, 8) =/D £, 2,8) sin(TnZ )dz

h

Again Laplace transform in variable ¢ to equation (4.11) and using (4.8)
gives

_ a [tE0,s(n, m)] kL[s(m, )] ;
Llus(n,m,t)] = Pt k(24 ﬂ,z )] b+ k02 + 22 2)] (4.12)
L[&(/\um 1f)]

[p + k(AF + 2)]

On using inverse Laplace transform in (4.12), then applying convolution
theorem of Laplace transform to it and again using the inversion theorem
of finite Fourier since transform to this result, we have

2 oo
i(n,z,t) == Y @i,(n,m, 1) sin(o) (4.13)
h & h
And lastly using (1.17) to (4.13), we have
(et = 725 1 [ua(n, m) (114)
WISR T B s e hl,hmﬂ:@)nﬁ S |

exp{—k(\? + h"’ )}t—f kvs(m,u) — E(A;,m,t)}

m2'ﬂ'2 mmwz

-exp{—k(A? + 7)}(15 — u)du] sin( h

)C(](h1 hz ,\ v )

where ||C, (b, ha, \;z")||? is given in (1.12).

Second phase. Here we take the composite cylinder of variable density
and suppose p = por?, po is constant.
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The equation (4.5) reduces to

Pu  10u  Pu,  Er,z,t) Ou
2 + FE+ az2)+ v R 0 (4.15)

K(

Using (1.14) to the equation (4.15) with respect to r, we have

2= 2 0y
K@ 48 Cnat) Ak = kip(z,1) (4.16)
dz? dit Po -

where ¥(z,t) is given in first phase analysis and

Sl f {r Colh, s, Ar®)dr

Now applying Fourier sine transform in (4.16) with respect to z as in first
phase due to (4.7), we get

d7 2 2 Gs(‘\i;mvt)

(4.17)

where ki,(m,t) is given in the first phase and

f { r\21) SlIl (mrz/h)dz

Further, the Laplace transform of (4.17) with respect to ¢, due to (4.8),
gives

[to,s(n, )] kL[ps(m, t)]
p+ kO + =) [+ RO+ )]
LIGs(Aiym, )]
[+ KOF + 23]

Lltts(n,m, t)] =

(4.18)

On using inverse Laplace transform in (4.18), then apply convolution theo-
rem of Laplace transform to it and further applying the inversion theorem
of finite Fourier sine transform to this result, gives

2 o0
u(n, z,t) =5 > ug(n,m, t) sin(mmrz/h) (4.19)

m=1
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And finally using (1.17) in (4.19), we have

2 = m?r?

u(r,z,t) = ZZ > Al (1 ko, iz [P} uo(n, m) exp{—k(X] + )M
n=0m=0 J
t _ (M,m 252
— [t ) — Gy e 2+ T T )]
» YO Po
sin(m;z)cg(hhhzj)\‘-rﬁ) (4.20)
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