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ON PERTURBATIONS OF NONLINEAR
SYSTEMS OF VOLTERRA INTEGRAL
EQUATIONS

A.A.S. Zaghrout

1. Introduction

The mathematical literature on this subject provided a good infor-
mation concerning the existence, uniqueness, stability, and continuous
dependence of solutions of various classes of Volterra integro—differential
equations, see for example, ([4,5,7]). Once the existence and uniqueness
have been established, a quite different analysis is required for finding
asymptotic properties of the solutions. We shall discuss and compare
the boundeness and asymptotic behaviour of solutions of the perturbed
Volterra integral system with that of the corresponding unperturbed sys-
tem.

Consider the perturbed nonlinear system of Volterra integral equations:

t i
x(t) = f(t) + [ glt,s,z(s))ds +/ h(t,s,z(s))ds (1.1)
ip to
with the initial condition

z(to) = f(to) =20 #0
and the corresponding unperturbed nonlinear system
7 i
y(t) = £(8) + [ gt,s,y(s))ds, (12)
with the initial equation

y(to) = f(to) =20 # 0
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where z,y € R", an n-dimensional Euclidean space.
We use z(t) = z(t; to, zo) to denote the solution of (1.1) passing through
zo at t = tp and y(t) = y(i,10,70) to denote a solution of (1.2) passing
through z4 at t = #5. The symbol | - | will denote some convient norm on
R™ as well as corresponding consistent matrix norm.

Our main hypotheses are :

i) f € R*'is a continuous function and has continuous derivatives on
J =:(1,506 )

ii) g € R is a continuous function and the partial derivatives g, g., ¢,-
are continuous for all 0 < s <t < oo.

iii) h € R™ is a continuous and has continuous derivatives with repect
toton 0 <s<t<oo.

The nonlinear variation of constants formula of Brauer [2] has been
used to obtain various results on the effect of a perturbation of Volterra
integral system. He has shown that if y(¢) is a solution of (1.2), the
corresponding variational system of (1.2) is

2(t)=U + '/t:gy(t;s,y(s))z(s)ds,z(tg) = {f (1.3)

where U is the unit matrix. Let ®(¢,¢ozo) be the solution matrix of (1.3)
with respect to the solution y(t) of (1.2). Then the solutions of (1.1) and
(1.2) with the same initial values are related by

o) = o0+ [ 0t 5,2()lh(s,5,2(5) (14)

t gh
+ A E(S’ 7,z(7))dr]ds,

For more details see Brauer [2].
We need the following definitions :

Definition 1. The solution y(¢) of (1.2) is said to be globally uniform
stable in variation if there exists a constant M such that

ly(t, to, 2o)| < M|zo|

|®(t, o, z0)| < M,

for all t > ty and || < oo.
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Definition 2. The solution y(t) of (1.2) is said to be exponentially asymp-
totic stable in variation if there exist constants M > 0, @ > 0 such that
[y(t,to, 20)| < Mlzolexpl—a(t— to)] and |9(t,to, z0)| < M exp[—aft —to)]
for all 0 <t <t and |xg| is sufficiently small.

Definition 3. The solution y(¢) of (1.2) is said to be uniformly slowly
growing in variation if and only if for every a > 0, there exists a constant

M such that
ly(2; to, zo)| < M|zo| expla(t —to)]
|®(t; t0, 0)| < M expla(t — )]
for all 0 <ty < ¢, |z0| < 0.

Remark 1. We say that a continuous function z(t) is slowly growing if and
if for every a > 0, there exists a constant M, which may depend on a
such that

|2(t)] < Mexplat], t>0.

2. Main Results

In this section we state and prove our main results on the boundedness,
stability and asymptotic behaviour of the solutions of the perturbed of
Volterra integral equation (1.1) under some suitable assumptions on the
perturbation term. Our results, in this section depend on the following
two lemmas (Pachpatte [6]) :

Lemma 1. Let u(t),p(t) and q(t) be real-valued nonnegative continuous
Junctions defined on J, for which the inequality

u(t) <wug+ /t: p(s)u(s)ds + /t: p(s)(/t: q(r)u(r)dr)ds,t € J,

holds, where uqg is a nonnegative constant. Then

u(®) < wlt+ [ pls)exp( [ Ip(r) + g(r)dr)ds, L € J,

Lemma 2. Let u(t),p(t), and g(t) be real-valued nonnegative continuous
functions defined on J, for which the inequality

i
t)§u0+/p(s)u +/ r)dr)ds, t € J,
to
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holds, where ug is a positive constant. Then

u(t) < ug exp(/t: p(s)ug exp(/t: q(r)dr)/R(s)ds,t € J,

where

R(s)=1—-wg ]3: p(r)exp(/;: q(k)dk)dr, te J.

t
[p(r)exp( | q(k)dk)dr| <5, te .
b

Theorem 1. Assume the followings :
i) The solution y(t) of (1.2) is uniformly slowly growing in variation.
ii) The function h(t,s,z) in (1.1) and its derivative hi(t, s, ) satisfy

|h(t,s,2)| < p(t)|z|, teJ
|he(t,s,2)| < p(t)-exp(at)-q(s) |z, 0<s<t<oo

where o is a positive constant, p and q are continuous functions defined
on J such that

_/12 Mp(s) exp(_/]t [Mp(r) + q(r) exp ar]dr) ds < k,
0 0

where M is a positive constant. Then all solution of (1.1) are slowly
growing.

Proof. Using the nonlinear variation of constants formula developed by
Brauer [2], the solutions of (1.1) and (1.2) with the same initial values are
related by (1.4).

Using the assumptions (i), (ii) and (1.4) together with the definition of
uniformly slowly growing in variation of the solution y(t) of (1.2), we get

2] < Mlzolexpalt—to) + [ M-espalt—s)-pl(s)lz(s)lds

t s
+ | M-expa(t—s) ] p(s) - exp as - q(r)|z(r)|drds.
to

to

Multiplying both sides of the above inequality by exp(—at) and applying
Lemma 1, with u(t) = X(2) exp(—at), we have

o)) < Mlaolexpalt ~ o)1+ [ {Mp(s)exp || [Mp(r) +exp(ar).

g(r)ldr} ds,
< Mlzo|exp alt — to)[1 + k).
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The above estimate yields the desired result if we choose M and | X;| small
enough. This completes the proof.

Now we apply the above technique to investigate the nonlinear system
of Volterra integral system of the form

2(0) = 1)+ [ glt,s,a(s))ds (2.1)
+./:: m(s)h(s,m(s),l: k(s,7,2z(1))dr)ds,
z(to) = f(ta) = 70

as a perturbation of the system (1.2). A(t,z,z) and k(t, s, z) are continu-
ous on 0 < s <t < 00,|z| < co. The solution of (1.2) and (2.1) with the
same initial values are related by (Brauer [2])

() = u(t)+ t:@(t,s,;c(s)):c(s)h(.s,:c(s), (2.2)

/ts A, 7 alr i s

Q

Theorem 2. Assume
1) The solution y(t) of (1.2) is globally uniformly stable in variation
i) The functions h(t,z,z) and K(t,s,z) in (2.1) salisfy

h(t,2,2)] < p(t)(Jal +12l), teJ

|k(t,s,2)] < g(s)|lz] 0<s<t< o0,

where p and g are conlinuous functions defined on J such that

[ vt Mol expl [ a(r)ar)/ B(s) s < oo (2.3)
where : i
R(t) = 1 — Mlzo| ft Mp(R) exp( /t gl )i, (2.4)

M > 0,29 # 0 are constants. Then all solutions of (2.1) are bounded on
g

Proof. Using (2.1) and the assumption (i), (i1) we have

o(8)] < Mleol + | Ma()p(s)(a(e)l +] [ ks, a(r)drds.  (25)



200 A.AS. Zaghrout

Applying lemma 2 and using (2.3) and (2.4), inequality (2.5) reduced to

o(8)] < Mool exp | (Mp(e) - Mlzolexpl | a(r)dr)/R(s)}ds.

The above estimation in view of the assumption (2.3) implies the bound-
edness of all solutions of (2.1). This completes the proof.

Remark 2. We note that theorem 1 implies not only the boundedness, but
the stability of the solution z(t) of (2.1) if |zo| is small enough. However
the above estimation does not prove the asymptotic stability.

Theorem 3. Assume
1) The solution y(t) of (1.2) is uniformly slowly growing in variation.
i) The functions h and k in (2.1) satisfy
|h(t,z,2)| < p(t)(|z] + [2]), teJ

|k(t:35$)l Sexp(at)'Q(‘stL <K< o0,

where a is a positive constant and p and g are continuous function defined
on J such that

[ 0p(s) exp(as) Man exp(~ato) (2.6)
. / r)explar)dr)/Bs)}ds < co,
where
R(t) = 1= Mlaolexp(—ato) [ Mp(r)explar)
il f: g(r)exp(ar)dr)dr, M >0,zo 40

are constant. Then all solutions of (2.1) are slowly growing.

Proof. As in Theorem 2, the solutions of (2.1) and (1.2) with the same
initial values are related by (2.2). Using the assumptions (i), (ii) and (2.2)
we have

O < WO+ [ 190t 5,2(:))la(s0)
h(s, z(s), /t: Ik(s, 7, 2(r)|dr)ds
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1.8
lz(t)] < M|zol- exp.a(t — to) (2.7)

+ [ Meexpalt =)+ a(e) - p(s) - (a(s)| + [ expas- q(r)fa(r)ldr)ds.

Multiplying (2.7) by e~** and applying lemma 2 with u(t) = |2(t)| exp(—a«t),
we obtain

|z(t)| exp(—at) < M|zo|exp(—at) - exp{Mp(s)exp(as) - M|zo| exp(—at)
-exp(]to exp(ar) - q(T)dr)/ R(s)}ds.

The above estimation yields the desired result if we choose M and |zg]
sufficiently small and all solutions of (2.1) grow more slowly than any
positive exponential. This completes the proof.

The next theorem shows that under some suitable conditions on the
functions A, the exponential asymptotic stability in variation of the so-

lutions of (1.2) implies that all the solutions of (2.1) approach zero as
t — oo0.

Theorem 4. Assume

i) The solution y(t) of (1.2) is exponentially asymptotically stable in
variation

i) The functions h and k in (2.1) satisfy
|h(t, 2, 2)] < p(t)(|z] + |2]), ted,

[k(t, 5,)| < exp(—at)q(s)lz(s)l, 0<s<t< oo

where « is a positive constant, p and g are continuous function defined on

J such that

/:O{MP(S) exp(—as) - M|zo| exp(ato) (2.8)
- exp( S q(r) exp(—ar)dr)/R(s)}ds < oo,

to

where
¢
RBis) = lfM|m0|exp(at0)_/; Mp(7) exp(—ar)

-e){p(/t;r q(r) exp(—ar)dr)dr.
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Then all solutions of (2.1) approach zero as t — oo. The proof is similar
to that of Theorem 3, and so is omitted.

Now we shall study the asymptotic behaviour of the perturbed Volterra
integral equations allowing more general perturbations than we previously
allowed.

Consider the system

2(t) = £(2) + fn " ol silale) ot 5 (0), /D “k(s,r,2(r))dr)ds,  (2.9)

as a perturbation of the system

t
y(t) = 1) + | alt,s)y(s)ds, (2.10)
where a(t, s) is an n X n continuous matrix, z,v, f,¢ and k are as defind
before.
It is known [5] that the resolvent system corresponding to the system
(2.10) is
i
r(t, s) = a(t, s) +/ a(t,u)r(u,s)du, 0<s<t< oo, (2.11)
&

and its solution is called the resolvent Kernel. If a(t,s) is locally L' in
(t,s) and if r(¢,s) exists and is locally L! in (¢, s), then the system (2.9)
may be written in the equivalent from “variation of constants formula”

z(t) = y(t)+fﬂs r(t,s)g(s,x(s),f; k(s, T, z(7))dr)ds, (2.12)

where y(t) is the solution of the linear system (2.10) given by

y(0) = 1) + [ r(t,)f(s)ds,t > 0. (213)

Our next theorem shows that under some suitable conditions on the
perturbation term g and on the function k, the uniform slowly groving of
(2.10) relative to its resolvant kernel implies that all solutions of (2.10)
are slowly growing.

Theorem 5. Assume
1) The solution y(t) of (2.10) is uniformly slowly growing relative to
its resolvent kernel.
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ii) The perturbation g(t,x,z) satisfies the inequality
l9(t,2,2)| < p(t)(Ja] + exp(et)|zl), teJ

and [5° p(s)ds < 00, > 0 is a constant.
ii1) The function k(t,s,z) satisfies the inequality

|k(t,s,z)| < q(s)|z]|, t,s,€J
and -
/ q(s)ds < 0.
0

iv) There exists a constant N such that

| Mp()exp( [ (M(p(r) + g(r) explerldr)ds < N

where M is a constant in definition 3. Then all solutions of (2.9) are
slowly growing.

Proof. As before, by using the variation of constants formula, the solution
of (2.9) and (2.10) are related by (1.12). Using the assumptions (ii), (iii},
(2.12) together with the uniformly slowly growing of (2.10) relative to its
resolvent kernel, we obtain

(0] < w1+ [ s, (,9)lota,als), [ ks, 72 (r))drlds,

lz(t)] < M]xzo|exp(et) + jot Mexpe(t — s)p(s)(|z| (2.14)
+€s fﬂs q(7)|z(r)|drds.

Multiplying both sides of (2.14) by exp(—et) and applying lemma 2 with
u(t) = z(t) exp(—et) we have

exp{~et) - [olt)| < Miea| M exp(--es) - pls){le]
+exp(es)]0 g(r)|z(r)|dr)ds.

exp(—et)a(t)] < Mizol[1 + [ Mp(s)exp( | (Mp(r) +exp(er)a(r))dr)ds].
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Hence

|z(t)| < M|zo|exp(et)[1 + N].

The above estimation yields the desired result if we choose M and |z|
small enough, and the proof of the theorem is complete.
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