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ON CYCLE DOUBLE COVER CONJECTURE

Yongju Bae and Chan-Young Park

1. Introduction

A graph G consists of a finite nonempty vertez set V(G) together with
an edge set E(G). By a topological graph GG, we shall mean a realization of
the graph G as a 1-dimensional CW-complex. Two graphs G and H are
said to be homeomorphic if they are homeomorphic as CW—complexes. In
this paper a graph will always mean a topological graph.

The degree of a vertex v is the number of edges meeting v. Given a
connected graph G, a cut vertez is a vertex v € V(G) such that G — {v} is
disconnected. A connected graph is called a block if it has no cut vertex.
An edge e € E(G) is called a bridge (or cut edge) if G —{e} is disconnected.
A graph G is said to be n—connected (n > 0) if the removal of fewer than
n vertices from G neither disconnects nor reduces G to the trivial graph
K, where K is the graph with one vertex and with no edges. Note that
the statement that a graph G has no cut vertices is equivalent to that G
is 2-connected.

An embedding of G into a closed surface S is a homeomorphism of
(G into S. An embedding ¢ : G — S is called a 2-cell embedding if every
component of S — (@), called a region, is 2-cell. A 2-cell embedding
i: G — S is called a closed 2—cell embedding if every boundary walk of its
regions 1s a simple closed cycle. An embedding : : G — S of G into an
orientable [non-orientable| surface of genus k is minimal if G can not be
embedded into an orientable [non—orientable| surface of genus less than k.
It is well-known that every minimal embedding of a connected graph is a

2—cell embedding.
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A connected graph G is said to be planar if there is an embedding
i : G — S? of G into the sphere S*®. Let G be a 2-connected graph.
A subgraph H of G is called a mazimal planar subgraph of G if it is
a planar subgraph of G such that for every planar subgraph K of G,
|E(K) | < | E(H) |
Recently, many authors have studied various topics on 2—cell embed-
dings of graphs. Their topics include the following:
(1) Finding algorithms for embedding problems ([GRT], [L]).
(2) Covering graphs or bundle graphs ([GT], [L]).
(3) Finding embedding distributions ( minimal or maximal genus of
graphs) ([GF], [GRT], [GT], [L}, [W]).
(4) Determining the genus of groups ([W]).

On closed 2—cell embeddings, one can ask the same questions as one
can do for 2—cell embeddings once the existence of closed 2-cell embed-
dings of graphs is guaranteed. But the existence problem for closed 2-cell
embeddings of graphs is a fairly long-standing conjecture in topological
graph theory, so-called “strong embedding conjecture”.

In this paper, we solve the “cycle double cover conjecture” confir-
matively, which is a weak version of the “strong embedding conjecture”

([HL,[JL[LR]).

Strong embedding conjecture: Every 2-connected graph has a
closed 2-cell embedding into a surface.

Cycle double cover conjecture: Every bridgeless granh has a cycle
double cover.

Here cycle double cover means a family of cycles of G such that for
each edge of G, there are exactly two cycles containing it.

2. Main results.

Note that if every block of a graph G has a cycle double cover, so does
G. Thus in order to soive the cycle double cover conjecture, it suffices to
show that every 2-connected graph has a cycle double cover.

We start with the definition of pseudo-surfaces.

Definition([W]). Let A denote a set of $¢_, n;m; > 0 distinct points of
a surface S of genus k, with 1 < m; < my < --- < m,. Partition A into
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n; sets of m; points for each 1 = 1,2, ---,t. For each set of the partition,
identify all the points in the set. The resulting topological space is called a
pseudo-surface, and is denoted by S(k;ni(ms),na(mz), -, ndmy)). The
points in the pseudo-surface resulting from an identification of m; points
of Si are called singular points. If a graph G is embedded in a pseudo-
surface as a [closed] 2—cell embedding, we may assume that each singular
point is occupied by a vertex of GG and such a vertex is called a singular
vertex.

Theorem 1. Let G be a 2-connected graph. Then G has a cycle double
cover if and only if it has a closed 2—cell embedding into a pseudo—surface.
Proof. The necessary condition is clear because the set of boundary cycles
of its regions is a cycle double cover. For the proof of the sufficiency, let
C be a cycle double cover of G. To each cycle of C, corresponds a 2-
cell whose boundary walk is the cycle. Since each edge occurs on exactly
two regions as a part of their boundaries, by identifying the corresponding
edges, we can obtain a topological space satisfying the property that every
point on the interior of each 2-cell or on an edge has a neighborhood home-
omorphic to the unit disk in R?. We call such a neighborhood a disklike
neighborhood. Since there are only finitely many points without disklike
neighborhoods, corresponding to some vertices, the resulting topological
space is a pseudo-surface.

Now, we establish an algorithm to check whether or not a vertex v has
a disklike neighborhood.

Surface checking algorithm. Consider all edges vvy, vv,, - - -, vv, meet-
ing v and all cycles Cy,C,,---,C, containing v. Then each C; contains
exactly two edges of vvy,vvy, -+, vv,. Assume that C; contains vv; and

vvy. Then there is a cycle C} containing vy, and there is an edge vv}
contained in C}. If vj = v; and n # 2, then v has no disklike neighbor-
hood. If v§ # v, then there is a cycle C} containing vv} and there is an
edge vvy contained in C}. If vj = v; and n # 3, then v has no disklike
neighborhood. If v} # vy, then there is a cycle €} containing vv} and there
is an edge vvg contained in C} and so on. If one can complete this process
through all vv;’s, then v has a disklike neighborhood.

Corollary 2. For a 3-regular 2-connected graph, the cycle double cover
conjecture 1s equivalent to the strong embedding conjecture.
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Proof. Clearly the strong embedding conjecture implies the cycle double
cover conjecture.

Let C be a cycle double cover of G and let v be a vertex of G. Since
(G is 3-regular, there are exactly three edges vv;,vve, vvs which meet v
,and hence there are also three cycles Cy, Cy, ('3 containing v. Note that
each C; contains two of vvy,vvy,vv3. Assume that C) contains vvy, vvy. If
C, contains also vv;, vv,, then C3 must contain the edge vvs twice, which
is impossible. Hence C; contains either vv;, vvs3 or vvy, vvs. Thus either
(5 contains vv,, vvy if C3 contains vvy, vvs, or C5 contains vvy, vvs if O
contains vvg,vvs. Then by the surface checking algorithm, we can easily
check that the resulting space is a surface.

Consider a standard ladder with n lungs. If we identify the four ends
of its two poles as one vertex v, we obtain a CW-complex. A graph G
is called a standard ladder graph if it is homeomorphic to such a CW-
complex. See Figure 1{a).
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Figure 1.

Now, we introduce the ladder graph chasing.

Ladder graph chasing: Let G be a standard ladder graph and let the
vertices on the first pole be z,,zs,---,z, and those on the second pole
Y1,Y2, **» Yn- Lo get two cycles simultaneously, start at the top vertex
v and go to the vertex [y ] and through the lung =y, [y,21], go to the
vertex yi[z1]. And through the pole, go to the next vertex ys[zs] and
then through the lung y,za[z2y2], go to z2[y:]. By repeating this process
until the bottom vertex v occurs, we get two cycles (vz,y19222 -+ - v) and
(vih z1Z9Yys - - - v), completing the ladder graph chasing.
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Note that on these two cycles obtained by the ladder graph chasing,
each edge on the lungs is contained in both cycles, and each edge on the
poles is contained in only one cycle.

Figure 1(a) shows that a ladder with 3 lungs and in Figure 1(b), the
solid lines and the dotted lines show the corresponding ladder chasing.

The following is a key theorem to solve the cycle double cover conjeture.

Theorem 3. Let G be a 2-connected graph and let ¢ = wv € E(G).
Assume that G — {e} has a cycle double cover. Then G has a cycle double
cover.

Proof. Assume that G—{e} has a cycle double cover. Then, by Theorem 1,
there is a closed 2—cell embedding : : G—{e} — F of G—{e} into a pseudo-
surface F'. Choose an arc v : I — F from u to v such that for every arc
¥ I — Ffromutov, |v(I)Ni(G) | <|+'(I)Ni(G) |. Let ey, €2,---, €, be
edges of G —{e} meeting v and let vy, vy, - - -, vx be vertices of G meeting v
and Ry, Ry, -- -, R,, regions of the embedding meeting -, numbered along
v. Denote each e; by e¢; = z;y;. Then the embedding near v can be
depicted as in Figure 2. Notice that since the embedding i : G — {e} — F
is closed 2—cell, the boundary walk of each region of the embedding forms
a cycle. In order to construct a cycle double cover of G, as a part of a
cycle double cover we take the boundary cycles of regions of the embedding
which do not meet v . In other words, we take the boundary cycles of all
regions but R, Ks,---, R, as members of our cycle double cover. Note
that an edge on the boundary cycle of a region R; may be occured on the
boundary cycle of another region R;. Now to get a cycle double cover
of G together with those boundary cycles, we have to construct a family
of cycles so that the edges e = uv, ¢; (i = 1,2,---,n) and the edges
which lie on two of the boundary cycles of the regions Ry, Ry, ---, R,,,
occur twice and the edges which lie only on one of the boundary cycles
of the regions R,, R,,---, Ry, occur just once. Consider two closed paths
Cy = (uziv122 - 2ovpveu) and Co = (uyiv1ys - - - Yovrveu) depicted in
Figure 2 as the upper path and the lower path respectively. By regarding
C; and C, as two poles and the edges e;,¢€,,---,€, as lungs, we get a
standard ladder graph G if we disregard the multiple occurance of vertices
or edges of G on the boundary cycles of the regions Ry, Ry,---, Bp,. The
ladder graph chasing of the ladder graph G gives us two long closed walks
to get a family of cycles. We can easily check that these cycles together
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with those boundary cycles of regions which do not meet v form a cycle
double cover of (.

v, Y2

Figure 2.
Now we are ready to prove the cycle double cover conjecture.

Theorem 4 [Cycle Double Cover Theorem]. Every bridgeless graph
has a cycle double cover.

Proof. Recall that every planar 2—connected graph admits a closed 2—cell
embedding. Hence every planar 2—connected graph has a cycle double
cover. Assume that GG is a non-planar 2-connected graph. Let H be a
maximal planar subgraph of G. Note that V(G) = V(H) and E(G) —
E(H)# 0. Let E(G) — E(H) = {e1,€2,+*-,€,}. Since H is planar, it has
a cycle double cover. By applying Theorem 3, we have that I/ U {e; } has
a cycle double cover. Inductively, we can obtain a cycle double cover of
G.
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