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Introduction

A complex n—dimensional Kaehlerian manifold of constant holomor-
phic sectional curvature ¢ is called a complex space form, which is denoted
by M,(¢). The complete and simply connected complex space form con-
sists of a complex projective space CP", a complex Euclidean space C"
or a complex hyperbolic space C H™, according as ¢ > 0, c=0or c¢ < 0.

The induced almost contact metric structure and the Ricci tensor of a
real hypersurface in M, (c) are respectively denoted by {¢, <,>,€,n} and
S,

The study of real hypersurfaces of C'P™ was initiated by Takagi [13],
who proved that all homogeneous hypersurfaces of C'P" could be divided
into six types which are said to be of type Ay, A3, B,C, D and E. More-
over, he showed that if a real hypersurface M of C' P™ has two or three
distinct constant principal curvatures, then M is locally congruent to one
of the homogeneous ones of type A, A; and B ([14]).

Recently, a characterization of the class of hypersurfaces with more
than three distinct principal curvatures of C P is studied by Kimura [5],
who proves the following interesting result :

Theorem K. Let M be a real hypersurface of CP"(n > 3), then M
satisfies S¢ = ¢S if and only if M lies on a tube of radius r over one of
the following Kaehlerian submanifolds :

(A1) a hyperplane CP™1,

(A3) a totally geodesic CP* (1 <k <n—2), where 0 < r < 3
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(B) a copmlex quadric Q*~', where 0 <r < I and cot?2r =n — 2,

(C) CP! x CP™U2 where 0 < r < w/4,cot?2r = 1/(n — 2) and
(n >5) is odd,

(D) a complex Grassmann Go5(C), where 0 < r < §,cot®2r = 3/5
andn =29,

(E) a Hermitian symmetric space SO(10)/U(5), where 0 < r < 7 /4,
cot?2r = 5/9 and n = 15.

On the other hand, real hypersurfaces of C'H™ have also been inves-
tigated by many authors (Berndt [1], Ki, Nakagawa and Suh (3], Ki and
Suh [4], Montiel [9], Montiel and Romero [10] and Suh [12]).

Using some results about focal sets, Berndt [1] proved the following :

Theorem B. Let M be a connected real hypersurface of CH™(n > 2).
Then M has constant principal curvatures and € is principal if and only
if M s locally congruent to one of the following:
(Ao) a horosphere in CH™,
(A1) a geodesic hypersphere or a tube over a complex hyperbolic
hyperplane C H™ 1,
(A2) a tube over a totally geodesic submanifold CH* for k = 1,2, -,
n-—2,
(B) a tube over a totally real hyperbolic space RH™.

It is necessary to remark that real hypersurfaces of type Ag or A
appearing in Theorem B, are totally p—umblical hypersurfaces with two
distinct constant principal curvatures. In the paper of Montiel [9] the real
hypersurfaces of type Ay in Theorem B is said to be self-tube.

In particular, it is proved in [4] that a real hypersurface of CH"(n > 3)
satisfies S¢ = ¢S if and only if M is of type Ap, Ay, or A,.

We now introduce the notion of a pseudo-Ryan real hypersurface in
M, (c), which is defined by < R(Z, W)SX,Y >= 0 for any tangent vector
fields X,Y, Z and W orthogonal to £, where R is denoted by the Rieman-
nian curvature tensor of M. The main purpose of the present paper is
to investigate pseudo-Ryan real hypersurfaces of M,(c).c # 0 by using
above classification theorems.

1. Preliminaries

Let M be a real hypersurface of a complex n—dimensional complex
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space form M,(c), ¢ # 0, n > 3 and let C be a unit normal vector field
on a neighborhood of a point z € M. We denote by J the Kaehlerian
structure of M,(c). For a local vector field X on a neighborhood of z in
M , the transformation of X and C under J can be represented by

JX =¢X +9(X)C, JC=-¢,

where ¢ defined a skew—symmetric transformation on the tangent bundle
of M, 5 and ¢ being denoted by a 1-form and a vector field on a neighbor-
hood of z in M respectively. Denoting <, > by the induced Riemannian
metric on M, it is seen that < £, X >= 5(X) for any tangent vector X
on M. By the properties of the almost complex structure J, we see that

¢*=—-1+nRLeE=0,n0¢=0,7(f) =1,

where I denotes the identity transformation, the aggregate (¢, <,>,£,n)
is called an almost contact metric structure. Furthermore, the covariant
derivatives of the structure tensors are given by

(1.1)  (Vxd)Y = — < AX,Y > £+ 9(Y)AX, Vx¢=pAX,

where V is the induced Riemannian connection on M and A denotes the
shape operator in the direction of C. The tangent space of M at z will be
denoted by T.(M).

In the sequel, the ambient Kaehlerian manifold is assumed to be of
constant holomorphic sectional curvature ¢, which is called a complex
space form and denoted by M,(c). Then the equations of Gauss and
Codazzi are respectively obtained:

<RX,Y)Z,W> = §{< Y, Z>< X,W>—-<X,Z><Y,W>

(1.2) + < oY, Z >< ¢X, W >
—<¢X,Z>< Y, W > -2< XY >< ¢Z, W >}
+ < AY,Z >< AX, W > — < AX, 7 >< AY, W >,

(1.3) (VxA)Y = (VyA)X = Z{n(X)Y = n(Y)$X -2 < $X,Y > ¢},

where R denotes the Riemannian curvature tensor. The Ricci tensor S’
of M is the tensor field of type (0,2) given by S'(X,Y) = Tr{Z —
R(Z,X)Y}. Also, it may be regarded as the tensor field S of type (1,1)
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defined by S(X,Y) =< SX,Y >. Thus, by means of (1.2) the Rica
tensor S of M is given by

(1.4) S=g{(2n+1)l—3n®£}—P,

where P = A2 — hA and h = TrA.

The strueture vector £ is principal, namely, if

(15) A€ = at,

where « is the principal curvature corresponding £. In this case, it is
known that « is a locally constant on M (see [4] and [8]). The covariant
derivative gives

(VxA)E = apAX — ApAX,

where we have used the second formula of (1.1), which together with the
equation of Codazzi (1.3) yields

(1.6) ABAX =

() e}

($A+AB)X + ToX.

2. Pseudo—Ryan real hypersurfaces

Let M be a real hypersurfaces of a complex space form M, (¢),c # 0,
n > 3. The real hypersurface M is said to be pseudo-Ryan if RS = f¢ for

any function f on M, that is, < R(Z,W)S(X),Y >= 0 for any tangent
vector fields XY, Z and W orthogonal to £. Then by the properties of
the Riemannian curvature tensor, we obtain

< R(Z,W)S(X),Y >+ < R(Z,W)5(Y),X >=0,
which together with (1.4) gives
(2.1) < R(Z,W)PX),Y >+ < R(Z,W)(PY),X >=0

for any X, Y, Z and W in £+, where £* denotes the orthogonal complement
of £ in T,(M) for any = in M.

Let X be a principal curvature vector of A orthogonal to £ with prin-
cipal curvature A. Then, by the definition of P, we have

(2.2) PX = ay X,
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where we have put a; = A? — hA. Similary, for AY = Y we have
(2.3) PY = ayY, ay=pu®— hp.

Accordingly, (2.1) turns out to be (a; —as) < R(Z,W)X,Y >=0 and
hence

(2.4) (A=p)A+p—h) < R(Z,W)X,Y >=0

for any Z and W in £+,
If we put X =W and Z =Y = ¢X, then (1.2) is reduced to

< R(X,0X)(9X), X > = e+ <AdX, X >< AX, X >
— < AX, 90X >< AdX, X >

for a unit tangent vector field X orthogonal to £. Combining the last two
equations and making use of (2.2) and (2.4), we get

(2.5) (A= w)(A+ = h)(e + Ap) = 0.

On the other hand, for a unit tangent vector Z orthogonal to £, the
Gauss equation (1.2) implies

< R(¢Z,Z)X,Y > = §{< Z,9X >< Z2,Y > - < Z,¢Y >< Z, X >

+ < ¢X,Y >}— < Z,9AY >< Z, AX >
+ < Z,0AX >< Z,AY >.

Now, we take an orthogonal frame {E;, -+, Ey,_2,&} of T,(M). Then the
last relationship leads to

2n—2
Y < R($E, E)X,Y >=nc< ¢X,Y > -2 < $AY, AX > .

=1
*

Let AX = AX and AY = Y for X and Y € {1, We then have

2n—2
Y < R(GE,E)X,Y >= (ne+2p) < ¢X,Y >,

=1

which together with (2.4) yields (A — p)(A + g — k)(nc+ 2Au) = 0. From
this fact and (2.5), it follows that

(2.6) (A=A + = ) =0,
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which is equivalent to oy = ay because of (2.2) and (2.3).

In what follows, we denote by P(a,) and A()) the eigenspace of P and
A for each point z in M associated with eigenvalue o, and A respectively.
Summing up, we have

Lemma 1. Let M be a pseudo-Ryan real hypersurface of M,(c),c #
O,n > 3. If AX = AX and A¢X = po¢X for any X € P(ey), then we
have ¢X € P(a)) and (2.6).

Since P can be regarded as the symmetric linear transformation of
T.(M) for each z in M, the orthogonal complement £+ can be decomposed
as follows :

£t =Play) @ Plag) @+ & Pley),

where a,,-- -, a, are mutually distinct at z in M.
For unit vectors X € A(A) and Z € A(o) such that X, Z and ¢X (€ £+)
is orthonomal, we can easily, using (2.1), see that

(A=a)A+0—-h)<R(X,Y)Z,W >=0,
from which, by putting X = W and Y = Z, we have
(2.7) (,\—a)(/\+a_h)(§+/\a) ~ 0.

In the same way, for Y € A(p) and Z € A(o) we obtain

(28) (1= )+ = h)(5 + po) = 0.

3. A characterization of pseudo—Ryan real hypersur-
faces

Let M be a pseudo—Ryan real hypersurface of M,.(c),c # 0, such that
¢ is principal. We then easily, taking account of (1.6), see that

(3.1) (24 — @) A¢X = (a + g)qﬁX

for a unit vector field X € A(\).

Lemma 2. Let M be a pseudo-Ryan real hypersurface of M,,(¢),c # 0,n >
3, on which & is principal. Then the number of distinct eigenvalues of P
is one, that is, p = 1.
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Proof. Suppose that p > 2, or any Y € A(o) C P(a;), we then have
a, = o® — ho, r > 2 because of (2.3) and hence it follows that a; # ay,
namely, (A — ¢)(A + o — k) # 0. Consequently (2.7) implies Ao + § =0
because {X,$X,Y} which we have taken orthonormal.

Similarly we have from (2.8) po + $ = 0. Thus, last two relationships
tell us that (A — p)o = 0. However, o can not be zero because of ¢ # 0.
Thus, we have A = p, which together with (3.1) implies that

c

(3.2) p LR 7= 0.

Since A satisfies the quadratic equation z? — az — § = 0 with constant

coefficients, it follows that A = %(o.f %+ \/I-)),D = o’ +c¢> 0. But, it is
seen that D > 0. In fact, if D = 0, then A = §. Therefore, all principal

curvatures of M are o, §,---,%. It means that & = A(A) = P(ay),
which implies p = 1. It is contradictory. Hence, the quadratic equation

z? —az — 5 = 0 has following solutions :

—;fctanﬂ,(ﬂ <f< %]

C>O;§cot9 or

s \/;_ctanhﬁ',(ﬂ £0).

c < O;T coth @ or
Since we have o = —45» it follows that o is the same as above and thus
a; = A — hA = a,, which produces a contradiction. Thus, we arrive at
p = 1. This completes the proof of Lemma 2.

By Lemma 2, it is seen that £+ = P(ay) and dimét = 2n — 2 for
n > 3. Hence, it follows that £ = A(X) @ A(u) or A(A).

For the case where P(a;) = A(A), we get A = 1 and hence A is a root
of the quadratic equation > — ax — § = 0, which means that X is constant.

The case where P(a;) = A(X) @ A(u), (A # p) is considered. In this
case, we obtain

(3.3) Adp=nh

because of (2.6). It is not hard to see that Y € A(\) — @Y € A(y) is
injective because of A # p. Since it is known that dim A(A) = dim A(u) =
n —1 ([9], [14]), it follows that A = a + (n — 1)(X + g), which together
with (3.3) yields a + (n — 2)h = 0. Accordingly, we see that h = constant
and thus A and g are constant. Therefore, we verify, in any case, that all
principal curvatures of M are constant.
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Lemma 3. Under tha same assumptions as that in Lemma 2, we have

Pqﬁ:gf}P 1.6 S(ﬁz ¢S

Proof. Let Q = P¢— ¢ P. Then we have Q€ = 0 because £ is principal and
P¢é = ¢PE. For any X € &+ = P(wy), it is, using Lemma 1, seen that
0X € P(a,j. Consequently we obtain PX = ;X and P¢X = a;0X
and thus QX = 0 for any X € £1. Therefore we have P¢ = ¢P. This
completes the proof.

From Theorem 3.3 of [4] and Lemma 3, we see that S¢ = ¢S if and
only if M is of type Ay, A;, Ay when ¢ < 0. Thus, for A # g we may only
consider the case where ¢ > 0. In this case we have (3.3). The table of
Takagi [13] gives that

ot L ?Cm(g - %) and p = —étan(ﬁ - i)

Thus, it follows that A + u = Z°, which together with (3.3) implies
that a® = (n — 2)c, namely, cot? 260 = n — 2. From this fact, Lemma 3 and
Theorem K, we see that S¢ = ¢S if and only if M is of type A}, Ay or B
when ¢ > 0.

Summing up, we have

Theorem 4. Let M be a real hypersurface of a complexr space form
M,(c),e # 0, n > 3. Then M is pseudo-Ryan and the structure vec-
tor £ is principal if and only if M is locally congruent to one of the type
Ay, Ay or B when ¢ > 0; Ap, A, or Ay when ¢ < 0.
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