PSEUDO-RYAN REAL HYPERSURFACES OF A COMPLEX SPACE FORM *

Sung-Baik Lee, Nam-Gil Kim and Seong-Soo Ahn

Introduction

A complex n-dimensional Kaehlerian manifold of constant holomorphic sectional curvature c is called a complex space form, which is denoted by $M_{n}(c)$. The complete and simply connected complex space form consists of a complex projective space $C P^{n}$, a complex Euclidean space C^{n} or a complex hyperbolic space $C H^{n}$, according as $c>0, c=0$ or $c<0$.

The induced almost contact metric structure and the Ricci tensor of a real hypersurface in $M_{n}(c)$ are respectively denoted by $\{\phi,<,>, \xi, \eta\}$ and S.

The study of real hypersurfaces of $C P^{n}$ was initiated by Takagi [13], who proved that all homogeneous hypersurfaces of $C P^{n}$ could be divided into six types which are said to be of type A_{1}, A_{2}, B, C, D and E. Moreover, he showed that if a real hypersurface M of $C P^{n}$ has two or three distinct constant principal curvatures, then M is locally congruent to one of the homogeneous ones of type A_{1}, A_{2} and $B([14])$.

Recently, a characterization of the class of hypersurfaces with more than three distinct principal curvatures of $C P^{n}$ is studied by Kimura [5], who proves the following interesting result :

Theorem K. Let M be a real hypersurface of $C P^{n}(n \geq 3)$, then M satisfies $S \phi=\phi S$ if and only if M lies on a tube of radius r over one of the following Kaehlerian submanifolds :
$\left(\mathrm{A}_{1}\right)$ a hyperplane $C P^{n-1}$,
$\left(\mathrm{A}_{2}\right)$ a totally geodesic $C P^{k},(1<k \leq n-2)$, where $0<r<\frac{\pi}{2}$,

Received August 24, 1990

[^0](B) a copmlex quadric Q^{n-1}, where $0<r<\frac{\pi}{4}$ and $\cot ^{2} 2 r=n-2$,
(C) $C P^{1} \times C P^{(n-1) / 2}$, where $0<r<\pi / 4, \cot ^{2} 2 r=1 /(n-2)$ and $(n \geq 5)$ is odd,
(D) a complex Grassmann $G_{2,5}(C)$, where $0<r<\frac{\pi}{4}, \cot ^{2} 2 r=3 / 5$ and $n=9$,
(E) a Hermitian symmetric space $S O(10) / U(5)$, where $0<r<\pi / 4$, $\cot ^{2} 2 r=5 / 9$ and $n=15$.

On the other hand, real hypersurfaces of CH^{n} have also been investigated by many authors (Berndt [1], Ki, Nakagawa and Suh [3], Ki and Suh [4], Montiel [9], Montiel and Romero [10] and Suh [12]).

Using some results about focal sets, Berndt [1] proved the following :

Theorem B. Let M be a connected real hypersurface of $C H^{n}(n \geq 2)$. Then M has constant principal curvatures and ξ is principal if and only if M is locally congruent to one of the following:
$\left(\mathrm{A}_{0}\right)$ a horosphere in $C H^{n}$,
$\left(\mathrm{A}_{1}\right)$ a geodesic hypersphere or a tube over a complex hyperbolic hyperplane $C H^{n-1}$,
$\left(\mathrm{A}_{2}\right)$ a tube over a totally geodesic submanifold $C H^{k}$ for $k=1,2, \cdots$, $n-2$,
(B) a tube over a totally real hyperbolic space $R H^{n}$.

It is necessary to remark that real hypersurfaces of type A_{0} or A_{1} appearing in Theorem B, are totally η-umblical hypersurfaces with two distinct constant principal curvatures. In the paper of Montiel [9] the real hypersurfaces of type A_{0} in Theorem B is said to be self-tube.

In particular, it is proved in [4] that a real hypersurface of $C H^{n}(n \geq 3)$ satisfies $S \phi=\phi S$ if and only if M is of type A_{0}, A_{1}, or A_{2}.

We now introduce the notion of a pseudo-Ryan real hypersurface in $M_{n}(c)$, which is defined by $\langle R(Z, W) S X, Y\rangle=0$ for any tangent vector fields X, Y, Z and W orthogonal to ξ, where R is denoted by the Riemannian curvature tensor of M. The main purpose of the present paper is to investigate pseudo-Ryan real hypersurfaces of $M_{n}(c), c \neq 0$ by using above classification theorems.

1. Preliminaries

Let M be a real hypersurface of a complex n-dimensional complex
space form $M_{n}(c), c \neq 0, n \geq 3$ and let C be a unit normal vector field on a neighborhood of a point $x \in M$. We denote by J the Kaehlerian structure of $M_{n}(c)$. For a local vector field X on a neighborhood of x in M, the transformation of X and C under J can be represented by

$$
J X=\phi X+\eta(X) C, \quad J C=-\xi
$$

where ϕ defined a skew-symmetric transformation on the tangent bundle of M, η and ξ being denoted by a 1-form and a vector field on a neighborhood of x in M respectively. Denoting $<,>$ by the induced Riemannian metric on M, it is seen that $\langle\xi, X\rangle=\eta(X)$ for any tangent vector X on M. By the properties of the almost complex structure J, we see that

$$
\phi^{2}=-I+\eta \otimes \xi, \phi \xi=0, \eta \circ \phi=0, \eta(\xi)=1,
$$

where I denotes the identity transformation, the aggregate $(\phi,<\rangle,, \xi, \eta)$ is called an almost contact metric structure. Furthermore, the covariant derivatives of the structure tensors are given by

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=-<A X, Y>\xi+\eta(Y) A X, \quad \nabla_{X} \xi=\phi A X \tag{1.1}
\end{equation*}
$$

where ∇ is the induced Riemannian connection on M and A denotes the shape operator in the direction of C. The tangent space of M at x will be denoted by $T_{x}(M)$.

In the sequel, the ambient Kaehlerian manifold is assumed to be of constant holomorphic sectional curvature c, which is called a complex space form and denoted by $M_{n}(c)$. Then the equations of Gauss and Codazzi are respectively obtained:

$$
\begin{align*}
<R(X, Y) Z, W>= & \frac{c}{4}\{<Y, Z><X, W>-<X, Z><Y, W> \\
& +<\phi Y, Z><\phi X, W> \tag{1.2}\\
& -<\phi X, Z><\phi Y, W>-2<\phi X, Y><\phi Z, W>\} \\
& +<A Y, Z><A X, W>-<A X, Z><A Y, W>
\end{align*}
$$

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=\frac{c}{4}\{\eta(X) Y-\eta(Y) \phi X-2<\phi X, Y>\xi\} \tag{1.3}
\end{equation*}
$$

where R denotes the Riemannian curvature tensor. The Ricci tensor S^{\prime} of M is the tensor field of type $(0,2)$ given by $S^{\prime}(X, Y)=\operatorname{Tr}\{Z \rightarrow$ $R(Z, X) Y\}$. Also, it may be regarded as the tensor field S of type $(1,1)$
S.-B. Lee, N.-G. Kim and S.-S. Ahn
defined by $S^{\prime}(X, Y)=<S X, Y>$. Thus, by means of (1.2) the Ricci tensor S of M is given by

$$
\begin{equation*}
S=\frac{c}{4}\{(2 n+1) I-3 \eta \otimes \xi\}-P \tag{1.4}
\end{equation*}
$$

where $P=A^{2}-h A$ and $h=\operatorname{Tr} A$.
The structure vector ξ is principal, namely, if

$$
\begin{equation*}
A \xi=\alpha \xi \tag{1.5}
\end{equation*}
$$

where α is the principal curvature corresponding ξ. In this case, it is known that α is a locally constant on M (see [4] and [8]). The covariant derivative gives

$$
\left(\nabla_{X} A\right) \xi=\alpha \phi A X-A \phi A X,
$$

where we have used the second formula of (1.1), which together with the equation of Codazzi (1.3) yields

$$
\begin{equation*}
A \phi A X=\frac{\alpha}{2}(\phi A+A \phi) X+\frac{c}{4} \phi X . \tag{1.6}
\end{equation*}
$$

2. Pseudo-Ryan real hypersurfaces

Let M be a real hypersurfaces of a complex space form $M_{n}(c), c \neq 0$, $n \geq 3$. The real hypersurface M is said to be pseudo-Ryan if $R S=f \xi$ for any function f on M, that is, $\langle R(Z, W) S(X), Y>=0$ for any tangent vector fields X, Y, Z and W orthogonal to ξ. Then by the properties of the Riemannian curvature tensor, we obtain

$$
<R(Z, W) S(X), Y>+<R(Z, W) S(Y), X>=0
$$

which together with (1.4) gives

$$
\begin{equation*}
<R(Z, W)(P X), Y>+<R(Z, W)(P Y), X>=0 \tag{2.1}
\end{equation*}
$$

for any X, Y, Z and W in ξ^{\perp}, where ξ^{\perp} denotes the orthogonal complement of ξ in $T_{x}(M)$ for any x in M.

Let X be a principal curvature vector of A orthogonal to ξ with principal curvature λ. Then, by the definition of P, we have

$$
\begin{equation*}
P X=\alpha_{1} X \tag{2.2}
\end{equation*}
$$

where we have put $\alpha_{1}=\lambda^{2}-h \lambda$. Similary, for $A Y=\mu Y$ we have

$$
\begin{equation*}
P Y=\alpha_{2} Y, \quad \alpha_{2}=\mu^{2}-h \mu . \tag{2.3}
\end{equation*}
$$

Accordingly, (2.1) turns out to be $\left(\alpha_{1}-\alpha_{2}\right)<R(Z, W) X, Y>=0$ and hence

$$
\begin{equation*}
(\lambda-\mu)(\lambda+\mu-h)<R(Z, W) X, Y>=0 \tag{2.4}
\end{equation*}
$$

for any Z and W in ξ^{\perp}.
If we put $X=W$ and $Z=Y=\phi X$, then (1.2) is reduced to

$$
\begin{aligned}
<R(X, \phi X)(\phi X), X>= & c+ \\
& <A \phi X, X><A X, X> \\
& -<A X, \phi X><A \phi X, X>
\end{aligned}
$$

for a unit tangent vector field X orthogonal to ξ. Combining the last two equations and making use of (2.2) and (2.4), we get

$$
\begin{equation*}
(\lambda-\mu)(\lambda+\mu-h)(c+\lambda \mu)=0 . \tag{2.5}
\end{equation*}
$$

On the other hand, for a unit tangent vector Z orthogonal to ξ, the Gauss equation (1.2) implies

$$
\begin{aligned}
<R(\phi Z, Z) X, Y>=\frac{c}{2} & \{<Z, \phi X><Z, Y>-<Z, \phi Y><Z, X> \\
& +<\phi X, Y>\}-<Z, \phi A Y><Z, A X> \\
& +<Z, \phi A X><Z, A Y>
\end{aligned}
$$

Now, we take an orthogonal frame $\left\{E_{1}, \cdots, E_{2 n-2}, \xi\right\}$ of $T_{x}(M)$. Then the last relationship leads to

$$
\sum_{i=1}^{2 n-2}<R\left(\phi E_{i}, E_{i}\right) X, Y>=n c<\phi X, Y>-2<\phi A Y, A X>.
$$

Let $A X=\lambda X$ and $A Y=\mu Y$ for X and $Y \in \xi^{\perp}$. We then have

$$
\sum_{i=1}^{2 n-2}<R\left(\phi E_{i}, E_{i}\right) X, Y>=(n c+2 \lambda \mu)<\phi X, Y>
$$

which together with (2.4) yields $(\lambda-\mu)(\lambda+\mu-h)(n c+2 \lambda \mu)=0$. From this fact and (2.5), it follows that

$$
\begin{equation*}
(\lambda-\mu)(\lambda+\mu-h)=0, \tag{2.6}
\end{equation*}
$$

which is equivalent to $\alpha_{1}=\alpha_{2}$ because of (2.2) and (2.3).
In what follows, we denote by $P\left(\alpha_{r}\right)$ and $A(\lambda)$ the eigenspace of P and A for each point x in M associated with eigenvalue α_{r} and λ respectively. Summing up, we have

Lemma 1. Let M be a pseudo-Ryan real hypersurface of $M_{n}(c), c \neq$ $0, n \geq 3$. If $A X=\lambda X$ and $A \phi X=\mu \phi X$ for any $X \in P\left(\alpha_{1}\right)$, then we have $\phi X \in P\left(\alpha_{1}^{\prime}\right)$ and (2.6).

Since P can be regarded as the symmetric linear transformation of $T_{x}(M)$ for each x in M, the orthogonal complement ξ^{\perp} can be decomposed as follows :

$$
\xi^{\perp}=P\left(\alpha_{1}\right) \oplus P\left(\alpha_{2}\right) \oplus \cdots \oplus P\left(\alpha_{p}\right),
$$

where $\alpha_{1}, \cdots, \alpha_{p}$ are mutually distinct at x in M.
For unit vectors $X \in A(\lambda)$ and $Z \in A(\sigma)$ such that X, Z and $\phi X\left(\in \xi^{\perp}\right)$ is orthonomal, we can easily, using (2.1), see that

$$
(\lambda-\sigma)(\lambda+\sigma-h)<R(X, Y) Z, W>=0,
$$

from which, by putting $X=W$ and $Y=Z$, we have

$$
\begin{equation*}
(\lambda-\sigma)(\lambda+\sigma-h)\left(\frac{c}{4}+\lambda \sigma\right)=0 . \tag{2.7}
\end{equation*}
$$

In the same way, for $Y \in A(\mu)$ and $Z \in A(\sigma)$ we obtain

$$
\begin{equation*}
(\mu-\sigma)(\mu+\sigma-h)\left(\frac{c}{4}+\mu \sigma\right)=0 . \tag{2.8}
\end{equation*}
$$

3. A characterization of pseudo-Ryan real hypersurfaces

Let M be a pseudo-Ryan real hypersurface of $M_{n}(c), c \neq 0$, such that ξ is principal. We then easily, taking account of (1.6), see that

$$
\begin{equation*}
(2 \lambda-\alpha) A \phi X=\left(\alpha \lambda+\frac{c}{2}\right) \phi X \tag{3.1}
\end{equation*}
$$

for a unit vector field $X \in A(\lambda)$.
Lemma 2. Let M be a pseudo-Ryan real hypersurface of $M_{n}(c), c \neq 0, n \geq$ 3, on which ξ is principal. Then the number of distinct eigenvalues of P is one, that is, $p=1$.

Proof. Suppose that $p \geq 2$, or any $Y \in A(\sigma) \subset P\left(\alpha_{1}\right)$, we then have $\alpha_{r}=\sigma^{2}-h \sigma, r \geq 2$ because of (2.3) and hence it follows that $\alpha_{1} \neq \alpha_{2}$, namely, $(\lambda-\sigma)(\lambda+\sigma-h) \neq 0$. Consequently (2.7) implies $\lambda \sigma+\frac{c}{4}=0$ because $\{X, \phi X, Y\}$ which we have taken orthonormal.

Similarly we have from (2.8) $\mu \sigma+\frac{c}{4}=0$. Thus, last two relationships tell us that $(\lambda-\mu) \sigma=0$. However, σ can not be zero because of $c \neq 0$. Thus, we have $\lambda=\mu$, which together with (3.1) implies that

$$
\begin{equation*}
\lambda^{2}-\alpha \lambda-\frac{c}{4}=0 . \tag{3.2}
\end{equation*}
$$

Since λ satisfies the quadratic equation $x^{2}-\alpha x-\frac{c}{4}=0$ with constant coefficients, it follows that $\lambda=\frac{1}{2}(\alpha \pm \sqrt{D}), D=\alpha^{2}+c \geq 0$. But, it is seen that $D>0$. In fact, if $D=0$, then $\lambda=\frac{\alpha}{2}$. Therefore, all principal curvatures of M are $\alpha, \frac{\alpha}{2}, \cdots, \frac{\alpha}{2}$. It means that $\xi^{\perp}=A(\lambda)=P\left(\alpha_{1}\right)$, which implies $p=1$. It is contradictory. Hence, the quadratic equation $x^{2}-\alpha x-\frac{c}{4}=0$ has following solutions :

$$
\begin{aligned}
& c>0 ; \frac{\sqrt{c}}{2} \cot \theta \text { or } \frac{-\sqrt{c}}{2} \tan \theta,\left(0<\theta<\frac{\pi}{2}\right) \\
& c<0 ; \frac{\sqrt{-c}}{2} \operatorname{coth} \theta \text { or } \frac{\sqrt{-c}}{2} \tanh \theta,(\theta \neq 0)
\end{aligned}
$$

Since we have $\sigma=-\frac{c}{4 \lambda}$, it follows that σ is the same as above and thus $\alpha_{1}=\lambda^{2}-h \lambda=\alpha_{\tau}$, which produces a contradiction. Thus, we arrive at $p=1$. This completes the proof of Lemma 2.

By Lemma 2, it is seen that $\xi^{\perp}=P\left(\alpha_{1}\right)$ and $\operatorname{dim} \xi^{\perp}=2 n-2$ for $n \geq 3$. Hence, it follows that $\xi=A(\lambda) \oplus A(\mu)$ or $A(\lambda)$.

For the case where $P\left(\alpha_{1}\right)=A(\lambda)$, we get $\lambda=\mu$ and hence λ is a root of the quadratic equation $x^{2}-\alpha x-\frac{c}{4}=0$, which means that λ is constant.

The case where $P\left(\alpha_{1}\right)=A(\lambda) \oplus A(\mu),(\lambda \neq \mu)$ is considered. In this case, we obtain

$$
\begin{equation*}
\lambda+\mu=h \tag{3.3}
\end{equation*}
$$

because of (2.6). It is not hard to see that $Y \in A(\lambda) \rightarrow \phi Y \in A(\mu)$ is injective because of $\lambda \neq \mu$. Since it is known that $\operatorname{dim} A(\lambda)=\operatorname{dim} A(\mu)=$ $n-1$ ([9], [14]), it follows that $h=\alpha+(n-1)(\lambda+\mu)$, which together with (3.3) yields $\alpha+(n-2) h=0$. Accordingly, we see that $h=$ constant and thus λ and μ are constant. Therefore, we verify, in any case, that all principal curvatures of M are constant.

Lemma 3. Under tha same assumptions as that in Lemma 2, we have

$$
P \phi=\phi P \text { i.e. } S \phi=\phi S \text {. }
$$

Proof. Let $Q=P \phi-\phi P$. Then we have $Q \xi=0$ because ξ is principal and $P \phi \xi=\phi P \xi$. For any $X \in \xi^{\perp}=P\left(\alpha_{1}\right)$, it is, using Lemma 1, seen that $\phi X \in P\left(\alpha_{1}\right)$. Consequently we obtain $P X=\alpha_{1} X$ and $P \phi X=\alpha_{1} \phi X$ and thus $Q X=0$ for any $X \in \xi^{\perp}$. Therefore we have $P \phi=\phi P$. This completes the proof.

From Theorem 3.3 of [4] and Lemma 3, we see that $S \phi=\phi S$ if and only if M is of type A_{0}, A_{1}, A_{2} when $c<0$. Thus, for $\lambda \neq \mu$ we may only consider the case where $c>0$. In this case we have (3.3). The table of Takagi [13] gives that

$$
\alpha=\sqrt{c} \cot 2 \theta, \lambda=\frac{\sqrt{c}}{2} \cot \left(\theta-\frac{\pi}{4}\right) \text { and } \mu=-\frac{\sqrt{c}}{2} \tan \left(\theta-\frac{\pi}{4}\right) \text {. }
$$

Thus, it follows that $\lambda+\mu=\frac{-c}{\alpha}$, which together with (3.3) implies that $\alpha^{2}=(n-2) c$, namely, $\cot ^{2} 2 \theta=n-2$. From this fact, Lemma 3 and Theorem K, we see that $S \phi=\phi S$ if and only if M is of type A_{1}, A_{2} or B when $c>0$.

Summing up, we have
Theorem 4. Let M be a real hypersurface of a complex space form $M_{n}(c), c \neq 0, n \geq 3$. Then M is pseudo-Ryan and the structure vector ξ is principal if and only if M is locally congruent to one of the type A_{1}, A_{2} or B when $c>0 ; A_{0}, A_{1}$ or A_{2} when $c<0$.

References

[1] J. Berndt, Real hypersurfaces with constant principal curvature in complex hyperbolic space, J. Reine Angew. Math., (1989), 132-141.
[2] T.E. Cecil and P.J. Ryan, Focal sets and real hypersurfaces in a complex projective space, Trans. Amer. Math. Soc., 269(1982), 481-499.
[3] U-H. Ki, H. Nakagawa and Y.J. Suh, Real hypersurfaces with harmonic weyl tensor of a complex space form, Hiroshima J. Math., 20(1990), 93-102.
[4] U-H. Ki and Y.J. Suh, On real hypersurfaces of a complex space from, to appear in Okayama J. Math.
[5] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc., 296(1986), 137-149.
[6] M. Kimura, Some real hypersurfaces of a complex projective space, Saitama Math. J., 5(1987), 1-5.
[7] M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space, Math. Z., 202(1989), 299-311.
[8] Y. Maeda, On real hypersurfaces of a complex projective space, J. Math. Soc. Japan, 28(1976), 529-540.
[9] S. Montiel, Real hypersurfaces of a complex hyperbolic space, J. Math. Soc. Japan, 37(1985), 515-535.
[10] S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic space, Geometriae Dedicata, 20(1986), 245-261.
[11] M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc., 212(1975), 355-364.
[12] Y.J. Suh, On real hypersurfaces of a complex space form with η-parallel Ricci tensor, Tsukuba J. Math., 14(1990), 27-37.
[13] R. Takagi, On homogeneous real hypersurfaces of a complex projective space, Osaka. J. Math., 10(1973), 495-506.
[14] R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures I, II, J. Math. Soc. Japan, 27(1975), 43-52, 507-516.

Department of Mathematics, Chosun University, Kwanguu 501-759, Korea

[^0]: * Supported by the basic science research institute program, the Ministry of Education, 1989.

