ON PAIRWISE FEEBLY R₀-SPACES

U. Tapi

Introduction

In a topological space X a set A is semiopen [3] if for some open set O, $O \subset A \subset clO$, where clO denotes the closure of O in X. Complement of a semi open set is semiclosed. The intersection of all the semi closed sets containing a set A is called the semiclosure [1] of A and denote it by sclA. In a topological space X a set A is termed feebly open [4] if for some open set $O, O \subset A \subset sclO$. Every open set is feebly open and every feebly open set is semiopen but the converses may be false [4]. Any union of feebly open sets is feebly open [4]. The complement of a feebly open set is feebly closed [4]. The intersection of all the feebly closed sets containing a set A is the feebly closure [4] of A. Denote it by fclA. It is always feebly closed. Further [4] A is feebly closed iff A = fclA; $A \subset fclA \subset clA$; $A \subset B$ implies $fclA \subset fclB$; and $p \in fclA$ iff each feebly open set containing p meets A.

The theory of bitopological spaces was first developed by Kelly [2] in 1963. A bitopological space (X, P_1, P_2) is a nonempty set X equipped with two topologies P_1 and P_2 . The axioms of pairwise feebly T_0 and pairwise feebly T_1 (stated below) are strictly weaker than pairwise T_0 and pairwise T_1 respectively [6].

Definition [5]. A bitopological space (X, P_1, P_2) is pairwise feebly T_0 (resp. pairwise feebly T_1) if for each pair of distinct points x, y of X there exists a P_1 -feebly open set containing x but not y or (resp. and) a P_2 -feebly open set containing y but not x.

The aim of this paper is to investigate and study an axiom which is independent of both these axioms and that pairwise feebly T_0 implies

Received June 28, 1989

U. Tapi

pairwise feebly T_1 . At the same time it also presents the role of feebly open sets in topology.

Throughout the paper $X \setminus A$ denotes the complement of A in X and i, j = 1, 2 such that $i \neq j$.

Definition 1. A bitopological space (X, P_1, P_2) is pairwise feebly R_0 , if for every P_i -feebly open set $G, x \in G$ implies that P_j -fcl $\{x\} \subset G$.

Remark 1. Pairwise feebly R_0 is independent of both pairwise feebly T_1 and pairwise feebly T_0 , as shown by the following examples;

Example 1. Let $X = \{a, b, c\}, P_1 = \{\emptyset, \{a\}, X\}$ and P_2 = the discrete topology on X. Then (X, P_1, P_2) is pairwise feebly T_1 and consequently pairwise feebly T_0 also but it is not pairwise feebly R_0 .

Example 2. Let $X = \{a, b, c\}$ and $P_1 = P_2 = \{\emptyset, \{a\}, \{b, c\}, X\}$. Then (X, P_1, P_2) is pairwise feebly R_0 but it is not pairwise feebly T_0 and so it is not pairwise feebly T_1 .

Theorem 1. Every pairwise feebly T_0 pairwise feebly R_0 space (X, P_1, P_2) is pairwise feebly T_1 .

Proof. Let $x, y \in X$ and $x \neq y$. Since X is pairwise feebly T_0 , there is a set which is either P_1 -feebly open or P_2 -feebly open containing one of the points but not the other. Let G be P_1 -feebly open and $x \in G$ but $y \notin G$. Since X is pairwise feebly R_0 , $P_2 - fcl\{x\} \subset G$. Then $X \setminus P_2 - fcl\{x\}$ is a P_2 -feebly open set containing the point y but not x. Consequently X is pairwise feebly T_1 .

Definition 2. In a bitopological space (X, P_1, P_2) , for any $x \in X$, $bi-fcl \{x\} = P_1 - fcl\{x\} \cap P_2 - fcl\{x\}$ and $bi-fker \{x\} = P_1 - fker\{x\} \cap P_2 - fker\{x\}$.

The following theorem gives several characterizations of pairwise feebly R_0 -spaces.

Theorem 2. In a bitopological space (X, P_1, P_2) the following conditions are equivalent:

- (a) (X, P_1, P_2) is pairwise feebly R_0 .
- (b) If $x \in X$, P_i -fcl $\{x\} \subset P_j$ -fker $\{x\}$.
- (c) If $x, y \in X, y \in P_i$ -fker $\{x\}$ if and only if $x \in P_j$ -fker $\{y\}$.
- (d) If $x, y \in X, y \in P_i$ -fcl $\{x\}$ if and only if $x \in P_j$ -fcl $\{y\}$.
- (e) If F is P_i -feebly closed and $x \notin F$ then there exists a P_j -feebly open

set G such that $x \notin G$ and $F \subset G$.

(f) If F is P_i -feebly closed, then $F = \bigcap \{G | G \text{ is } P_j\text{-feebly open and } F \subset G \}$.

(g) If G is P_i -feebly open then $G = \bigcup \{F | F \text{ is } P_j\text{-feebly closed}, F \subset G\}$. (h) If F is $P_i\text{-feebly closed}$ and $x \notin F$ then $P_j\text{-fcl}\{x\} \cap F = \emptyset$.

Proof. (a) \Longrightarrow (b). For any $x \in X$, we have $P_j - fker\{x\} = \cap \{P_j - \text{feebly} \text{ open set } G | x \in G \}$. By (a), each P_j -feebly open set G containing x contains $P_i - fcl\{x\}$. Hence, $P_i - fcl\{x\} \subset P_j - fker\{x\}$.

(b) \Longrightarrow (c). For any $x, y \in X$, if $y \in P_i - fker\{x\}$ then $x \in P_i - fcl\{y\}$. Now by (b), $x \in P_j - fker\{y\}$. Similarly if $x \in P_j - fker\{y\}$, then $y \in P_i - fker\{x\}$.

(c) \Longrightarrow (d). For any $x, y \in X$, if $y \in P_i - fcl\{x\}$ then $x \in P_i - fker\{y\}$. By (c), $x \in P_j - fcl\{y\}$. Similarly if $x \in P_j - fcl\{y\}$, then $y \in P_i - fcl\{x\}$.

 $(d) \Longrightarrow (e)$. Let F be a P_i -feebly closed set and $x \notin F$. Then for any point $y \in F$ implies $P_i - fcl\{y\} \subset F$ implies $x \notin P_i - fcl\{y\}$. Now by (d), $x \notin P_i - fcl\{y\}$ implies $y \notin P_j - fcl\{x\}$. That is there exists a P_j -feebly open set G_y such that $y \in G_y$ and $x \notin G_y$. Let, $G = \bigcup_{y \in F} \{G_y | G_y$ is P_j -feebly open, $y \in G_y$ and $x \notin G_y$ }. Then G is P_j -feebly open such that $F \subset G$ and $x \notin G$.

(e) \Longrightarrow (f). Let F be a P_i -feebly closed set and suppose that $H = \cap \{P_j - feebly \text{ open set } G | F \subset G \}$. Clearly, $F \subset H$. Let $x \notin F$ then by (e) there exists a P_j -feebly open set G such that $x \notin G$ and $F \subset G$. Hence, $x \notin H$. And so, F = H.

 $(f) \Longrightarrow (g)$. Evident.

 $(g) \Longrightarrow (h)$. Let F be a P_i -feebly closed set and $x \notin F$. Then $X \setminus F = G$ (say) is a P_i -feebly open set containing x. By (g), there exists a P_j -feebly closed set H such that $x \in H \subset G$. Therefore, $P_j - fcl\{x\} \subset G$. Hence $P_j - fcl\{x\} \cap F = \emptyset$.

(h) \Longrightarrow (a). Let G be P_i -feebly open and $x \in G$. Then $x \notin X \setminus G$ which is P_i -feebly closed. By (h), $P_j - fcl\{x\} \cap (X \setminus G) = \emptyset$. This implies that $P_j - fcl\{x\} \subset G$. Thus (a) holds.

Theorem 3. If (X, P_1, P_2) is pairwise feebly R_0 and $x, y \in X$, then either $bi-fcl\{x\}$ equals $bi-fcl\{y\}$ or they are disjoint.

Proof. Suppose that, $(bi-fcl\{x\}) \cap (bi-fcl\{y\}) \neq \emptyset$. Let $p \in P_1 - fcl\{x\} \cap P_2 - fcl\{x\} \cap P_1 - fcl\{y\} \cap P_2 - fcl\{y\}$. Then $P_1 - fcl\{p\} \subset P_1 - fcl\{x\} \cap P_1 - fcl\{y\}$ and $P_2 - fcl\{p\} \subset P_2 - fcl\{x\} \cap P_2 - fcl\{y\}$. Now by (d) in Theorem 2, we get $p \in P_1 - fcl\{x\} \Rightarrow x \in P_2 - fcl\{p\} \Rightarrow P_2 - fcl\{x\} \subset P_2 - fcl\{p\} \subset P_2 - fcl\{x\} \Rightarrow x \in P_2 - fcl\{x\} \subset P_2 - fcl\{y\}$.

Similarly, $p \in P_2 - fcl\{x\} \Rightarrow P_1 - fcl\{x\} \subset P_1 - fcl\{y\}$. $p \in P_1 - fcl\{y\} \Rightarrow P_2 - fcl\{y\} \subset P_2 - fcl\{x\}$ and $p \in P_2 - fcl\{y\} \Rightarrow P_1 - fcl\{y\} \subset P_1 - fcl\{x\}$. Consequently, $bi - fcl\{x\} = bi - fcl\{y\}$.

Theorem 4. If (X, P_1, P_2) is pairwise feebly R_0 and $x, y \in X$ then either $bi - fker\{x\}$ equals $bi - fker\{y\}$ or they are disjoint.

In view of (c) in Theorem 2, this follows as Theorem 3.

Theorem 5. Every biopen subspace of a pairwise feebly R_0 space (X, P_1, P_2) is pairwise feebly R_0 .

The proof requires the following lemmas :

Lemma 1 [4]. Let Y be a subspace of a topological space. If O is feebly open in Y and Y is open in X then O is feebly open in X.

Lemma 2 [4]. If U is open and V feebly open in a topological space X then $U \cap V$ is feebly open in U.

Proof. Let (Y, T_1, T_2) be a biopen subspace of (X, P_1, P_2) . Let A be T_i -feebly closed and $x \in Y, x \notin A$. Then $Y \setminus A$ is T_i -feebly open. So $Y \setminus A$ is P_i -feebly open by Lemma 1. Now $X \setminus (Y \setminus A) = (X \setminus Y) \cup A$, is P_i -feebly closed and x does not belong to it. Therefore, by (e) in Theorem 2 there is a P_j -feebly open set G such that $x \notin G$, and $(X \setminus Y) \cup A \subset G$. Since Y is P_j -open and G is P_j -feebly open, it follows by Lemma 2. that $Y \cap G$ is T_j -feebly open and it contains A and $x \notin Y \cap G$. Hence by (e) of Theorem 2, it results that (Y, T_1, T_2) is pairwise feebly R_0 .

References

- [1] Das, P., Note on some applications on semi open sets, Progress of Mathematics (Allahabad), 7(1973), 33-44.
- [2] Kelly, J.C., Biotopological Spaces, Proc. London Math. Soc., 13(1963), 71-89.
- [3] Levine, N., Semiopen sets and semicontinuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [4] Maheshwari, S.N. and U. Tapi, Feebly open sets and some applications on them, Madhya Bharati Journal. (To appear)
- [5] Maheshwari S.N. and U.D. Tapi, Some new separation axioms in bitopological spaces, Jour. Indian. Academy. Math. Vol. 9 No. 1 (1987) P. 42-45.
- [6] Maheshwari S.N. and U.D. Tapi, On feebly R₀-spaces, An. Univ. Timisoara Ser. Stü. Mat. 16(1978), 173-177.

Department of Mathematics, Shri GS Institute of Technology and Science, Indore MP, India-452003 $\,$