ON DILATION THEOREMS OF A CONTRACTION IN THE CLASSES A n

Il Bong Jung*, Yong Chan Kim* and Yong Kil Park

Let \mathcal{H} be a separable, infinite dimensional, complex Hilbert space and let $\mathcal{L}(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H}. A dual algebra is a subalgebra of $\mathcal{L}(\mathcal{H})$ that contains the identity operator $1_{\mathcal{H}}$ and is closed in the ultraweak operator topology on $\mathcal{L}(\mathcal{H})$. For $T \in \mathcal{L}(\mathcal{H})$, let \mathcal{A}_{T} denote the smallest subalgebra of $\mathcal{L}(\mathcal{H})$ that contains T and $I_{\mathcal{H}}$ and is closed in the ultraweak operator topololgy. Moreover, let \mathcal{Q}_{T} denote the quotient space $\mathcal{C}_{1} /{ }^{\perp} \mathcal{A}_{T}$, where \mathcal{C}_{1} is the trace class ideal in $\mathcal{L}(\mathcal{H})$ under the trace norm, and ${ }^{\perp} \mathcal{A}_{T}$ denotes the preannihilator of \mathcal{A}_{T} in \mathcal{C}_{1}. One knows that \mathcal{A}_{T} is the dual space of \mathcal{Q}_{T} and that the duality is given by

$$
\begin{equation*}
\langle A,[L]\rangle=\operatorname{tr}(A L), \quad A \in \mathcal{A}_{T},[L] \in \mathcal{Q}_{T} . \tag{1}
\end{equation*}
$$

Furthermore, the weak* topology that accrues to \mathcal{A}_{T} by virtue of this duality coincides with the ultraweak operator topology on \mathcal{A}_{T}. For vectors x and y in \mathcal{H}, we write, as usual, $x \otimes y$ for the rank one operator in \mathcal{C}_{1} defined by

$$
\begin{equation*}
(x \otimes y)(u)=(u, y) x, \quad u \in \mathcal{H} \tag{2}
\end{equation*}
$$

The theory of dual algebras is deeply related to the study of the problem of solving systems of simultaneous equations in the predual of a dual algebra (cf. [1], [3], [5], and [7]). That is the main topic of this work. In this paper, we consider the following question:

Question 1. Let A be a normal completely nonunitary contraction acting on an n-dimensional Hilbert space such that $\|A x\|<\|x\|$ jor every nonzero vector x and let $T \in \mathbf{A}_{m}(\mathcal{H})$ (will be defined below), where $m=n(n+1) / 2$.

Received May 15, 1990

* Partially supported by a grant from Korean Traders Scholarship Foundation.

Is ii true that there always exist invariant subspaces \mathcal{M} and \mathcal{N} for T with $\mathcal{M} \supset \mathcal{N}$ such that the compression $T_{\mathcal{M} \ominus \mathcal{N}}$ of T to $\mathcal{M} \ominus \mathcal{N}$ is unitarily equivalent to A ?

The notation and terminology employed herein agree with those in [5],[6], and [8]. We shall denote by \mathbf{D} the open unit disc in the complex plane \mathbf{C}, and we write \mathbf{T} for the boundary of \mathbf{D}. For $1 \leq p<\infty$, we denote by $L^{p}=L^{p}(\mathbf{T})$ the Banach space of complex valued, Lebesgue measurable functions f on \mathbf{T} such that $|f|^{p}$ is Lebesgue integrable, and by $L^{\infty}=$ $L^{\infty}(\mathbf{T})$ the Banach algebra of all complex valued Lebesgue measurable, essentially bounded functions on \mathbf{T}. If for $1 \leq p \leq \infty$ we denote by $H^{p}=$ $H^{p}(\mathbf{T})$ the subspace of L^{p} consisting of those functions whose negative Fourier coefficients vanish, then one knows that the preannihilator ${ }^{\perp}\left(H^{\infty}\right)$ of H^{∞} in L^{1} is the subspace H_{0}^{1} consisting of those functions g in H^{1} whose analytic extension \tilde{g} to \mathbf{D} satisfies $\tilde{g}(0)=0$. It is well known that H^{∞} is the dual space of L^{1} / H_{0}^{1}, where the duality is given by the pairing

$$
\begin{equation*}
\langle f,[g]\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i t}\right) g\left(e^{i t}\right) d t, \quad f \in H^{\infty}, \quad[g] \in L^{1} / H_{0}^{1} \tag{3}
\end{equation*}
$$

Recall that any contraction T can be written as a direct sum $T=T_{1} \oplus$ T_{2}, where T_{1} is a completely nonunitary contraction and T_{2} is a unitary operator. If T_{2} is absolutely continuous or acts on the space (0), T will be called an absolutely continuous contraction. The following Foias-Sz.-Nagy functional calculus [5, Theorem 4.1] provides a good relationship between the function space H^{∞} and a dual algebra \mathcal{A}_{T}.

Theorem 2. Let T be an absolutely continuous contraction in $\mathcal{L}(\mathcal{H})$. Then there is an algebra homomorphism $\Phi_{T}: H^{\infty} \rightarrow \mathcal{A}_{T}$ defined by $\Phi_{T}(f)=f(T)$ that has the following properties:
(a) $\Phi_{T}(1)=1_{\mathcal{H}}, \Phi_{T}(\xi)=T$,
(b) $\left\|\Phi_{T}(f)\right\| \leq\|f\|_{\infty}, f \in H^{\infty}$,
(c) Φ_{T} is continuous if both H^{∞} and \mathcal{A}_{T} are given their weak* topologies,
(d) the range of Φ_{T} is weak* dense in \mathcal{A}_{T},
(e) there exists a bounded, linear, one-to-one map $\phi_{T}: \mathcal{Q}_{T} \rightarrow L^{1} / H_{0}^{1}$ such that $\phi_{T}^{*}=\Phi_{T}$, and
(f) if Φ_{T} is an isometry, then Φ_{T} is a weak ${ }^{*}$ homeomorphism of H^{∞} onto \mathcal{A}_{T} and ϕ_{T} is an isometry of \mathcal{Q}_{T} onto L^{1} / H_{0}^{1}.
Definition 3 (cf. [4]). Let $\mathcal{A} \subset \mathcal{L}(\mathcal{H})$ be a dual algebra and let n be any cardinal number such that $1 \leq n \leq \aleph_{0}$. Then \mathcal{A} will be said to have
property $\left(\mathbf{A}_{n}\right)$ provided every $n \times n$ systern of simultaneous equations of the form

$$
\begin{equation*}
\left[L_{i j}\right]=\left[x_{i} \otimes y_{j}\right], \quad 0 \leq i, j<n \tag{4}
\end{equation*}
$$

(which the $\left[L_{i j}\right]$ are arbitrary but fixed elements from $\mathcal{Q}_{\mathcal{A}}$) has a solution $\left\{x_{i}\right\}_{0 \leq i<n},\left\{y_{j}\right\}_{0 \leq j<n}$ consisting of a pair of sequences of vectors from \mathcal{H}.

Definition 4 (cf. [4]). The class $\mathbf{A}(\mathcal{H})$ consists of all those absolutely continuous contraction T in $\mathcal{L}(\mathcal{H})$ for which the functional calculus Φ_{T} : $H^{\infty} \rightarrow \mathcal{A}_{T}$ is an isometry. Furthermore, if n is any cardinal number such that $1 \leq n \leq \aleph_{0}$, we denote by $\mathbf{A}_{n}(\mathcal{H})$ the set of all T in $\mathbf{A}(\mathcal{H})$ such that the algebra \mathcal{A}_{T} has property $\left(\mathbf{A}_{n}\right)$.

We write simply \mathbf{A}_{n} for $\mathbf{A}_{n}(\mathcal{H})$ when there is no confusion. If $T \in \mathcal{L}(\mathcal{H})$ and $\mathcal{M} \subset \mathcal{H}$ is a semi-invariant subspace for T (i.e., there exist invariant subspaces \mathcal{N}_{1} and \mathcal{N}_{2} for T with $\mathcal{N}_{1} \supset \mathcal{N}_{2}$ such that $\mathcal{M}=\mathcal{N}_{1} \ominus \mathcal{N}_{2}=$ $\mathcal{N}_{1} \cap \mathcal{N}_{2}^{\perp}$), we write $T_{\mathcal{M}}$ for the compression of T to \mathcal{M}. In other words, $T_{\mathcal{M}}=P_{\mathcal{M}} T \mid \mathcal{M}$, where $P_{\mathcal{M}}$ is the orthogonal projection whose range is \mathcal{M}. Let n be any cardinal number such that $1 \leq n \leq \aleph_{0}$. Throughout this paper, we write \mathbf{C} for the complex plane and \mathbf{N} for the set of natural numbers. Now we are ready to show the main theorem of this paper.

Theorem 5. Let A be a completely nonunitary normal contraction acting on an n-dimensional Hilbert space $\mathcal{H}_{n}, 2 \leq n \in \mathrm{~N}$, whose matrix relative to some orthonormal basis $\left\{u_{k}\right\}_{k=1}^{n}$ for \mathcal{H}_{n} is the diagonal matrix $\operatorname{Diag}\left(\left\{\lambda_{k}\right\}\right)_{k=1}^{n}$ and let $T \in \mathbf{A}_{m}(\mathcal{H})$, where $m=n(n+1) / 2$. Then there exist invariant subspaces \mathcal{M} and \mathcal{N} for T with $\mathcal{M} \supset \mathcal{N}$ such that the compression $T_{\mathcal{M} \ominus \mathcal{N}}$ of T to $\mathcal{M} \ominus \mathcal{N}$ is unitarily equivalent to A.
Proof. Let \mathcal{H}_{m} be an m-dimensional Hilbert space. We define a normal operator $\widetilde{N} \in \mathcal{L}\left(\mathcal{H}_{m}\right)$ whose matrix relative to some orthonormal basis $\left\{u_{k}^{(i)}\right\}_{\substack{1 \leq i<k \\ 1 \leq k \leq n}}$ for \mathcal{H}_{m} is a diagonal matrix

$$
\begin{equation*}
\operatorname{Diag}(\lambda_{1}^{(1)}, \underbrace{\lambda_{2}^{(1)}, \lambda_{2}^{(2)}}_{(2)}, \underbrace{\lambda_{3}^{(1)}, \lambda_{3}^{(2)}, \lambda_{3}^{(3)}}_{(3)}, \cdots, \underbrace{\lambda_{n}^{(1)}, \cdots, \lambda_{n}^{(n)}}_{(n)}) \tag{5}
\end{equation*}
$$

where $\lambda_{k}^{(1)}=\lambda_{k}^{(2)}=\cdots=\lambda_{k}^{(k)}=\lambda_{k}$, for $k=1,2, \cdots, n$. Since \widetilde{N} is a completely nonunitary contraction, we have $\left\{\lambda_{k}\right\}_{k=1}^{n} \subset \mathrm{D}$ and it follows from [4, Corollary 3.5] that there exist invariant subspaces \mathcal{M} and \mathcal{N} for T with $\mathcal{M} \supset \mathcal{N}$ such that $\operatorname{dim}(\mathcal{M} \ominus \mathcal{N})=m$ and $T_{\mathcal{M} \ominus \mathcal{N}}$ is similar to \widetilde{N}.

Let X be an invertible operator with $T_{\mathcal{M} \ominus \mathcal{N}} X=X \widetilde{N}$. Note that

$$
\begin{equation*}
\widetilde{N} u_{k}^{(i)}=\lambda_{k}^{(i)} u_{k}^{(i)}, \quad 1 \leq i \leq k, \quad 1 \leq k \leq n . \tag{6}
\end{equation*}
$$

For a brief notation, we write $\tilde{T}=T_{\mathcal{M} \ominus \mathcal{N}}$. Since X is one-to-one, it is easy to show that there exists a linearly independent set $\left\{w_{k}^{(i)}\right\}_{\substack{1 \leq i \leq k \\ 1 \leq k \leq n}}$ in $\mathcal{M} \ominus \mathcal{N}$ such that $\left\|w_{k}^{(i)}\right\|=1$ and

$$
\begin{equation*}
\tilde{T} w_{k}^{(i)}=\lambda_{k}^{(i)} w_{k}^{(i)}, \quad 1 \leq i \leq k, \quad 1 \leq k \leq n \tag{7}
\end{equation*}
$$

Taking $f_{1}=w_{1}^{(1)}$, we have $\tilde{T} f_{1}=\lambda_{1} f_{1}$. Assume that there exist f_{1}, \cdots, f_{k} in $\mathcal{M} \ominus \mathcal{N}$ with $k<n$ such that $\tilde{T} f_{i}=\lambda_{i} f_{i}, i=1, \cdots, k$. Since $\left\{w_{k+1}^{(1)}, \cdots\right.$, $\left.w_{k+1}^{(k+1)}\right\}$ induces an $(k+1)$-dimensional Hilbert space \mathcal{R}, there exists a normal vector $f_{k+1} \in \mathcal{R}$ such that $\left(f_{i}, f_{k+1}\right)=0, \quad i=1,2, \cdots, k$. Say

$$
\begin{equation*}
f_{k+1}=\sum_{i=1}^{k+1} a_{i} w_{k+1}^{(i)}, \tag{8}
\end{equation*}
$$

where $a_{i} \in \mathbf{C}, i=1, \cdots, k+1$. Then we have

$$
\begin{align*}
\tilde{T} f_{k+1} & =\tilde{T}\left(\sum_{i=1}^{k+1} a_{i} w_{k+1}^{(i)}\right) \\
& =\sum_{i=1}^{k+1} a_{i} \tilde{T} w_{k+1}^{(i)} \\
& =\sum_{i=1}^{k+1} a_{i} \lambda_{k+1}^{(i)} w_{k+1}^{(i)} \tag{9}\\
& =\lambda_{k+1} \sum_{i=1}^{k+1} a_{i} w_{k+1}^{(i)} \\
& =\lambda_{k+1} f_{k+1} .
\end{align*}
$$

Hence by the mathematical induction, there exists a set $\left\{f_{i}\right\}_{i=1}^{n} \subset \mathcal{M} \ominus \mathcal{N}$ such that $\widetilde{T} f_{i}=\lambda_{i} f_{i}$, for $i=1,2, \cdots, n$. Let us denote

$$
\begin{equation*}
\mathcal{K}=\bigvee_{k=1}^{n} f_{k} \tag{10}
\end{equation*}
$$

If we define a linear map $Y: \mathcal{H}_{n} \rightarrow \mathcal{K}$ with $Y u_{k}=f_{k}, \quad k=1,2, \cdots, n$, then it is obvious that Y is onto and isometry. Since \mathcal{K} is an invariant
subspace for \tilde{T}, \mathcal{K} is a semi-invariant subspace for T. Furthermore, we have $T_{\mathcal{K}} Y=Y A$. Hence A is unitarily equivalent to $T_{\mathcal{K}}$ and the proof is complete.

Remark 6. Theorem 5 gives a solution for Question 1.
Remark 7. It follows from [4, Corollary 3.6] that if $\lambda \in \mathbf{D}$ and $T \in \mathbf{A}_{n}$, then there exist invariant subspaces \mathcal{M} and \mathcal{N} for T with $\mathcal{M} \supset \mathcal{N}$ such that $\operatorname{dim}(\mathcal{M} \ominus \mathcal{N})=n$ and $T_{\mathcal{M} \ominus \mathcal{N}}=\lambda I$. This statement is a special case for the work of this paper.

References

[1] C. Apostol, H. Bercovici, C. Foias and C. Pearcy, Invariant subspaces, dilation theory, and structure of the predual of a dual algebra. I, J. Funct. Anal., 63(1985), 369-404.
[2] H. Bercovici, Operator theory and arithmetic in H^{∞}, Math. Surveys and Monographs, No. 26, A.M.S., Providence, R.I., 1988.
[3] _ Factorization theorems and the structure of operators on Hilbert space, Ann. of Math., 128(1988), 399-413.
[4] H. Bercovici, C. Foias and C. Pearcy, Dilation theory and systems of simultaneous equation in the predual of an operator algebra. I, Michigan Math. J. 30(1983), 335-354.
[5] Dual algebra with applications to invariant subspaces and dilation theory, CBMS Conf. Ser. it. Math. No. 56, Amer. Math. Soc., Providence, R.I., 1985.
[6] A. Brown and C. Pearcy, Introduction to operator theory. I, Elements of functional analysis, Springer-Verlag. New York, 1977.
[7] I. Jung, Dual operator algebras and the classes $\mathbf{A}_{m, n}$, Ph.D. Thesis, Univ. of Michigan, 1989.
[8] B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, NorthHolland, Amsterdam, 1970.

Il Bong Jung, Department of Mathematics, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Korea

Yong Chan Kim, Department of Math Educations, Yeungnam University, Kyungsan 713-749, Korea

Yong Kil Park, Department of Math Educations, College of Natural Sciences, Dongguk University, Gyeonguu Campus, Gyeongju 780-350, KoREA

