ON DILATION THEOREMS OF A CONTRACTION IN THE CLASSES A_n

Il Bong Jung*, Yong Chan Kim* and Yong Kil Park

Let \mathcal{H} be a separable, infinite dimensional, complex Hilbert space and let $\mathcal{L}(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H} . A dual algebra is a subalgebra of $\mathcal{L}(\mathcal{H})$ that contains the identity operator $1_{\mathcal{H}}$ and is closed in the ultraweak operator topology on $\mathcal{L}(\mathcal{H})$. For $T \in \mathcal{L}(\mathcal{H})$, let \mathcal{A}_T denote the smallest subalgebra of $\mathcal{L}(\mathcal{H})$ that contains T and $I_{\mathcal{H}}$ and is closed in the ultraweak operator topology. Moreover, let \mathcal{Q}_T denote the quotient space $\mathcal{C}_1/{}^{\perp}\mathcal{A}_T$, where \mathcal{C}_1 is the trace class ideal in $\mathcal{L}(\mathcal{H})$ under the trace norm, and ${}^{\perp}\mathcal{A}_T$ denotes the preannihilator of \mathcal{A}_T in \mathcal{C}_1 . One knows that \mathcal{A}_T is the dual space of \mathcal{Q}_T and that the duality is given by

(1)
$$\langle A, [L] \rangle = tr(AL), \quad A \in \mathcal{A}_T, [L] \in \mathcal{Q}_T.$$

Furthermore, the weak^{*} topology that accrues to \mathcal{A}_T by virtue of this duality coincides with the ultraweak operator topology on \mathcal{A}_T . For vectors x and y in \mathcal{H} , we write, as usual, $x \otimes y$ for the rank one operator in \mathcal{C}_1 defined by

(2) $(x \otimes y)(u) = (u, y)x, \quad u \in \mathcal{H}.$

The theory of dual algebras is deeply related to the study of the problem of solving systems of simultaneous equations in the predual of a dual algebra (cf. [1], [3], [5], and [7]). That is the main topic of this work. In this paper, we consider the following question:

Question 1. Let A be a normal completely nonunitary contraction acting on an n-dimensional Hilbert space such that ||Ax|| < ||x|| for every nonzero vector x and let $T \in \mathbf{A}_m(\mathcal{H})$ (will be defined below), where m = n(n+1)/2.

Received May 15, 1990

^{*} Partially supported by a grant from Korean Traders Scholarship Foundation.

60 II Bong Jung, Yong Chan Kim and Yong Kil Park

Is it true that there always exist invariant subspaces \mathcal{M} and \mathcal{N} for T with $\mathcal{M} \supset \mathcal{N}$ such that the compression $T_{\mathcal{M} \ominus \mathcal{N}}$ of T to $\mathcal{M} \ominus \mathcal{N}$ is unitarily equivalent to A?

The notation and terminology employed herein agree with those in [5],[6], and [8]. We shall denote by \mathbf{D} the open unit disc in the complex plane \mathbf{C} , and we write \mathbf{T} for the boundary of \mathbf{D} . For $1 \leq p < \infty$, we denote by $L^p = L^p(\mathbf{T})$ the Banach space of complex valued, Lebesgue measurable functions f on \mathbf{T} such that $|f|^p$ is Lebesgue integrable, and by $L^{\infty} = L^{\infty}(\mathbf{T})$ the Banach algebra of all complex valued Lebesgue measurable, essentially bounded functions on \mathbf{T} . If for $1 \leq p \leq \infty$ we denote by $H^p = H^p(\mathbf{T})$ the subspace of L^p consisting of those functions whose negative Fourier coefficients vanish, then one knows that the preannihilator $^{\perp}(H^{\infty})$ of H^{∞} in L^1 is the subspace H_0^1 consisting of those functions g in H^1 whose analytic extension \tilde{g} to \mathbf{D} satisfies $\tilde{g}(0) = 0$. It is well known that H^{∞} is the dual space of L^1/H_0^1 , where the duality is given by the pairing

(3)
$$\langle f, [g] \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(e^{it}) g(e^{it}) dt, \quad f \in H^\infty, \quad [g] \in L^1/H_0^1.$$

Recall that any contraction T can be written as a direct sum $T = T_1 \oplus T_2$, where T_1 is a completely nonunitary contraction and T_2 is a unitary operator. If T_2 is absolutely continuous or acts on the space (0), T will be called an *absolutely continuous contraction*. The following Foias-Sz.-Nagy functional calculus [5, Theorem 4.1] provides a good relationship between the function space H^{∞} and a dual algebra \mathcal{A}_T .

Theorem 2. Let T be an absolutely continuous contraction in $\mathcal{L}(\mathcal{H})$. Then there is an algebra homomorphism $\Phi_T : H^{\infty} \to \mathcal{A}_T$ defined by $\Phi_T(f) = f(T)$ that has the following properties:

(a) $\Phi_T(1) = 1_{\mathcal{H}}, \Phi_T(\xi) = T$,

(b) $\|\Phi_T(f)\| \le \|f\|_{\infty}, f \in H^{\infty},$

(c) Φ_T is continuous if both H^{∞} and \mathcal{A}_T are given their weak* topologies,

(d) the range of Φ_T is weak* dense in \mathcal{A}_T ,

(e) there exists a bounded, linear, one-to-one map $\phi_T : \mathcal{Q}_T \to L^1/H_0^1$ such that $\phi_T^* = \Phi_T$, and

(f) if Φ_T is an isometry, then Φ_T is a weak* homeomorphism of H^{∞} onto \mathcal{A}_T and ϕ_T is an isometry of \mathcal{Q}_T onto L^1/H_0^1 .

Definition 3 (cf. [4]). Let $\mathcal{A} \subset \mathcal{L}(\mathcal{H})$ be a dual algebra and let n be any cardinal number such that $1 \leq n \leq \aleph_0$. Then \mathcal{A} will be said to have

property (\mathbf{A}_n) provided every $n \times n$ system of simultaneous equations of the form

(4)
$$[L_{ij}] = [x_i \otimes y_j], \quad 0 \le i, j < n$$

(which the $[L_{ij}]$ are arbitrary but fixed elements from $\mathcal{Q}_{\mathcal{A}}$) has a solution $\{x_i\}_{0 \leq i < n}, \{y_j\}_{0 \leq j < n}$ consisting of a pair of sequences of vectors from \mathcal{H} .

Definition 4 (cf. [4]). The class $\mathbf{A}(\mathcal{H})$ consists of all those absolutely continuous contraction T in $\mathcal{L}(\mathcal{H})$ for which the functional calculus Φ_T : $H^{\infty} \to \mathcal{A}_T$ is an isometry. Furthermore, if n is any cardinal number such that $1 \leq n \leq \aleph_0$, we denote by $\mathbf{A}_n(\mathcal{H})$ the set of all T in $\mathbf{A}(\mathcal{H})$ such that the algebra \mathcal{A}_T has property (\mathbf{A}_n) .

We write simply \mathbf{A}_n for $\mathbf{A}_n(\mathcal{H})$ when there is no confusion. If $T \in \mathcal{L}(\mathcal{H})$ and $\mathcal{M} \subset \mathcal{H}$ is a semi-invariant subspace for T (i.e., there exist invariant subspaces \mathcal{N}_1 and \mathcal{N}_2 for T with $\mathcal{N}_1 \supset \mathcal{N}_2$ such that $\mathcal{M} = \mathcal{N}_1 \ominus \mathcal{N}_2 =$ $\mathcal{N}_1 \cap \mathcal{N}_2^{\perp}$), we write $T_{\mathcal{M}}$ for the compression of T to \mathcal{M} . In other words, $T_{\mathcal{M}} = P_{\mathcal{M}}T|\mathcal{M}$, where $P_{\mathcal{M}}$ is the orthogonal projection whose range is \mathcal{M} . Let n be any cardinal number such that $1 \leq n \leq \aleph_0$. Throughout this paper, we write \mathbf{C} for the complex plane and \mathbf{N} for the set of natural numbers. Now we are ready to show the main theorem of this paper.

Theorem 5. Let A be a completely nonunitary normal contraction acting on an n-dimensional Hilbert space \mathcal{H}_n , $2 \leq n \in \mathbb{N}$, whose matrix relative to some orthonormal basis $\{u_k\}_{k=1}^n$ for \mathcal{H}_n is the diagonal matrix $\operatorname{Diag}(\{\lambda_k\})_{k=1}^n$ and let $T \in \mathbf{A}_m(\mathcal{H})$, where m = n(n+1)/2. Then there exist invariant subspaces \mathcal{M} and \mathcal{N} for T with $\mathcal{M} \supset \mathcal{N}$ such that the compression $T_{\mathcal{M} \ominus \mathcal{N}}$ of T to $\mathcal{M} \ominus \mathcal{N}$ is unitarily equivalent to A.

Proof. Let \mathcal{H}_m be an *m*-dimensional Hilbert space. We define a normal operator $\widetilde{N} \in \mathcal{L}(\mathcal{H}_m)$ whose matrix relative to some orthonormal basis $\{u_k^{(i)}\}_{\substack{1 \leq i \leq k \\ 1 \leq k \leq n}}$ for \mathcal{H}_m is a diagonal matrix

(5)
$$\operatorname{Diag}(\lambda_1^{(1)}, \underbrace{\lambda_2^{(1)}, \lambda_2^{(2)}}_{(2)}, \underbrace{\lambda_3^{(1)}, \lambda_3^{(2)}, \lambda_3^{(3)}}_{(3)}, \cdots, \underbrace{\lambda_n^{(1)}, \cdots, \lambda_n^{(n)}}_{(n)}),$$

where $\lambda_k^{(1)} = \lambda_k^{(2)} = \cdots = \lambda_k^{(k)} = \lambda_k$, for $k = 1, 2, \cdots, n$. Since \widetilde{N} is a completely nonunitary contraction, we have $\{\lambda_k\}_{k=1}^n \subset \mathbf{D}$ and it follows from [4, Corollary 3.5] that there exist invariant subspaces \mathcal{M} and \mathcal{N} for T with $\mathcal{M} \supset \mathcal{N}$ such that $\dim(\mathcal{M} \ominus \mathcal{N}) = m$ and $T_{\mathcal{M} \ominus \mathcal{N}}$ is similar to \widetilde{N} .

62 II Bong Jung, Yong Chan Kim and Yong Kil Park

Let X be an invertible operator with $T_{\mathcal{M} \ominus \mathcal{N}} X = X \widetilde{N}$. Note that

(6)
$$\widetilde{N}u_k^{(i)} = \lambda_k^{(i)}u_k^{(i)}, \quad 1 \le i \le k, \quad 1 \le k \le n.$$

For a brief notation, we write $\tilde{T} = T_{\mathcal{M} \ominus \mathcal{N}}$. Since X is one-to-one, it is easy to show that there exists a linearly independent set $\{w_k^{(i)}\}_{\substack{1 \le i \le k \\ 1 \le k \le n}}$ in $\mathcal{M} \ominus \mathcal{N}$ such that $||w_k^{(i)}|| = 1$ and

(7)
$$\tilde{T}w_k^{(i)} = \lambda_k^{(i)} w_k^{(i)}, \quad 1 \le i \le k, \quad 1 \le k \le n$$

Taking $f_1 = w_1^{(1)}$, we have $\tilde{T}f_1 = \lambda_1 f_1$. Assume that there exist f_1, \dots, f_k in $\mathcal{M} \ominus \mathcal{N}$ with k < n such that $\tilde{T}f_i = \lambda_i f_i, i = 1, \dots, k$. Since $\{w_{k+1}^{(1)}, \dots, w_{k+1}^{(k+1)}\}$ induces an (k+1)-dimensional Hilbert space \mathcal{R} , there exists a normal vector $f_{k+1} \in \mathcal{R}$ such that $(f_i, f_{k+1}) = 0$, $i = 1, 2, \dots, k$. Say

(8)
$$f_{k+1} = \sum_{i=1}^{k+1} a_i w_{k+1}^{(i)},$$

where $a_i \in \mathbf{C}, i = 1, \dots, k + 1$. Then we have

(9)

$$\widetilde{T}f_{k+1} = \widetilde{T}(\sum_{i=1}^{k+1} a_i w_{k+1}^{(i)})$$

$$= \sum_{i=1}^{k+1} a_i \widetilde{T} w_{k+1}^{(i)}$$

$$= \sum_{i=1}^{k+1} a_i \lambda_{k+1}^{(i)} w_{k+1}^{(i)}$$

$$= \lambda_{k+1} \sum_{i=1}^{k+1} a_i w_{k+1}^{(i)}$$

$$= \lambda_{k+1} f_{k+1}.$$

Hence by the mathematical induction, there exists a set $\{f_i\}_{i=1}^n \subset \mathcal{M} \ominus \mathcal{N}$ such that $\widetilde{T}f_i = \lambda_i f_i$, for $i = 1, 2, \dots, n$. Let us denote

(10)
$$\mathcal{K} = \bigvee_{k=1}^{n} f_k.$$

If we define a linear map $Y : \mathcal{H}_n \to \mathcal{K}$ with $Yu_k = f_k$, $k = 1, 2, \dots, n$, then it is obvious that Y is onto and isometry. Since \mathcal{K} is an invariant subspace for \tilde{T} , \mathcal{K} is a semi-invariant subspace for T. Furthermore, we have $T_{\mathcal{K}}Y = YA$. Hence A is unitarily equivalent to $T_{\mathcal{K}}$ and the proof is complete.

Remark 6. Theorem 5 gives a solution for Question 1.

Remark 7. It follows from [4, Corollary 3.6] that if $\lambda \in \mathbf{D}$ and $T \in \mathbf{A}_n$, then there exist invariant subspaces \mathcal{M} and \mathcal{N} for T with $\mathcal{M} \supset \mathcal{N}$ such that $\dim(\mathcal{M} \ominus \mathcal{N}) = n$ and $T_{\mathcal{M} \ominus \mathcal{N}} = \lambda I$. This statement is a special case for the work of this paper.

References

- C. Apostol, H. Bercovici, C. Foias and C. Pearcy, Invariant subspaces, dilation theory, and structure of the predual of a dual algebra. I, J. Funct. Anal., 63(1985), 369-404.
- [2] H. Bercovici, Operator theory and arithmetic in H[∞], Math. Surveys and Monographs, No. 26, A.M.S., Providence, R.I., 1988.
- [3] _____, Factorization theorems and the structure of operators on Hilbert space, Ann. of Math., 128(1988), 399-413.
- [4] H. Bercovici, C. Foias and C. Pearcy, Dilation theory and systems of simultaneous equation in the predual of an operator algebra. I, Michigan Math. J. 30(1983), 335-354.
- [5] _____, Dual algebra with applications to invariant subspaces and dilation theory, CBMS Conf. Ser. in Math. No. 56, Amer. Math. Soc., Providence, R.I., 1985.
- [6] A. Brown and C. Pearcy, Introduction to operator theory. I, Elements of functional analysis, Springer-Verlag. New York, 1977.
- [7] I. Jung, Dual operator algebras and the classes $\mathbf{A}_{m,n}$, Ph.D. Thesis, Univ. of Michigan, 1989.
- B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, North-Holland, Amsterdam, 1970.

IL BONG JUNG, DEPARTMENT OF MATHEMATICS, COLLEGE OF NATURAL SCIENCES, KYUNGPOOK NATIONAL UNIVERSITY, TAEGU 702-701, KOREA

YONG CHAN KIM, DEPARTMENT OF MATH EDUCATIONS, YEUNGNAM UNIVERSITY, KYUNGSAN 713-749, KOREA

Yong Kil Park, Department of Math Educations, College of Natural Sciences, Dongguk University, Gyeongju Campus, Gyeongju 780-350, Korea