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1. Introduction

Using the concept of Prugovecki [10] and Lumer [6], Nath [9] introduce
what he called generalized semi-inner product spaces, and studied strong
topologies on these spaces. On the other hand Ambrose [1] introduced
and studied a special class of Banach algebras called H*-algebras whose
underlying spaces are Hilbert spaces. Later on, Husain and Malyviya
[4] replaced the Hilbert space structure in H*-algebras by a more general
structure called semi-inner product space and they obtained a new class of
algebras called semi-inner product algebras. This concept led Husain and
Khaleelulla [5] to define the concept of a generalized semi-inner product
algebra and they obtained certain results on such algebras.

Using this concept and the concept of Elsayyad [3], we introduce, in
the present paper, the concept of a generalized semi-inner product algebra
of type (p) and study strong and weak topologies on such algebras which
make them locally convex as well as locally m—convex.

2. Preliminaries

Definition 2.1 [8]. Let E be a vector space. We define a map [.,.] :
E x E — k satisfying the following conditions:
[z+y,2]=[2,2] +[y,2], o,y and z € E.

(51)

(82) [)‘xay] = /\[:v,y], A€ k.

(S3) [z,z] > 0,if z # 0. 1

(S4) l[2, 9]l < [2,2]#[y,y]7 ,1 < p < oo
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Then [.,.] is called a semi-inner product of type (p) on E, and E, equipped
with the map [.,.], is called a semi-inner product space of type (p) (ab-
briviated as s.i.p. space of type (p).

Remark 2.2. 1f p = 2, this concept is called semi-inner product space
which is due to Lumer [6] (abbriviated as s.i.p.space).

Remark 2.3. Nath [8] proved that a s.i.p space of type (p) becomes a
1

normed space under ||z|| = [z,z]? and a normed space can be made into

s.i.p. space of type (p).

Definition 2.4 [2]. A normed algebra F is a normed space with is also
algebra such that ||zy|| < ||z||||y|| for all z and y € E.

Definition 2.5 [7]. Let E be an algebra.

(a) A subset V of E is called an idempotent if VV C V.

(b) A subset V of E is called m—convex (multiplicatively convex) if V
1s convex and idempotent.

Definition 2.6 [7]. A locally convex algebra is an algebra and a Haus—
dorff locally convex space.

Definition 2.7 [7]. A locally convex algebra is called locally m-convex
algebra if there exists a neighbourhood basis of consisting of m-convex
sets.

Definition 2.8 [5]. A vector space F is called semi-inner product alge-
bra (abbriviated as s.i.p. algebra) if

(1) E is a normed algebra,

(i) E is s.i.p. space with the same norm as that of normed algebra.

Definition 2.9 [3]. A vector space F is called semi-inner product algebra
of type (p) (abbriviated as s.i.p. algebra of type (p)) if

(1) E is a normed algebra,

(ii) E is s.i.p. space of type (p) with the same norm as that of normed
algebra.

Remark 2.10. In [3], E was assumed to be complete.

3. Generalized Semi—Inner Product Algebra of Type

(p)

Definition 3.1 [5]. A vecotr space E is called a generalized semi-inner
product algebra (abbriviated as g.s.i.p. algebra) if
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(G;) E is an algebra
(G2) there is a subspace M of E which is s.i.p. algebra,
(G3) there is a set L of linear multiplicative operators of E satisfying:
(i) each member of L maps E into M,
(ii) if Te =0 for all T € L, then z = 0.
We denote a generalized semi-inner product algebra by the triple (£, L, M).

Remark 3.2. Every s.i.p. algebra is a g.s.i.p. algebra, with M = E and
L = [I], I the identity operator on E.

Definition 3.3. A vector space E is called a generalized semi-inner
product algebra of type (p) (abbriviated as g.s.i.p. algebra of type (p)) if
(Gy) E is an algebra,
(G2) there is a subspace M of E which is s.i.p. algebra of type (p),
(G3) there is a set of linear multiplicative operators on F satisfying:
(1) each member of L maps F into M,
(i) if Tz =0 for all T € L, then z = 0.
We denote a generalized semi-inner product algebra of type (p) by the
triple (E, L, M).

Remark 3.4. Every s.i.p. algebra of type (p) is a g.s.i.p. algebra of type
(p), with M = E and L = [I], I the identity operator on E.

Remark 3.5. The example which was given in [5] and [9] is incorrect
because the operator TP~ ! is not linear.

Remark 3.6. It would be interesting to find a non—trivial example of a
g.s.i.p. algebra of type (p) which is not s.i.p. algebra of type (p).
4. Strong Topology
Definition 4.1. Let (E, L, M) be a g.s.i.p. algebra of type (p). For each
x € F, the family of sets

V(@ Ty, Tuse) = {y € B [Tuly — 2), Tuly — o)) <,

k=12---n}Ve >0, Ty,---,T, € L and n = 1,2,---. constitutes a
neighbourhood basis at « for a topology on E which we call the strong
topology.

Lemma 4.2. Fach V(0;T1,---,Ty;¢) is circled and convez.
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Proof. Let V = V(0;Ty,---,T,;€). To show that V is circled: Let A € C
with |A| <1 and z € V.

[Te(A\2), Tu(Ae)]F = | Tx(Az)|
= MITx(2)]
€ Me<e, k=L2--n

Thus ||Tx(Az)|| < e,k =1,2,---,n. Hence Az € V. So V is circled.
To show that V is convex: Let A € C,0< A< 1and z,y € V.

ITeAz + (1= Nylll = [ Te(Az) + T[(1 = Myl
= [[MTe(e) + (1 = NTi(y)|l
< (@) + (1 = DT ()l
< de+(l=Ne=¢.

Thus | Ti[Az + (1 = N)y]|l < e,k =1,2,---,n. Hence Ae + (1 —A)y € V.

So V is convex.

Lemma 4.3. Fach V(0;T3,---,Ty;€),0 < e <1, ts m-convex.

Proof. Let V. = V(0;T1,--,Tn;€). Clearly V is convex by Lemma (4.2).
To show V is an idempotent i.e. VV C V. Let zandy e V,0<e < 1.

[Ti(zy), Te(zy)]F = [Tu(e)Te(), Tu(2) Te(y)]7,

k= 1y o s7 gy
< [Ti(2), Te(@)]7 [Tk(y), Tu(v)]?
¢ e,

Thus ||Tk(zy)|| < €,k = 1,2,---,n. Hence zy € V for all z and y € V,
0 <e<1. SoV is an idempotent. Thus V is m—convex.

Lemma 4.4 Let (E,L, M) be a g.s.i.p. algebra of type (p). If a topology on
it is introduced in which the sets V(z;T;¢€) are neighbourhoods of z,Ve > 0,
T € L, then the resulting topological space is HausdorfJ.

Proof. Here [T'z,Tz] = ||Tz||P. Suppose E is not a Hausdorff space. Then
there exists at least two points z;,z, € E, ©; # x5 for which any two
neighbourhoods have common points. Thus for any two neighbourhoods
V(z1;T; ~) and V(za; T; 1) there exists at least one y, € E such that

1 1
Yn € V($17T’ ;) N V((I)g, Ta ',’;)
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So,
! 1
IT(yn = 22)ll < =, and [T (yn — 22| < .

Now,

IT(z1 = z2)| = NIT(21 = yn + yn — z2)||
1T (21 = yn) + T(yn — 22)||

S ”T(xl - yn)” + “T(yn - $2)H
1 1 2

< —4-==
n n n

Since the above is true for any positive integer n, it follows that T'(z; —
z9) = 0 which is true for any T' € L. Thus ; — 23 = 0 ; So z; = x3; which
1s a contradiction.

Theorem 4.5. Let (E,L,M) be a g.s.i.p. algebra of type (p). Then
(E, L, M) equinped with the strong topology is a locally convez algebra.

Proof. Nath [9] prove that (E, L, M) is a Hausdorff locally convex space.
To complete the proof we show that for any V(zoz;Ty,---,Ty;¢), there
exists Vi Ty, o Tai ),

A= max (M), A= [Tk(mo),Tk(xO)]%,

1<k<n

k=1,2,---,n; such that

mO‘/(x;qﬁa"'ajh;f'

/\) C V(zoz;Th,- - -, Tns€).

Let y € Vig; Ty o<+, Lo 5 ); Then [Tk(y—x),Tk(y—x)]% € Sk =12, 0
Now,
[Ti(zoy — 202), Tu(zay — zo2)]F = [Trzoly — ), Tezoly — z)]7

[T (20)Ti(y — @), Ti (o) Tu(y — m)]%
< [Ti(o), Tr (o)) 7 [Ti(y — ), Ti(y — :c)]%

< /\2:6.

Thus zoy € V(zoz; Th,- -, Tn;€), for all y € V(z; T4, -+, Tn; ), and this
proves 2oV (z; Ty, -+, Th;5) C V(zor : T, -+, Tps €).
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Similarly, we can show that

Vs o=+ T = Yto € VigeiTh, - Tase)

This shows that (F,L, M) is a locally convex algebra under the strong
topology.

Theorem 4.6. Let (E,L,M) be a g.s.i.p algebra of type (p). Then
(E, L, M) equipped with the strong topology is a locally m-convez algebra.

Proof. Let
A = max (M), Ak = [Tr(z0), Tk(z0)]7,

1<k<n
k=1,2,---,n.
If A > 1, then the result follows from Lemma (4.2) and lemma (4.3).
If A < 1, then the result follows from lemma (4.3), because we can show
that for any V(zoz : Th,---,Ty;€), there exists V(z;Ty,---,T,;€) such
that
oV (z;Th, -+, Tnse) C V(zoz; Tty - -, Ty; €).

Theorem 4.7. Let (E,L,M) be a g.s.i.p. algebra of type (p). Then
(E,L, M) with strong topology is metrizable if there is a countable subset
B of L with the following property: For each T € L, there exists an S € L

such that [T.’L’,TIB]% < [533,533]%, x € E, where L is the linear manifold
generated by 3. '

Proof. 1t 1s sufficient to show that the family of sets
1
{(O;Slv"'7Sn;_);Sla"'765n) k7n:1727"'}
n

is a neighbourhood basis at 0 for the strong topology.
For every T' € L, we can find and S € L for which

V(0;S;e) C V(0;T;¢). (1)

Since ||Tz|| < ||Sz||.
Clearly, we have S = \S; + --- + ASk, where Si,---,S; € B and so,
Ve € E,

[Se,Sa]p = ||Sz| = |(MSi + -+ + MeSk)(@)] (2)
< alllSezll + - - + el Sez].
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Thus, if we choose an integer n such that

1< 15 l< €
n kl)\ll’ ‘n kix\kl'

Then z € V(0;S,;2) implies ||S,z]| < £ < klirl’ r=1,2,~-:,5 B0, (2)
becomes ||Sz|| < £+ -+ + ¢ (k times) < kf =¢.
So, z € V(0;S;;5) N--- N V(0; Si; 2) implies z € V(0;S;¢). ie, z €

V(0;5y, -+, Sk; L) implies € V(0; S;¢). So,

V(O;Sl,---,Sk;;ll-) C V(0; S;¢).
Using (1)
V(0;T;e) o V(0;5;¢)
V(01 ) n.--lm V(O;Sk;%)
= V(O;Sl,-'-,Sk;;{)

Thus the family {V(0; S1,--,Sk;2): Si,---, 5% € B3k,n=1,2,---} is a
neighbourhood basis at 0 which is countable since f is countable. Hence
E is metrizable in the strong topology.

5. Weak Topology

If (E,L,M) is a g.s.i.p. algebra of type (p), for each T' € L and each
u € M, we define a linear functional ¢(z; T,u) = [Tz,u] on E. Let Fy be
the family of all such linear functionals. Note that, in general, Fj is not
a vector space. Denote by F the vector space (over the same field as that

of F) spanned by Fp.

Proposition 5.1. F and F constitute a dual pair.

Proof. 1If ¢(z) = 0,Y¢ € F, then [Tz,u] =0, Vu € M and T € L. But
then © = 0. (cf. [10]) Conversely, if for a given ¢y € F', we have that
$o(z) = 0, Vz € E, then ¢ is the zero element of F.

Notation 5.2. We write (z,¢) = ¢(z),zc € E,¢ € F.
clearly (z, ¢) is a bilinear functional on F and F.

Proposition 5.3. Fach ¢ € F is continuous on E in the strong topology.
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Proof. For arbitrary € > 0 we have that

|¢(z; Tyu) — ¢(zo; Tyu)| = |[Tz,u]— [Tzo,ul
[T(z — 20), u]] 1
< [T(z = 20), T(z — z0)]7[u, 4] F < ¢

whenever
€
[u, u] 7

[T(z — z0),T(z — :co)]% <

Thus, each ¢ € F'is a continuous linear functional on E equipped with
the strong topology. Hence the continuity of any ¢ € F' follows.

Definition 5.4. The coarsest topology on E for which all the linear
functional from F' are continuous is called the weak topology. The fam-
ily of all subsets of E W(x;61,---,¢,) = {y € E : |¢e(y — 2)| <
1, k = 1,2,---,n}, Vé1,40,-+,¢, € F, n = 1,2,--- is a neighbour-
hood basis at z. Since Fy generates F, the family of all neighbourhoods
W(0;uy,Th,- - un,Ip) = {z € E : |[Tkz,u]| < 1,k = 1,2,---,n} cor-
responding to all uy,---,u, € M, Ty,---,T, € L, n = 1,2, is also a
neighbourhood basis at 0.

Remark 5.5. Since F and F form a dual pair, then E is a Hausdorff
topological space in the weak topology.

Proposition 5.6. Let (E,L,M) be a g.s.i.p. algebra of type (p). Then
(E,L,M) equipped with the weak topology is a locally convez algebra.

Proof. 1t follows from the general properties of weak topologies.
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M. Khaleelulla and Dr. J. Rizvi for their kind help during the prepa—
ration of this paper.

References

(1] Ambrose, W., Structure theorems for a special class of Banach algebras, Trans.
Amer. Math. Soc., 57 (1945), 364-386.

[2] Bonsall, F.F. and Duncan, J., Complete normed algebras, Springer-Verlag, Berlin
(1973).



[4]
[5]
[6]

[7]

Topolgies on Generalized Semi-Inner Product Algebras 53

Elsayyad, S.G., Semi-inner product algebras of type (p), M. Sc. Thesis, Fc. of Sc.,
King Abdulaziz Univ., (1986).

Husain, T. and Malviya, B.D., On Semi-inner product spaces, 11, Colloq. Math.
Vol. 24, Fasc. 1, (1972), 235-240.

Husain, T. and Khaleelulla, S.M., Topologies on generalized semi-inner product
algebras, Lattice and spaces, Kyungpook Math. J., Vol. 17, No. 1, (1977), 7-15.

Lumer, G., Semi-inner product spaces, Trans. Amer. Math. Soc. 100, (1961), 29-
43,

Michael, E.A., Locally multiplicatively-convez topological algebras, Memories of
AM.S., No. 11, (1952).

Nath, B., On a generalization of semi-inner product spaces, Math. J. Okayama
Univ., 15, (1971/72), 1-6.

Nath, B., Topologies on generalized semi-inner product spaces, compositio Math.
Vol. 23, Fasc. 3 (1971), 309-316.

Progovecki, E., Topologies on generalized inner product spaces, Canadian J. Math.
21, (1961), 158-169.

MATHEMATICS DEPARTMENT, FACULTY OF SCIENCE, KING ABDULAZIZ UNIVERSITY,
P.O.Box 9028, JEDDAH, SAUDI ARABIA



