TOPOLOGIES ON GENERALIZED SEMI-INNER PRODUCT ALGEBRAS OF TYPE (p)

Mohammed A. Abohadi

1. Introduction

Using the concept of Prugovecki [10] and Lumer [6], Nath [9] introduce what he called generalized semi-inner product spaces, and studied strong topologies on these spaces. On the other hand Ambrose [1] introduced and studied a special class of Banach algebras called H^{*}-algebras whose underlying spaces are Hilbert spaces. Later on, Husain and Malyviya [4] replaced the Hilbert space structure in H^{*}-algebras by a more general structure called semi-inner product space and they obtained a new class of algebras called semi-inner product algebras. This concept led Husain and Khaleelulla [5] to define the concept of a generalized semi-inner product algebra and they obtained certain results on such algebras.

Using this concept and the concept of Elsayyad [3], we introduce, in the present paper, the concept of a generalized semi-inner product algebra of type (p) and study strong and weak topologies on such algebras which make them locally convex as well as locally m-convex.

2. Preliminaries

Definition 2.1 [8]. Let E be a vector space. We define a map [., .] : $E \times E \rightarrow k$ satisfying the following conditions:
$\left(\mathrm{S}_{1}\right)[x+y, z]=[x, z]+[y, z], x, y$ and $z \in E$.
$\left(\mathrm{S}_{2}\right)[\lambda x, y]=\lambda[x, y], \lambda \in k$.
$\left(\mathrm{S}_{3}\right)[x, x]>0$, if $x \neq 0$.
$\left(\mathrm{S}_{4}\right)|[x, y]|<[x, x]^{\frac{1}{p}}[y, y]^{\frac{p-1}{p}}, 1<p<\infty$.

[^0]Then [., .] is called a semi-inner product of type (p) on E, and E, equipped with the map [.,.], is called a semi-inner product space of type (p) (abbriviated as s.i.p. space of type (p).

Remark 2.2. If $p=2$, this concept is called semi-inner product space which is due to Lumer [6] (abbriviated as s.i.p.space).
Remark 2.3. Nath [8] proved that a s.i.p space of type (p) becomes a normed space under $\|x\|=[x, x]^{\frac{1}{p}}$ and a normed space can be made into s.i.p. space of type (p).

Definition 2.4 [2]. A normed algebra E is a normed space with is also algebra such that $\|x y\| \leq\|x\|\|y\|$ for all x and $y \in E$.
Definition 2.5 [7]. Let E be an algebra.
(a) A subset V of E is called an idempotent if $V V \subset V$.
(b) A subset V of E is called m-convex (multiplicatively convex) if V is convex and idempotent.

Definition 2.6 [7]. A locally convex algebra is an algebra and a Hausdorff locally convex space.

Definition 2.7 [7]. A locally convex algebra is called locally m-convex algebra if there exists a neighbourhood basis of consisting of m-convex sets.

Definition 2.8 [5]. A vector space E is called semi-inner product algebra (abbriviated as s.i.p. algebra) if
(i) E is a normed algebra,
(ii) E is s.i.p. space with the same norm as that of normed algebra.

Definition 2.9 [3]. A vector space E is called semi-inner product algebra of type (p) (abbriviated as s.i.p. algebra of type (p)) if
(i) E is a normed algebra,
(ii) E is s.i.p. space of type (p) with the same norm as that of normed algebra.

Remark 2.10. In [3], E was assumed to be complete.

3. Generalized Semi-Inner Product Algebra of Type (p)

Definition 3.1 [5]. A vecotr space E is called a generalized semi-inner product algebra (abbriviated as g.s.i.p. algebra) if
$\left(\mathrm{G}_{1}\right) E$ is an algebra
$\left(\mathrm{G}_{2}\right)$ there is a subspace M of E which is s.i.p. algebra,
$\left(\mathrm{G}_{3}\right)$ there is a set L of linear multiplicative operators of E satisfying:
(i) each member of L maps E into M,
(ii) if $T x=0$ for all $T \in L$, then $x=0$.

We denote a generalized semi-inner product algebra by the triple (E, L, M).

Remark 3.2. Every s.i.p. algebra is a g.s.i.p. algebra, with $M=E$ and $L=[I], I$ the identity operator on E.

Definition 3.3. A vector space E is called a generalized semi-inner product algebra of type (p) (abbriviated as g.s.i.p. algebra of type (p)) if
$\left(\mathrm{G}_{1}\right) E$ is an algebra,
$\left(\mathrm{G}_{2}\right)$ there is a subspace M of E which is s.i.p. algebra of type (p),
$\left(\mathrm{G}_{3}\right)$ there is a set of linear multiplicative operators on E satisfying:
(i) each member of L maps E into M,
(ii) if $T x=0$ for all $T \in L$, then $x=0$.

We denote a generalized semi-inner product algebra of type (p) by the triple (E, L, M).

Remark 3.4. Every s.i.p. algebra of type (p) is a g.s.i.p. algebra of type (p), with $M=E$ and $L=[I], I$ the identity operator on E.

Remark 3.5. The example which was given in [5] and [9] is incorrect because the operator T^{p-1} is not linear.

Remark 3.6. It would be interesting to find a non-trivial example of a g.s.i.p. algebra of type (p) which is not s.i.p. algebra of type (p).

4. Strong Topology

Definition 4.1. Let (E, L, M) be a g.s.i.p. algebra of type (p). For each $x \in E$, the family of sets

$$
V\left(x ; T_{1}, \cdots, T_{n} ; \varepsilon\right)=\left\{y \in E ;\left[T_{k}(y-x), T_{k}(y-x)\right]^{\frac{1}{p}}<\varepsilon\right.
$$

$k=1,2, \cdots, n\} \forall \varepsilon>0, T_{1}, \cdots, T_{n} \in L$ and $n=1,2, \cdots$. constitutes a neighbourhood basis at x for a topology on E which we call the strong topology.

Lemma 4.2. Each $V\left(0 ; T_{1}, \cdots, T_{n} ; \varepsilon\right)$ is circled and convex.

Proof. Let $V=V\left(0 ; T_{1}, \cdots, T_{n} ; \varepsilon\right)$. To show that V is circled: Let $\lambda \in C$ with $|\lambda| \leq 1$ and $x \in V$.

$$
\begin{aligned}
{\left[T_{k}(\lambda x), T_{k}(\lambda x)\right]^{\frac{1}{p}} } & =\left\|T_{k}(\lambda x)\right\| \\
& =|\lambda|\left\|T_{k}(x)\right\| \\
& <|\lambda| \varepsilon \leq \varepsilon, \quad k=1,2, \cdots, n
\end{aligned}
$$

Thus $\left\|T_{k}(\lambda x)\right\|<\varepsilon, k=1,2, \cdots, n$. Hence $\lambda x \in V$. So V is circled. To show that V is convex: Let $\lambda \in \mathbf{C}, 0<\lambda<1$ and $x, y \in V$.

$$
\begin{aligned}
\left\|T_{k}[\lambda x+(1-\lambda) y]\right\| & =\left\|T_{k}(\lambda x)+T_{k}[(1-\lambda) y]\right\| \\
& =\left\|\lambda T_{k}(x)+(1-\lambda) T_{k}(y)\right\| \\
& <\left\|T_{k}(x)\right\|+(1-\lambda)\left\|T_{k}(y)\right\| \\
& <\lambda \varepsilon+(1-\lambda) \varepsilon=\varepsilon .
\end{aligned}
$$

Thus $\left\|T_{k}[\lambda x+(1-\lambda) y]\right\|<\varepsilon, k=1,2, \cdots, n$. Hence $\lambda x+(1-\lambda) y \in V$. So V is convex.

Lemma 4.3. Each $V\left(0 ; T_{1}, \cdots, T_{n} ; \varepsilon\right), 0<\varepsilon \leq 1$, is m-convex.
Proof. Let $V=V\left(0 ; T_{1}, \cdots, T_{n} ; \varepsilon\right)$. Clearly V is convex by Lemma (4.2). To show V is an idempotent i.e. $V V \subset V$. Let x and $y \in V, 0<\varepsilon \leq 1$.

$$
\begin{aligned}
{\left[T_{k}(x y), T_{k}(x y)\right]^{\frac{1}{p}} } & =\left[T_{k}(x) T_{k}(y), T_{k}(x) T_{k}(y)\right]^{\frac{1}{p}} \\
& k=1,2, \cdots, n . \\
& \leq\left[T_{k}(x), T_{k}(x)\right]^{\frac{1}{p}}\left[T_{k}(y), T_{k}(y)\right]^{\frac{1}{p}} \\
& <\varepsilon^{2} \leq \varepsilon .
\end{aligned}
$$

Thus $\left\|T_{k}(x y)\right\|<\varepsilon, k=1,2, \cdots, n$. Hence $x y \in V$ for all x and $y \in V$, $0<\varepsilon \leq 1$. So V is an idempotent. Thus V is m-convex.

Lemma 4.4 Let (E, L, M) be a g.s.i.p. algebra of type (p). If a topology on it is introduced in which the sets $V(x ; T ; \varepsilon)$ are neighbourhoods of $x, \forall \varepsilon>0$, $T \in L$, then the resulting topological space is Hausdorff.
Proof. Here $[T x, T x]=\|T x\|^{p}$. Suppose E is not a Hausdorff space. Then there exists at least two points $x_{1}, x_{2} \in E, x_{1} \neq x_{2}$ for which any two neighbourhoods have common points. Thus for any two neighbourhoods $V\left(x_{1} ; T ; \frac{1}{n}\right)$ and $V\left(x_{2} ; T ; \frac{1}{n}\right)$ there exists at least one $y_{n} \in E$ such that

$$
y_{n} \in V\left(x_{1} ; T ; \frac{1}{n}\right) \cap V\left(x_{2} ; T ; \frac{1}{n}\right)
$$

So,

$$
\left\|T\left(y_{n}-x_{1}\right)\right\|<\frac{1}{n}, \quad \text { and } \quad\left\|T\left(y_{n}-x_{2}\right)\right\|<\frac{1}{n}
$$

Now,

$$
\begin{aligned}
\left\|T\left(x_{1}-x_{2}\right)\right\| & =\left\|T\left(x_{1}-y_{n}+y_{n}-x_{2}\right)\right\| \\
& =\left\|T\left(x_{1}-y_{n}\right)+T\left(y_{n}-x_{2}\right)\right\| \\
& \leq\left\|T\left(x_{1}-y_{n}\right)\right\|+\left\|T\left(y_{n}-x_{2}\right)\right\| \\
& <\frac{1}{n}+\frac{1}{n}=\frac{2}{n}
\end{aligned}
$$

Since the above is true for any positive integer n, it follows that $T\left(x_{1}-\right.$ $\left.x_{2}\right)=0$ which is true for any $T \in L$. Thus $x_{1}-x_{2}=0$; So $x_{1}=x_{2}$; which is a contradiction.

Theorem 4.5. Let (E, L, M) be a g.s.i.p. algebra of type (p). Then (E, L, M) equipped with the strong topology is a locally convex algebra.
Proof. Nath [9] prove that (E, L, M) is a Hausdorff locally convex space. To complete the proof we show that for any $V\left(x_{0} x ; T_{1}, \cdots, T_{n} ; \varepsilon\right)$, there exists $V\left(x ; T_{1}, \cdots, T_{n} ; \frac{\varepsilon}{\lambda}\right)$,

$$
\lambda=\max _{1 \leq k \leq n}\left(\lambda_{k}\right), \quad \lambda_{k}=\left[T_{k}\left(x_{0}\right), T_{k}\left(x_{0}\right)\right]^{\frac{1}{p}},
$$

$k=1,2, \cdots, n$; such that

$$
x_{0} V\left(x ; T_{1}, \cdots, T_{n} ; \frac{\varepsilon}{\lambda}\right) \subset V\left(x_{0} x ; T_{1}, \cdots, T_{n} ; \varepsilon\right) .
$$

Let $y \in V\left(x ; T_{1}, \cdots, T_{n} ; \frac{\varepsilon}{\lambda}\right) ;$ Then $\left[T_{k}(y-x), T_{k}(y-x)\right]^{\frac{1}{p}}<\frac{\varepsilon}{\lambda}, k=1,2, \cdots, n$. Now,

$$
\begin{aligned}
{\left[T_{k}\left(x_{0} y-x_{0} x\right), T_{k}\left(x_{0} y-x_{o} x\right)\right]^{\frac{1}{p}} } & =\left[T_{k} x_{0}(y-x), T_{k} x_{0}(y-x)\right]^{\frac{1}{p}} \\
& =\left[T_{k}\left(x_{0}\right) T_{k}(y-x), T_{k}\left(x_{0}\right) T_{k}(y-x)\right]^{\frac{1}{p}} \\
& \leq\left[T_{k}\left(x_{0}\right), T_{k}\left(x_{0}\right)\right]^{\frac{1}{p}}\left[T_{k}(y-x), T_{k}(y-x)\right]^{\frac{1}{p}} \\
& <\lambda \frac{\varepsilon}{\lambda}=\varepsilon .
\end{aligned}
$$

Thus $x_{0} y \in V\left(x_{0} x ; T_{1}, \cdots, T_{n} ; \varepsilon\right)$, for all $y \in V\left(x ; T_{1}, \cdots, T_{n} ; \frac{\varepsilon}{\lambda}\right)$, and this proves $x_{0} V\left(x ; T_{1}, \cdots, T_{n} ; \frac{\varepsilon}{\lambda}\right) \subset V\left(x_{0} x: T_{1}, \cdots, T_{n} ; \varepsilon\right)$.

Similarly, we can show that

$$
V\left(x ; T_{1}, \cdots, T_{n} ; \frac{\varepsilon}{\lambda}\right) x_{0} \subset V\left(x x_{v} ; T_{1}, \cdots, T_{n} ; \varepsilon\right) .
$$

This shows that (E, L, M) is a locally convex algebra under the strong topology.

Theorem 4.6. Let (E, L, M) be a g.s.i.p algebra of type (p). Then (E, L, M) equipped with the strong topology is a locally m-convex algebra.

Proof. Let

$$
\lambda=\max _{1 \leq k \leq n}\left(\lambda_{k}\right), \lambda_{k}=\left[T_{k}\left(x_{0}\right), T_{k}\left(x_{0}\right)\right]^{\frac{1}{p}},
$$

$k=1,2, \cdots, n$.
If $\lambda \geq 1$, then the result follows from Lemma (4.2) and lemma (4.3).
If $\lambda<1$, then the result follows from lemma (4.3), because we can show that for any $V\left(x_{0} x: T_{1}, \cdots, T_{n} ; \varepsilon\right)$, there exists $V\left(x ; T_{1}, \cdots, T_{n} ; \varepsilon\right)$ such that

$$
x_{0} V\left(x ; T_{1}, \cdots, T_{n} ; \varepsilon\right) \subset V\left(x_{0} x ; T_{1}, \cdots, T_{n} ; \varepsilon\right) .
$$

Theorem 4.7. Let (E, L, M) be a g.s.i.p. algebra of type (p). Then (E, L, M) with strong topology is metrizable if there is a countable subset β of L with the following property: For each $T \in L$, there exists an $S \in \mathcal{L}$ such that $[T x, T x]^{\frac{1}{p}} \leq[S x, S x]^{\frac{1}{p}}, x \in E$, where \mathcal{L} is the linear manifold generated by β.
Proof. It is sufficient to show that the family of sets

$$
\left\{\left(0 ; S_{1}, \cdots, S_{n} ; \frac{1}{n}\right) ; S_{1}, \cdots, \varepsilon S_{n}, \quad k, n=1,2, \cdots\right\}
$$

is a neighbourhood basis at 0 for the strong topology.
For every $T \in L$, we can find and $S \in \mathcal{L}$ for which

$$
\begin{equation*}
V(0 ; S ; \varepsilon) \subset V(0 ; T ; \varepsilon) \tag{1}
\end{equation*}
$$

Since $\|T x\| \leq\|S x\|$.
Clearly, we have $S=\lambda_{1} S_{1}+\cdots+\lambda_{k} S_{k}$, where $S_{1}, \cdots, S_{k} \in \beta$ and so, $\forall x \in E$,

$$
\begin{align*}
{[S x, S x]^{\frac{1}{p}}=} & \|S x\|=\left\|\left(\lambda_{1} S_{1}+\cdots+\lambda_{k} S_{k}\right)(x)\right\| \tag{2}\\
& \leq\left|\lambda_{1}\right|\left\|S_{1} x\right\|+\cdots+\left|\lambda_{k}\right|\left\|S_{k} x\right\| .
\end{align*}
$$

Thus, if we choose an integer n such that

$$
\frac{1}{n}<\frac{\varepsilon}{k\left|\lambda_{1}\right|}, \cdots, \frac{1}{n}<\frac{\varepsilon}{k\left|\lambda_{k}\right|} .
$$

Then $x \in V\left(0 ; S_{r} ; \frac{1}{n}\right)$ implies $\left\|S_{r} x\right\| \leq \frac{1}{n}<\frac{\varepsilon}{k\left|\lambda_{r}\right|}, r=1,2, \cdots, k$. So, (2) becomes $\|S x\|<\frac{\varepsilon}{k}+\cdots+\frac{\varepsilon}{k}(k$ times $)<k \frac{\varepsilon}{k}=\varepsilon$.
So, $x \in V\left(0 ; S_{1} ; \frac{1}{n}\right) \cap \cdots \cap V\left(0 ; S_{k} ; \frac{1}{n}\right)$ implies $x \in V(0 ; S ; \varepsilon)$. i.e., $x \in$ $V\left(0 ; S_{1}, \cdots, S_{k} ; \frac{1}{n}\right)$ implies $x \in V\left(0 ; S^{n} ; \varepsilon\right)$. So,

$$
V\left(0 ; S_{1}, \cdots, S_{k} ; \frac{1}{n}\right) \subset V(0 ; S ; \varepsilon)
$$

Using (1)

$$
\begin{aligned}
V(0 ; T ; \varepsilon) & \supset V(0 ; S ; \varepsilon) \\
& \supset V\left(0 ; S_{1} ; \frac{1}{n}\right) \cap \cdots \cap V\left(0 ; S_{k} ; \frac{1}{n}\right) \\
& =V\left(0 ; S_{1}, \cdots, S_{k} ; \frac{1}{n}\right)
\end{aligned}
$$

Thus the family $\left\{V\left(0 ; S_{1}, \cdots, S_{k} ; \frac{1}{n}\right): S_{1}, \cdots, S_{k} \in \beta ; k, n=1,2, \cdots\right\}$ is a neighbourhood basis at 0 which is countable since β is countable. Hence E is metrizable in the strong topology.

5. Weak Topology

If (E, L, M) is a g.s.i.p. algebra of type (p), for each $T \in L$ and each $u \in M$, we define a linear functional $\phi(x ; T, u)=[T x, u]$ on E. Let F_{0} be the family of all such linear functionals. Note that, in general, F_{0} is not a vector space. Denote by F the vector space (over the same field as that of $E)$ spanned by F_{0}.

Proposition 5.1. E and F constitute a dual pair.
Proof. If $\phi(x)=0, \forall \phi \in F$, then $[T x, u]=0, \forall u \in M$ and $T \in L$. But then $x=0$. (cf. [10]) Conversely, if for a given $\phi_{0} \in F$, we have that $\phi_{0}(x)=0, \forall x \in E$, then ϕ_{0} is the zero element of F.

Notation 5.2. We write $\langle x, \phi\rangle=\phi(x), x \in E, \phi \in F$.
clearly $\langle x, \phi\rangle$ is a bilinear functional on E and F.
Proposition 5.3. Each $\phi \in F$ is continuous on E in the strong topology.

Proof. For arbitrary $\varepsilon>0$ we have that

$$
\begin{aligned}
\left|\phi(x ; T, u)-\phi\left(x_{0} ; T, u\right)\right| & =\left|[T x, u]-\left[T x_{0}, u\right]\right| \\
& =\left|\left[T\left(x-x_{0}\right), u\right]\right| \\
& \leq\left[T\left(x-x_{0}\right), T\left(x-x_{0}\right)\right]^{\frac{1}{p}}[u, u]^{\frac{p-1}{p}}<\varepsilon
\end{aligned}
$$

whenever

$$
\left[T\left(x-x_{0}\right), T\left(x-x_{0}\right)\right]^{\frac{1}{p}}<\frac{\varepsilon}{[u, u]^{\frac{p-1}{p}}} .
$$

Thus, each $\phi \in F$ is a continuous linear functional on E equipped with the strong topology. Hence the continuity of any $\phi \in F$ follows.

Definition 5.4. The coarsest topology on E for which all the linear functional from F are continuous is called the weak topology. The family of all subsets of $E W\left(x ; \phi_{1}, \cdots, \phi_{n}\right)=\left\{y \in E:\left|\phi_{k}(y-x)\right|<\right.$ $1, k=1,2, \cdots, n\}, \forall \phi_{1}, \phi_{2}, \cdots, \phi_{n} \in F, n=1,2, \cdots$ is a neighbourhood basis at x. Since F_{0} generates F, the family of all neighbourhoods $W\left(0 ; u_{1}, T_{1}, \cdots, u_{n}, T_{n}\right)=\left\{x \in E:\left|\left[T_{k} x, u_{k}\right]\right|<1, k=1,2, \cdots, n\right\}$ corresponding to all $u_{1}, \cdots, u_{n} \in M, T_{1}, \cdots, T_{n} \in \bar{L}, n=1,2, \cdot$ is also a neighbourhood basis at 0 .

Remark 5.5. Since E and F form a dual pair, then E is a Hausdorff topological space in the weak topology.

Proposition 5.6. Let (E, L, M) be a g.s.i.p. algebra of type (p). Then (E, L, M) equipped with the weak topology is a locally convex algebra.
Proof. It follows from the general properties of weak topologies.
Acknowledgement. I wish to express my grateful thanks to Dr. S. M. Khaleelulla and Dr. J. Rizvi for their kind help during the preparation of this paper.

References

[1] Ambrose, W., Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc., 57 (1945), 364-386.
[2] Bonsall, F.F. and Duncan, J., Complete normed algebras, Springer-Verlag, Berlin (1973).
[3] Elsayyad, S.G., Semi-inner product algebras of type (p), M. Sc. Thesis, Fc. of Sc., King Abdulaziz Univ., (1986).
[4] Husain, T. and Malviya, B.D., On Semi-inner product spaces, II, Colloq. Math. Vol. 24, Fasc. 1, (1972), 235-240.
[5] Husain, T. and Khaleelulla, S.M., Topologies on generalized semi-inner product algebras, Lattice and spaces, Kyungpook Math. J., Vol. 17, No. 1, (1977), 7-15.
[6] Lumer, G., Semi-inner product spaces, Trans. Amer. Math. Soc. 100, (1961), 2943 :
[7] Michael, E.A., Locally multiplicatively-convex topological algebras, Memories of A.M.S., No. 11, (1952).
[8] Nath, B., On a generalization of semi-inner product spaces, Math. J. Okayama Univ., 15, (1971/72), 1-6.
[9] Nath, B., Topologies on generalized semi-inner product spaces, compositio Math. Vol. 23, Fasc. 3 (1971), 309-316.
[10] Progovecki, E., Topologies on generalized inner product spaces, Canadian J. Math. 21, (1961), 158-169.

Mathematics Department, Faculty of Science, King Abdulaziz University, P.O.Box 9028, Jeddah, Saudi Arabia

[^0]: Received January 13, 1987

