Volume 30, Number 1, June, 1990

TOPOLOGIES ON GENERALIZED SEMI-INNER PRODUCT ALGEBRAS OF TYPE (p)

Mohammed A. Abohadi

1. Introduction

Using the concept of Prugovecki [10] and Lumer [6], Nath [9] introduce what he called generalized semi-inner product spaces, and studied strong topologies on these spaces. On the other hand Ambrose [1] introduced and studied a special class of Banach algebras called H^* -algebras whose underlying spaces are Hilbert spaces. Later on, Husain and Malyviya [4] replaced the Hilbert space structure in H^* -algebras by a more general structure called semi-inner product space and they obtained a new class of algebras called semi-inner product algebras. This concept led Husain and Khaleelulla [5] to define the concept of a generalized semi-inner product algebra and they obtained certain results on such algebras.

Using this concept and the concept of Elsayyad [3], we introduce, in the present paper, the concept of a generalized semi-inner product algebra of type (p) and study strong and weak topologies on such algebras which make them locally convex as well as locally m-convex.

2. Preliminaries

Definition 2.1 [8]. Let *E* be a vector space. We define a map [.,.]: $E \times E \to k$ satisfying the following conditions:

- $(S_1) [x + y, z] = [x, z] + [y, z], x, y \text{ and } z \in E.$
- $(S_2) [\lambda x, y] = \lambda[x, y], \lambda \in k.$
- (S₃) [x, x] > 0, if $x \neq 0$.
- $(S_4) |[x,y]| < [x,x]^{\frac{1}{p}} [y,y]^{\frac{p-1}{p}}, 1 < p < \infty.$

Received January 13, 1987

Then [.,.] is called a *semi-inner product* of type (p) on E, and E, equipped with the map [.,.], is called a semi-inner product space of type (p) (abbriviated as s.i.p. space of type (p).

Remark 2.2. If p = 2, this concept is called semi-inner product space which is due to Lumer [6] (abbriviated as s.i.p.space).

Remark 2.3. Nath [8] proved that a s.i.p space of type (p) becomes a normed space under $||x|| = [x, x]^{\frac{1}{p}}$ and a normed space can be made into s.i.p. space of type (p).

Definition 2.4 [2]. A normed algebra E is a normed space with is also algebra such that $||xy|| \le ||x|| ||y||$ for all x and $y \in E$.

Definition 2.5 [7]. Let E be an algebra.

(a) A subset V of E is called an idempotent if $VV \subset V$.

(b) A subset V of E is called m-convex (multiplicatively convex) if V is convex and idempotent.

Definition 2.6 [7]. A locally convex algebra is an algebra and a Hausdorff locally convex space.

Definition 2.7 [7]. A locally convex algebra is called locally m-convex algebra if there exists a neighbourhood basis of consisting of m-convex sets.

Definition 2.8 [5]. A vector space E is called semi-inner product algebra (abbriviated as s.i.p. algebra) if

(i) E is a normed algebra,

(ii) E is s.i.p. space with the same norm as that of normed algebra.

Definition 2.9 [3]. A vector space E is called semi-inner product algebra of type (p) (abbriviated as s.i.p. algebra of type (p)) if

(i) E is a normed algebra,

(ii) E is s.i.p. space of type (p) with the same norm as that of normed algebra.

Remark 2.10. In [3], E was assumed to be complete.

3. Generalized Semi–Inner Product Algebra of Type (p)

Definition 3.1 [5]. A vector space E is called a generalized semi-inner product algebra (abbriviated as g.s.i.p. algebra) if

 (G_1) E is an algebra

- (G_2) there is a subspace M of E which is s.i.p. algebra,
- (G_3) there is a set L of linear multiplicative operators of E satisfying:
 - (i) each member of L maps E into M,
 - (ii) if Tx = 0 for all $T \in L$, then x = 0.

We denote a generalized semi-inner product algebra by the triple (E, L, M).

Remark 3.2. Every s.i.p. algebra is a g.s.i.p. algebra, with M = E and L = [I], I the identity operator on E.

Definition 3.3. A vector space E is called a generalized semi-inner product algebra of type (p) (abbriviated as g.s.i.p. algebra of type (p)) if

 (G_1) E is an algebra,

- (G_2) there is a subspace M of E which is s.i.p. algebra of type (p),
- (G_3) there is a set of linear multiplicative operators on E satisfying:
 - (i) each member of L maps E into M,
 - (ii) if Tx = 0 for all $T \in L$, then x = 0.

We denote a generalized semi-inner product algebra of type (p) by the triple (E, L, M).

Remark 3.4. Every s.i.p. algebra of type (p) is a g.s.i.p. algebra of type (p), with M = E and L = [I], I the identity operator on E.

Remark 3.5. The example which was given in [5] and [9] is incorrect because the operator T^{p-1} is not linear.

Remark 3.6. It would be interesting to find a non-trivial example of a g.s.i.p. algebra of type (p) which is not s.i.p. algebra of type (p).

4. Strong Topology

Definition 4.1. Let (E, L, M) be a g.s.i.p. algebra of type (p). For each $x \in E$, the family of sets

$$V(x;T_1,\cdots,T_n;\varepsilon) = \{y \in E; [T_k(y-x),T_k(y-x)]^{\frac{1}{p}} < \varepsilon,$$

 $k = 1, 2, \dots, n \} \forall \varepsilon > 0, T_1, \dots, T_n \in L$ and $n = 1, 2, \dots$ constitutes a neighbourhood basis at x for a topology on E which we call the strong topology.

Lemma 4.2. Each $V(0; T_1, \dots, T_n; \varepsilon)$ is circled and convex.

Proof. Let $V = V(0; T_1, \dots, T_n; \varepsilon)$. To show that V is circled: Let $\lambda \in C$ with $|\lambda| \leq 1$ and $x \in V$.

$$[T_k(\lambda x), T_k(\lambda x)]^{\frac{1}{p}} = ||T_k(\lambda x)||$$

= $|\lambda| ||T_k(x)||$
< $|\lambda| \varepsilon \le \varepsilon, \quad k = 1, 2, \cdots, n.$

Thus $||T_k(\lambda x)|| < \varepsilon, k = 1, 2, \dots, n$. Hence $\lambda x \in V$. So V is circled. To show that V is convex: Let $\lambda \in \mathbf{C}, 0 < \lambda < 1$ and $x, y \in V$.

$$\begin{aligned} \|T_k[\lambda x + (1-\lambda)y]\| &= \|T_k(\lambda x) + T_k[(1-\lambda)y]\| \\ &= \|\lambda T_k(x) + (1-\lambda)T_k(y)\| \\ &< \|T_k(x)\| + (1-\lambda)\|T_k(y)\| \\ &< \lambda \varepsilon + (1-\lambda)\varepsilon = \varepsilon. \end{aligned}$$

Thus $||T_k[\lambda x + (1 - \lambda)y]|| < \varepsilon, k = 1, 2, \dots, n$. Hence $\lambda x + (1 - \lambda)y \in V$. So V is convex.

Lemma 4.3. Each $V(0; T_1, \dots, T_n; \varepsilon), 0 < \varepsilon \leq 1$, is m-convex.

Proof. Let $V = V(0; T_1, \dots, T_n; \varepsilon)$. Clearly V is convex by Lemma (4.2). To show V is an idempotent i.e. $VV \subset V$. Let x and $y \in V, 0 < \varepsilon \leq 1$.

$$[T_{k}(xy), T_{k}(xy)]^{\frac{1}{p}} = [T_{k}(x)T_{k}(y), T_{k}(x)T_{k}(y)]^{\frac{1}{p}},$$

$$k = 1, 2, \cdots, n.$$

$$\leq [T_{k}(x), T_{k}(x)]^{\frac{1}{p}}[T_{k}(y), T_{k}(y)]^{\frac{1}{p}}$$

$$< \varepsilon^{2} \leq \varepsilon.$$

Thus $||T_k(xy)|| < \varepsilon, k = 1, 2, \dots, n$. Hence $xy \in V$ for all x and $y \in V$, $0 < \varepsilon \leq 1$. So V is an idempotent. Thus V is m-convex.

Lemma 4.4 Let (E, L, M) be a g.s.i.p. algebra of type (p). If a topology on it is introduced in which the sets $V(x; T; \varepsilon)$ are neighbourhoods of $x, \forall \varepsilon > 0$, $T \in L$, then the resulting topological space is Hausdorff.

Proof. Here $[Tx, Tx] = ||Tx||^p$. Suppose E is not a Hausdorff space. Then there exists at least two points $x_1, x_2 \in E$, $x_1 \neq x_2$ for which any two neighbourhoods have common points. Thus for any two neighbourhoods $V(x_1; T; \frac{1}{n})$ and $V(x_2; T; \frac{1}{n})$ there exists at least one $y_n \in E$ such that

$$y_n \in V(x_1; T; \frac{1}{n}) \cap V(x_2; T; \frac{1}{n}).$$

So,

$$||T(y_n - x_1)|| < \frac{1}{n}$$
, and $||T(y_n - x_2)|| < \frac{1}{n}$.

Now,

$$\begin{aligned} \|T(x_1 - x_2)\| &= \|T(x_1 - y_n + y_n - x_2)\| \\ &= \|T(x_1 - y_n) + T(y_n - x_2)\| \\ &\leq \|T(x_1 - y_n)\| + \|T(y_n - x_2)\| \\ &< \frac{1}{n} + \frac{1}{n} = \frac{2}{n} \end{aligned}$$

Since the above is true for any positive integer n, it follows that $T(x_1 - x_2) = 0$ which is true for any $T \in L$. Thus $x_1 - x_2 = 0$; So $x_1 = x_2$; which is a contradiction.

Theorem 4.5. Let (E, L, M) be a g.s.i.p. algebra of type (p). Then (E, L, M) equipped with the strong topology is a locally convex algebra.

Proof. Nath [9] prove that (E, L, M) is a Hausdorff locally convex space. To complete the proof we show that for any $V(x_0x; T_1, \dots, T_n; \varepsilon)$, there exists $V(x; T_1, \dots, T_n; \frac{\varepsilon}{\lambda})$,

$$\lambda = \max_{1 \le k \le n} (\lambda_k), \quad \lambda_k = [T_k(x_0), T_k(x_0)]^{\frac{1}{p}},$$

 $k = 1, 2, \cdots, n$; such that

$$x_0V(x;T_1,\cdots,T_n;\frac{\varepsilon}{\lambda}) \subset V(x_0x;T_1,\cdots,T_n;\varepsilon).$$

Let $y \in V(x; T_1, \dots, T_n; \frac{\varepsilon}{\lambda})$; Then $[T_k(y-x), T_k(y-x)]^{\frac{1}{p}} < \frac{\varepsilon}{\lambda}, k = 1, 2, \dots, n$. Now,

$$\begin{split} [T_k(x_0y - x_0x), T_k(x_0y - x_ox)]^{\frac{1}{p}} &= [T_kx_0(y - x), T_kx_0(y - x)]^{\frac{1}{p}} \\ &= [T_k(x_0)T_k(y - x), T_k(x_0)T_k(y - x)]^{\frac{1}{p}} \\ &\leq [T_k(x_0), T_k(x_0)]^{\frac{1}{p}}[T_k(y - x), T_k(y - x)]^{\frac{1}{p}} \\ &< \lambda \frac{\varepsilon}{\lambda} = \varepsilon. \end{split}$$

Thus $x_0 y \in V(x_0 x; T_1, \dots, T_n; \varepsilon)$, for all $y \in V(x; T_1, \dots, T_n; \frac{\varepsilon}{\lambda})$, and this proves $x_0 V(x; T_1, \dots, T_n; \frac{\varepsilon}{\lambda}) \subset V(x_0 x: T_1, \dots, T_n; \varepsilon)$.

Similarly, we can show that

$$V(x;T_1,\cdots,T_n;\frac{\varepsilon}{\lambda})x_0 \subset V(xx_0;T_1,\cdots,T_n;\varepsilon).$$

This shows that (E, L, M) is a locally convex algebra under the strong topology.

Theorem 4.6. Let (E, L, M) be a g.s.i.p algebra of type (p). Then (E, L, M) equipped with the strong topology is a locally m-convex algebra.

Proof. Let

$$\lambda = \max_{1 \le k \le n} (\lambda_k), \lambda_k = [T_k(x_0), T_k(x_0)]^{\frac{1}{p}},$$

 $k=1,2,\cdots,n.$

If $\lambda \geq 1$, then the result follows from Lemma (4.2) and lemma (4.3).

If $\lambda < 1$, then the result follows from lemma (4.3), because we can show that for any $V(x_0x : T_1, \dots, T_n; \varepsilon)$, there exists $V(x; T_1, \dots, T_n; \varepsilon)$ such that

$$x_0V(x;T_1,\cdots,T_n;\varepsilon) \subset V(x_0x;T_1,\cdots,T_n;\varepsilon).$$

Theorem 4.7. Let (E, L, M) be a g.s.i.p. algebra of type (p). Then (E, L, M) with strong topology is metrizable if there is a countable subset β of L with the following property: For each $T \in L$, there exists an $S \in \mathcal{L}$ such that $[Tx, Tx]^{\frac{1}{p}} \leq [Sx, Sx]^{\frac{1}{p}}$, $x \in E$, where \mathcal{L} is the linear manifold generated by β .

Proof. It is sufficient to show that the family of sets

$$\{(0; S_1, \cdots, S_n; \frac{1}{n}); S_1, \cdots, \varepsilon S_n, \quad k, n = 1, 2, \cdots\}$$

is a neighbourhood basis at 0 for the strong topology. For every $T \in L$, we can find and $S \in \mathcal{L}$ for which

$$V(0;S;\varepsilon) \subset V(0;T;\varepsilon). \tag{1}$$

Since $||Tx|| \leq ||Sx||$.

Clearly, we have $S = \lambda_1 S_1 + \cdots + \lambda_k S_k$, where $S_1, \cdots, S_k \in \beta$ and so, $\forall x \in E$,

$$[Sx, Sx]^{\frac{1}{p}} = ||Sx|| = ||(\lambda_1 S_1 + \dots + \lambda_k S_k)(x)||$$

$$\leq |\lambda_1| ||S_1 x|| + \dots + |\lambda_k| ||S_k x||.$$
(2)

Topolgies on Generalized Semi-Inner Product Algebras

Thus, if we choose an integer n such that

$$\frac{1}{n} < \frac{\varepsilon}{k|\lambda_1|}, \cdots, \frac{1}{n} < \frac{\varepsilon}{k|\lambda_k|}$$

Then $x \in V(0; S_r; \frac{1}{n})$ implies $||S_r x|| \leq \frac{1}{n} < \frac{\varepsilon}{k|\lambda_r|}, r = 1, 2, \cdots, k$. So, (2) becomes $||Sx|| < \frac{\varepsilon}{k} + \cdots + \frac{\varepsilon}{k}$ (k times) $< k\frac{\varepsilon}{k} = \varepsilon$. So, $x \in V(0; S_1; \frac{1}{n}) \cap \cdots \cap V(0; S_k; \frac{1}{n})$ implies $x \in V(0; S; \varepsilon)$. i.e., $x \in V(0; S_1, \cdots, S_k; \frac{1}{n})$ implies $x \in V(0; S; \varepsilon)$. So,

$$V(0; S_1, \cdots, S_k; \frac{1}{n}) \subset V(0; S; \varepsilon).$$

Using (1)

$$V(0;T;\varepsilon) \supset V(0;S;\varepsilon)$$

$$\supset V(0;S_1;\frac{1}{n}) \cap \dots \cap V(0;S_k;\frac{1}{n})$$

$$= V(0;S_1,\dots,S_k;\frac{1}{n})$$

Thus the family $\{V(0; S_1, \dots, S_k; \frac{1}{n}): S_1, \dots, S_k \in \beta; k, n = 1, 2, \dots\}$ is a neighbourhood basis at 0 which is countable since β is countable. Hence E is metrizable in the strong topology.

5. Weak Topology

If (E, L, M) is a g.s.i.p. algebra of type (p), for each $T \in L$ and each $u \in M$, we define a linear functional $\phi(x; T, u) = [Tx, u]$ on E. Let F_0 be the family of all such linear functionals. Note that, in general, F_0 is not a vector space. Denote by F the vector space (over the same field as that of E) spanned by F_0 .

Proposition 5.1. E and F constitute a dual pair.

Proof. If $\phi(x) = 0, \forall \phi \in F$, then $[Tx, u] = 0, \forall u \in M$ and $T \in L$. But then x = 0. (cf. [10]) Conversely, if for a given $\phi_0 \in F$, we have that $\phi_0(x) = 0, \forall x \in E$, then ϕ_0 is the zero element of F.

Notation 5.2. We write $\langle x, \phi \rangle = \phi(x), x \in E, \phi \in F$. clearly $\langle x, \phi \rangle$ is a bilinear functional on E and F.

Proposition 5.3. Each $\phi \in F$ is continuous on E in the strong topology.

Proof. For arbitrary $\varepsilon > 0$ we have that

$$\begin{aligned} |\phi(x;T,u) - \phi(x_0;T,u)| &= |[Tx,u] - [Tx_0,u]| \\ &= |[T(x-x_0),u]| \\ &\leq [T(x-x_0),T(x-x_0)]^{\frac{1}{p}}[u,u]^{\frac{p-1}{p}} < \varepsilon \end{aligned}$$

whenever

$$[T(x-x_0), T(x-x_0)]^{\frac{1}{p}} < \frac{\varepsilon}{[u,u]^{\frac{p-1}{p}}}.$$

Thus, each $\phi \in F$ is a continuous linear functional on E equipped with the strong topology. Hence the continuity of any $\phi \in F$ follows.

Definition 5.4. The coarsest topology on E for which all the linear functional from F are continuous is called the weak topology. The family of all subsets of E $W(x; \phi_1, \dots, \phi_n) = \{y \in E : |\phi_k(y - x)| < 1, k = 1, 2, \dots, n\}, \forall \phi_1, \phi_2, \dots, \phi_n \in F, n = 1, 2, \dots$ is a neighbourhood basis at x. Since F_0 generates F, the family of all neighbourhoods $W(0; u_1, T_1, \dots, u_n, T_n) = \{x \in E : |[T_k x, u_k]| < 1, k = 1, 2, \dots, n\}$ corresponding to all $u_1, \dots, u_n \in M, T_1, \dots, T_n \in L, n = 1, 2, \dots$ is also a neighbourhood basis at 0.

Remark 5.5. Since E and F form a dual pair, then E is a Hausdorff topological space in the weak topology.

Proposition 5.6. Let (E, L, M) be a g.s.i.p. algebra of type (p). Then (E, L, M) equipped with the weak topology is a locally convex algebra.

Proof. It follows from the general properties of weak topologies.

Acknowledgement. I wish to express my grateful thanks to Dr. S. M. Khaleelulla and Dr. J. Rizvi for their kind help during the preparation of this paper.

References

- Ambrose, W., Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc., 57 (1945), 364-386.
- [2] Bonsall, F.F. and Duncan, J., Complete normed algebras, Springer-Verlag, Berlin (1973).

Topolgies on Generalized Semi-Inner Product Algebras

- [3] Elsayyad, S.G., Semi-inner product algebras of type (p), M. Sc. Thesis, Fc. of Sc., King Abdulaziz Univ., (1986).
- [4] Husain, T. and Malviya, B.D., On Semi-inner product spaces, II, Colloq. Math. Vol. 24, Fasc. 1, (1972), 235-240.
- [5] Husain, T. and Khaleelulla, S.M., Topologies on generalized semi-inner product algebras, Lattice and spaces, Kyungpook Math. J., Vol. 17, No. 1, (1977), 7-15.
- [6] Lumer, G., Semi-inner product spaces, Trans. Amer. Math. Soc. 100, (1961), 29-43.
- [7] Michael, E.A., Locally multiplicatively-convex topological algebras, Memories of A.M.S., No. 11, (1952).
- [8] Nath, B., On a generalization of semi-inner product spaces, Math. J. Okayama Univ., 15, (1971/72), 1-6.
- [9] Nath, B., Topologies on generalized semi-inner product spaces, compositio Math. Vol. 23, Fasc. 3 (1971), 309-316.
- [10] Progovecki, E., Topologies on generalized inner product spaces, Canadian J. Math. 21, (1961), 158-169.

MATHEMATICS DEPARTMENT, FACULTY OF SCIENCE, KING ABDULAZIZ UNIVERSITY, P.O.BOX 9028, JEDDAH, SAUDI ARABIA