ON THE UNICELLULARITY OF VOLTERRA-TYPE INTEGRAL OPERATORS

Joo Ho Kang

In this paper we are going to study the unicellularity of Volterra-type operators. We know the Volterra operator is unicellular, and there are several approaches to prove it, for example, in [1] and [5]. One of the approaches is using the Titchmarsh convolution theorem, a simple proof of which can be found in [4]. The unicellularity of the Volterra operator and the Titchmarsh convolution theorem are proved independently. But in [3], Kalish showed that the above two statements are equivalent. We will consider a certain kind of Volterra-type operator and the generalized Titchmarsh convolution theorem. We will show the unicellularity of this Volterra-type operator by using the Titchmarsh convolution theorem and then prove the generalized Titchmarsh convolution theorem using the unicellularity.

Definition 1 [5]: A Volterra-type integral operator on $L^2[0,1]$ is an operator A of the form $(Af)(x) = \int_0^x K(x,t)f(t)dt$, where K is any squareintegrable (with respect to area measure) function on the unit square. K is called its kernel. The Volterra operator V is obtained when the kernel K is the constant function 1 on the unit square. Explicitly, the Volterra operator is defined on $L^2[0,1]$ by $(Vf)(x) = \int_0^x f(t)dt$. In particular, we want to consider a kind of Volterra-type integral operator on $L^2[0,1]$ by giving two functions in $L^2[0,1]$.

Definition 2. Let w(t) and q(t) be in $L^2[0,1]$. We denote the Volterratype operator defined by $(V_{q,w}f)(x) = q(x) \int_0^x f(t)w(t)dt$ for $f \in L^2[0,1]$ by $V_{q,w}$. The kernel is $K(x,t) = \chi_{[0,x]}(t)q(x)w(t)$ on the unit square.

Received April 17, 1990

Supported by a grant from the KOSEF.

Theorem 3. For a Volterra type integral operator $V_{q,w}$, let $Q(t) = \int_0^t q(s)$ w(s)ds, then $(V_{q,w}^n)(x) = (1/(n-1)!)q(x)\int_0^x (Q(x) - Q(t))^{n-1}f(t)w(t)dt$. The kernel is $K_{q,w}^n(x,t) = (1/(n-1)!)q(x)\chi_{[0,x]}(t)(Q(x) - Q(t))^{n-1}w(t)$. (Here, $V_{q,w}^n$ means the n-th power of $V_{q,w}$ and $K_{q,w}^n$ denotes the Volterra kernel of the operator $V_{q,w}^n$).

Proof. We proceed by induction on n. For n = 1, $(V_{q,w}f)(x) = q(x) \int_0^x f(t) w(t)dt$, i.e., $K_{q,w}(x,t) = q(x)\chi_{[0,x]}(t)w(t)$. We assume $K_{q,w}^n(x,t) = (1/(n-1)!)q(x)\chi_{[0,x]}(t)(Q(x)-Q(t))^{n-1}w(t)$. Then by using integration by parts.

$$\begin{aligned} (V_{q,w}^{n+1}f)(x) &= (V_{q,w}^{n}V_{q,w}f)(x) \\ &= (1/(n-1)!)q(x)\int_{0}^{x}(Q(x)-Q(t))^{n-1}(V_{q,w}f)(t)w(t)dt \\ &= (1/(n-1)!)q(x)\int_{0}^{x}(Q(x)-Q(t))^{n-1}q(t)w(t) \\ &\qquad [\int_{0}^{t}f(s)w(s)ds]dt \\ &= (1/(n-1)!)q(x)[(-1/n)(Q(x)-Q(t))^{n}\int_{0}^{t}f(s)w(s)ds \\ &\qquad +\int_{0}^{x}(1/n)(Q(x)-Q(t))^{n}f(t)w(t)dt] \\ &= (1/n!)q(x)\int_{0}^{x}(Q(x)-Q(t))^{n}f(t)w(t)dt. \end{aligned}$$

Hence, $K_{q,w}^n(x,t) = (1/n!)q(x)\chi_{[0,1]}(t)(Q(x) - Q(t))^n w(t).$

For $0 \le a \le b \le 1$, $L^2[a, b]$ means the closed subspace of $L^2[0, 1]$ consisting of functions vanishing a.e. on the complement of [a, b]. Let fbe in $L^2[0, 1]$. The support of f is the complement of the largest open subset of [0, 1] space where f = 0 a.e.. It is denoted by supp f. For each $a \in [0, 1]$, $L^2[a, 1]$ is invariant under every Volterra-type integral operator A. A well-known fact is that every invariant subspace of $L^2[0, 1]$ under the Volterra operator V is one of the $L^2[a, 1], 0 \le a \le 1$; i.e. V is unicellular.

Now we will consider the unicellularity of $V_{q,w}$. The proofs follow a strategy first used by Kalish in [3] for the Volterra operator V. We prove a lemma that transforms a problem about invariant subspaces to a problem of cyclic vectors.

Lemma 4. If the only invariant subspaces for $V_{q,w}$ are $L^2[a,1]$, $0 \le a \le 1$, then f is cyclic for $V_{q,w}$ whenever $0 \in supp f$.

On the Unicellularity of Volterra-type Integral Operators

Proof. Assume that the only invariant subspaces for $V_{q,w}$ are $L^2[a,1], 0 \le a \le 1$. If $f \in L^2[0,1]$ and $0 \in \text{supp } f$, then $\text{span}\{f, V_{q,w}f, \cdots\} = L^2[0,1]$, since the subspace $\text{span}\{f, V_{q,w}f, \cdots\}$ is invariant under $V_{q,w}$.

Corollary 5. $V_{q,w}$ is unicellular, then f is cyclic for $V_{q,w}$, whenever $0 \in supp f$.

We will introduce some notation. $[V_{q,w}]$ stands for the statement that the only closed $V_{q,w}$ -invariant subspaces of $L^2[0,1]$ are the spaces $L^2[a,1]$, $0 \leq a \leq 1$. That is, $[V_{q,w}]$ denotes the statement of the unicellularity of $V_{q,w}$. $[T_{q,w}]$ stands for the generalized Titchmarsh Convolution theorem: If f and g are in $L^2[0,1]$, 0 is in supp f, and if $f \otimes g = 0$ a.e. on [0,1], then g = 0 a.e. on [0,1], where $f \otimes g = q(x) \int_0^x f(x-t)g(t)w(t)dt$. In case q(t) and w(t) are both equal to the constant function 1 on [0,1], [T] will denote the usual Titchmarsh Convolution theorem given by substituting $L^1[0,1]$ instead of $L^2[0,1]$ in $[T_{q,w}]$.

Theorem 6. If w(t) is non-vanishing a.e. on [0, 1], and q(t) is continuous on [0, 1] and non-vanishing on [0, 1], then $[V_{q,w}]$ implies $[T_{q,w}]$.

Proof. Assume that f and g are in $L^2[0,1]$, $f \otimes g = 0$, and $0 \in \text{supp } f$. Then by Lemma 4, f is cyclic for $V_{q,w}$.

Case 1. f and g are continuous on [0,1]: From the assumption, $f \otimes g = 0$. If e is the constant function 1 on [0,1], then $V_{q,w}f = e \otimes$ f and $(V_{q,w}^n f) \otimes g = (e^n \otimes f) \otimes g = e^n \otimes (f \otimes g) = 0$ for all n. So, $q(x) \int_0^x (V_{q,w}^n f)(t)g(x-t)w(t)dt = 0$ in [0,1] for all n. Let x = 1. Then

$$0 = q(1) \int_0^1 (V_{q,w}^n f)(t) g(1-t) w(t) dt$$

= $\langle (V_{q,w}^n f)(t), \overline{q(1)g(1-t)w(t)} \rangle_{L^2[0,1]}$

So, $\overline{q(1)g(1-t)w(t)} \perp (V_{q,w}^n f)(t)$ for all *n*. Since *f* is cyclic for $V_{q,w}, q(1)$ g(1-t)w(t) = 0 a.e. on [0,1]. But $q(t) \neq 0$ and w(t) is non-vanishing a.e. on [0,1]. Hence g(t) = 0 a.e. on [0,1]. $[T_{q,w}]$ is true for all continuous functions *f* and *g*.

Case 2. f and g are in $L^2[0,1]$: If $f \otimes g = 0$ on [0,1], then $0 = e \otimes e \otimes f \otimes g$. So, $(e \otimes f) \otimes (e \otimes g) = 0$ a.e. on [0,1]. But $e \otimes f$ and $e \otimes f$ are continuous and $0 \in \text{supp } (e \otimes f)$, since w(t) is non-vanishing a.e. By case 1, $e \otimes g = 0$ a.e. on [0,1]. Since q(t) is non-vanishing on [0,1] and w(t) is non-vanishing a.e. on [0,1], g(t) = 0 a.e. on [0,1].

Theorem 7. If q(t) and w(t) are positive and continuous on [0,1], then

f is cyclic for $V_{q,w}$ whenever $0 \in supp f$.

Proof. Since $V_{q,w}$ is quasi-nilpotent [2], $(1 - \alpha V_{q,w})^{-1}$ exists for all $\alpha \neq 0$. By Theorem 3,

$$\begin{split} &[(1 - \alpha V_{q,w})^{-1}](x) \\ &= \sum_{n=0}^{\infty} \alpha^n (V_{q,w}^n f)(x) \\ &= f(x) + \alpha \sum_{n=1}^{\infty} \alpha^{n-1} (1/(n-1)!) q(x) \int_0^x (Q(x) - Q(t))^{n-1} f(t) w(t) dt \\ &= f(x) + \alpha q(x) \int_0^x e^{\alpha (Q(x) - Q(t))} f(t) w(t) dt. \end{split}$$

Now we assume $0 \in \text{supp } f$ for $f \in L^2[0,1]$. We want to show f is cyclic for $V_{q,w}$ on $L^2[0,1]$. Suppose $\bar{g} \perp V_{q,w}^n f$ for all $n = 0, 1, 2, \cdots$. Then $\bar{g} \perp (1 - \alpha V_{q,w})^{-1} f$ for all $\alpha \neq 0$. For all $\alpha \neq 0$,

$$0 = \langle (1 - \alpha V_{q,w})^{-1} f, \bar{g} \rangle_{L^{2}[0,1]}$$

= $\int_{0}^{1} [(1 - \alpha V_{q,w})^{-1} f](x) g(x) dx$
= $\alpha \int_{0}^{1} q(x) (\int_{0}^{x} e^{\alpha (Q(x) - Q(t))} f(t) w(t)) dt g(x) dx.$

So, $\int_0^1 q(x) \int_0^x e^{\alpha(Q(x)-Q(t))} f(t)w(t)g(x)dtdx = 0$. Let u(x,t) = Q(x)-Q(t). We will change the variables (x,t) to (u,t). Then

$$\partial(u,t)/\partial(x,t) = \left| \begin{array}{cc} w(x)q(x) & -w(t)q(t) \\ 0 & 1 \end{array} \right| = w(x)q(x).$$

Since w(x)q(x) is positive and continuous, $Q(t) = \int_0^t w(x)q(x)ds$ is strictly increasing. So, it is invertible. Then

$$\begin{split} x &= Q^{-1}(u+Q(t)), \\ 0 &\leq u \leq Q(1), \\ 0 &\leq t \leq Q^{-1}(Q(1)-u), \quad \text{and} \end{split}$$

$$0 = \int_{0}^{Q(1)} e^{\alpha u} \int_{0}^{Q^{-1}(Q(1)-u)} f(t)w(t)g(Q^{-1}(u+Q(t))) \\ \times [1/w(Q^{-1}(u+Q(t)))q(Q^{-1}(u+Q(t)))]dtdu \text{ for all } \alpha \neq 0.$$

Hence $0 = \int_0^{Q^{-1}(Q(1)-u)} f(t)w(t)g(Q^{-1}(u+Q(t))(1/w(Q^{-1}(u+Q(t))))dt$ on $0 \le u \le Q(1)$. Let $s = Q^{-1}(Q(1)-u)$. Then Q(s) = Q(1)-u and $0 = \int_0^s f(t)g(Q^{-1}(Q(1)-(Q(s)-Q(t)))w(t)[1/w(Q^{-1}(Q(1)-(Q(s)-Q(t)))]dt$. Let $h(x) = Q^{-1}(x)$ and $k(x) = Q^{-1}(Q(1)-x)$ for $0 \le x \le Q(1)$. Let $F = (f/q) \circ h$ and $G = (g/w) \circ k$ be defined on $0 \le x \le Q(1)$. Then F and G are in $L^1[0,Q(1)], 0 \in \text{supp } F$, and $0 = \int_0^s F(Q(t))G(Q(s) - Q(t))q(t)w(t)dt$. Let Q(t) = v. Then w(t)q(t)dt = dv and $0 \le v \le Q(s)$. • So, $\int_0^{Q(s)} F(v)G(Q(s) - v)dv = 0 = \int_0^{Q(s)} F(Q(s) - v)G(v)dv = F * G$. By the Titchmarsh Convolution theorem [T], (see [4]), G(v) = 0 a.e. on $0 \le v \le Q(s)$. But $s = Q^{-1}(Q(1)-u)$ and $0 \le u \le Q(1)$. So, $0 \le Q(s) \le Q(1)$. That is, $(g/w) \circ k(v) = (g/w)(Q^{-1}(Q(1)-v)) = 0$ a.e. on $0 \le v \le Q(1)$. Since w is positive, $g(Q^{-1}(Q(1)-v)) = 0$ a.e. on $0 \le v \le Q(1)$. Hence g(x) = 0 a.e. on [0, 1]. Hence f is cyclic for $V_{q,w}$.

Theorem 8. If q(t) and w(t) are positive on [0,1] and continuous on [0,1], then $V_{q,w}$ is unicellular.

Proof. Let M be an invariant subspace of $L^2[0,1]$ for $V_{q,w}$. If M contains f such that $0 \in \text{supp } f$, then f is cyclic for $V_{q,w}$, so $\text{span}\{f, V_{q,w}f, \cdots\} = L^2[0,1] \subset M$, i.e. $M = L^2[0,1]$. Else $0 \notin \text{supp } f$ for any f in M. Thus there is $a_f > 0$ such that f = 0 a.e. on $[0, a_f)$ for each $f \in M$. Let $a_f = \sup\{0 < a \le 1 : f = 0 \text{ a.e. on } [0,a]\}$ and if $\alpha = \inf\{a_f : f \in M\}$, then an easy argument shows that $\alpha > 0$. Clearly, $M \subset L^2[\alpha,1]$, and M contains an element g such that $\alpha \in \text{supp } g$. We will show that g is cyclic for the restriction operator $V_{q,w}|L^2[\alpha,1]$ to conclude that $M = L^2[\alpha,1]$. Let $W(u) = (1-\alpha)^{\frac{1}{2}}w(u(1-\alpha)+\alpha)$ and $Q(u) = (1-\alpha)^{\frac{1}{2}}q(u(1-\alpha)+\alpha)$, for $u \in [0,1]$. Let $U_{\alpha} : L^2[\alpha,1] \to L^2[0,1]$ be defined by

$$(U_{\alpha}h)(x) = (1-\alpha)^{\frac{1}{2}}h(x(1-\alpha)+\alpha)$$
 for $x \in [0,1]$.

Then it can be easily be shown that U is unitary and that $U(V_{q,w}|L^2[\alpha, 1])$ $U^* = V_{Q,W}$. But Q and W are positive and continuous on [0, 1], and if $g \in L^2[\alpha, 1]$ with $\alpha \in \text{supp } g$, then $U_{\alpha}g \in L^2[0, 1]$ with $0 \in \text{supp } U_{\alpha}g$. So, by Theorem 7, $U_{\alpha}g$ is cyclic for $V_{Q,W}$, hence g is cyclic for $V_{q,w}|L^2[\alpha, 1]$.

From Theorems 6, 8 and the Titchmarsh Convolution theorem [T] that is proved in [4], we have:

Theorem 9. If q(t) and w(t) are positive and continuous, then the Volterra-type integral operator $V_{q,w}$ is unicellular. Moreover, the generalized Titchmarsh Convolution theorem is always true.

Joo Ho Kang

References

- [1] R. Beals, *Topics in Operator Theory*, The University of Chicago Press, Chicago and London, 1971.
- [2] P.R. Halmos, A Hilbert Space Problem Book (second edition), Springer-Verlag, New York, 1982.
- G.K. Kalish, A Functional Analysis Proof of Titchmarsh's Theorem on Convolution, J. Math. Ana. and App., 5(1962), 176-183.
- [4] J. Mikusinski, Operational Calculus, Pergamon Press LTD, New York, 1959.
- [5] H. Rajavi, P. Rosenthal, Invariant Subspaces, Springer-Verlag, New York, 1970.
- [6] H.L. Royden, Real Analysis, The Macmillan Company, New York, 1971.

DEPARTMENT OF MATHEMATICS, TAEGU UNIVERSITY, TAEGU, KOREA