ON THE UNICELLULARITY OF VOLTERRA-TYPE INTEGRAL OPERATORS

Joo Ho Kang

In this paper we are going to study the unicellularity of Volterra-type operators. We know the Volterra operator is unicellular, and there are several approaches to prove it, for example, in [1] and [5]. One of the approaches is using the Titchmarsh convolution theorem, a simple proof of which can be found in [4]. The unicellularity of the Volterra operator and the Titchmarsh convolution theorem are proved independently. But in [3], Kalish showed that the above two statements are equivalent. We will consider a certain kind of Volterra-type operator and the generalized Titchmarsh convolution theorem. We will show the unicellularity of this Volterra-type operator by using the Titchmarsh convolution theorem and then prove the generalized Titchmarsh convolution theorem using the unicellularity.

Definition 1 [5]: A Volterra-type integral operator on $L^{2}[\mathrm{C}, 1]$ is an operator A of the form $(A f)(x)=\int_{0}^{x} K(x, t) f(t) d t$, where K is any squareintegrable (with respect to area measure) function on the unit square. K is called its kernel. The Volterra operator V is obtained when the kernei K is the constant function 1 on the unit square. Explicitly, the Volterra operator is defined on $L^{2}[0,1]$ by $(V f)(x)=\int_{0}^{x} f(t) d t$. In particular, we want to consider a kind of Volterra-type integral operator on $L^{2}[0,1]$ by giving two functions in $L^{2}[0,1]$.

Definition 2. Let $w(t)$ and $q(t)$ be in $L^{2}[0,1]$. We denote the Volterratype operator defined by $\left(V_{q, w} f\right)(x)=q(x) \int_{0}^{x} f(t) w(t) d t$ for $f \in L^{2}[0,1]$ by $V_{q, w}$. The kernel is $K(x, t)=\chi_{[0, x]}(t) q(x) w(t)$ on the unit square.

Received April 17, 1990
Supported by a grant from the KOSEF.

Theorem 3. For a Volterra type integral operator $V_{q, w}$, let $Q(t)=\int_{0}^{t} q(s)$ $w(s) d s$, then $\left(V_{q, w}^{n}\right)(x)=(1 /(n-1)!) q(x) \int_{0}^{x}(Q(x)-Q(t))^{n-1} f(t) w(t) d t$. The kernel is $K_{q, w}^{n}(x, t)=(1 /(n-1)!) q(x) \chi_{[0, x]}(t)(Q(x)-Q(t))^{n-1} w(t)$. (Here, $V_{q, w}^{n}$ means the n-th power of $V_{q, w}$ and $K_{q, w}^{n}$ denotes the Volterra kernel of the operator $\left.V_{q, w}^{n}\right)$.
Proof. We proceed by induction on n. For $n=1,\left(V_{q, w} f\right)(x)=q(x) \int_{0}^{x} f(t)$ $w(t) d t$, i.e., $K_{q, w}(x, t)=q(x) \chi_{[0 ; \tau]}(t) w(t)$. We assume $K_{q, w}^{n}(x, t)=(1 /(n-$ $1)!) q(x) \chi_{[0, x]}(t)(Q(x)-Q(t))^{n-1} w(t)$. Then by using integration by parts.

$$
\begin{aligned}
\left(V_{q, w}^{n+1} f\right)(x)= & \left(V_{q, w}^{n} V_{q, w} f\right)(x) \\
= & (1 /(n-1)!) q(x) \int_{0}^{x}(Q(x)-Q(t))^{n-1}\left(V_{q, w} f\right)(t) w(t) d t \\
= & (1 /(n-1)!) q(x) \int_{0}^{x}(Q(x)-Q(t))^{n-1} q(t) w(t) \\
& {\left[\int_{0}^{t} f(s) w(s) d s\right] d t } \\
= & (1 /(n-1)!) q(x)\left[(-1 / n)(Q(x)-Q(t))^{n} \int_{0}^{t} f(s) w(s) d s\right. \\
& \left.+\int_{0}^{x}(1 / n)(Q(x)-Q(t))^{n} f(t) w(t) d t\right] \\
= & (1 / n!) q(x) \int_{0}^{x}(Q(x)-Q(t))^{n} f(t) w(t) d t .
\end{aligned}
$$

Hence, $K_{q, w}^{n}(x, t)=(1 / n!) q(x) \chi_{[0,1]}(t)(Q(x)-Q(t))^{n} w(t)$.
For $0 \leq a \leq b \leq 1, L^{2}[a, b]$ means the closed subspace of $L^{2}[0,1]$ consisting of functions vanishing a.e. on the complement of $[a, b]$. Let f be in $L^{2}[0,1]$. The support of f is the complement of the largest open subset of $[0,1]$ space where $f=0$ a.e.. It is denoted by supp f. For each a $\in[0,1], L^{2}[a, 1]$ is invariant under every Volterra-type integral operator A. A well-known fact is that every invariant subspace of $L^{2}[0,1]$ under the Volterra operator V is one of the $L^{2}[a, 1], 0 \leq a \leq 1$; i.e. V is unicellular.

Now we will consider the unicellularity of $V_{q, w}$. The proofs follow a strategy first used by Kalish in [3] for the Volterra operator V. We prove a lemma that transforms a problem about invariant subspaces to a problem of cyclic vectors.

Lemma 4. If the only invariant subspaces for $V_{q, w}$ are $L^{2}[a, 1], 0 \leq a \leq 1$, then f is cyclic for $V_{q, w}$ whenever $0 \in \operatorname{supp} f$.

Proof. Assume that the only invariant subspaces for $V_{q, w}$ are $L^{2}[a, 1], 0 \leq$ $a \leq 1$. If $f \in L^{2}[0,1]$ and $0 \in \operatorname{supp} f$, then $\operatorname{span}\left\{f, V_{q, w} f, \cdots\right\}=L^{2}[0,1]$, since the subspace $\operatorname{span}\left\{f, V_{q, w} f, \cdots\right\}$ is invariant under $V_{q, w}$.

Corollary 5. $V_{q, w}$ is unicellular, then f is cyclic for $V_{q, w}$, whenever $0 \in$ supp f.

We will introduce some notation. $\left[V_{q, w}\right]$ stands for the statement that the only closed $V_{q, w}$-invariant subspaces of $L^{2}[0,1]$ are the spaces $L^{2}[a, 1]$, $0 \leq a \leq 1$. That is, $\left[V_{q, w}\right]$ denotes the statement of the unicellularity of $V_{q, w} .\left[T_{q, w}\right]$ stands for the generalized Titchmarsh Convolution theorem: If f and g are in $L^{2}[0,1], 0$ is in $\operatorname{supp} f$, and if $f \otimes g=0$ a.e. on $[0,1]$, then $g=0$ a.e. on $[0,1]$, where $f \otimes g=q(x) \int_{0}^{x} f(x-t) g(t) w(t) d t$. In case $q(t)$ and $w(t)$ are both equal to the constant function 1 on $[0,1],[T]$ will denote the usual Titchmarsh Convolution theorem given by substituting $L^{1}[0,1]$ instead of $L^{2}[0,1]$ in $\left[T_{q, w}\right]$.

Theorem 6. If $w(t)$ is non-vanishing a.e. on $[0,1]$, and $q(t)$ is continuous on $[0,1]$ and non-vanishing on $[0,1]$, then $\left[V_{q, w}\right]$ implies $\left[T_{q, w}\right]$.
Proof. Assume that f and g are in $L^{2}[0,1], f \otimes g=0$, and $0 \in \operatorname{supp} f$. Then by Lemma $4, f$ is cyclic for $V_{q, w}$.

Case 1. f and g are continuous on [0,1]: From the assumption, $f \otimes g=0$. If e is the constant function 1 on $[0,1]$, then $V_{q, w} f=e \otimes$ f and $\left(V_{q, w}^{n} f\right) \otimes g=\left(e^{n} \otimes f\right) \otimes g=e^{n} \otimes(f \otimes g)=0$ for all n. So, $q(x) \int_{0}^{x}\left(V_{q, w}^{n} f\right)(t) g(x-t) w(t) d t=0$ in $[0,1]$ for all n. Let $x=1$. Then

$$
\begin{aligned}
0 & =q(1) \int_{0}^{1}\left(V_{q, w}^{n} f\right)(t) g(1-t) w(t) d t \\
& =\left\langle\left(V_{q, w}^{n} f\right)(t), \overline{q(1) g(1-t) w(t)}>_{L^{2}[0,1]} .\right.
\end{aligned}
$$

So, $\overline{q(1) g(1-t) w(t)} \perp\left(V_{q, w}^{n} f\right)(t)$ for all n. Since f is cyclic for $V_{q, w}, q(1)$ $g(1-t) w(t)=0$ a.e. on $[0,1]$. But $q(t) \neq 0$ and $w(t)$ is non-vanishing a.e. on $[0,1]$. Hence $g(t)=0$ a.e. on $[0,1] .\left[T_{q, w}\right]$ is true for all continuous functions f and g.

Case 2. f and g are in $L^{2}[0,1]$: If $f \otimes g=0$ on $[0,1]$, then $0=$ $e \otimes e \otimes f \otimes g$. So, $(e \otimes f) \otimes(e \otimes g)=0$ a.e. on [0,1]. But $e \otimes f$ and $e \otimes f$ are continuous and $0 \in \operatorname{supp}(e \otimes f)$, since $w(t)$ is non-vanishing a.e. By case $1, e \otimes g=0$ a.e. on $[0,1]$. Since $q(t)$ is non-vanishing on $[0,1]$ and $w(t)$ is non-vanishing a.e. on $[0,1], g(t)=0$ a.e. on $[0,1]$.

Theorem 7. If $q(t)$ and $w(t)$ are positive and continuous on $[0,1]$, then
f is cyclic for $V_{q, w}$ whenever $0 \in \operatorname{supp} f$.
Proof. Since $V_{q, w}$ is quasi-nilpotent [2], $\left(1-\alpha V_{q, w}\right)^{-1}$ exists for all $\alpha \neq 0$. By Theorem 3,

$$
\begin{aligned}
& {\left[\left(1-\alpha V_{q, w}\right)^{-1}\right](x) } \\
= & \sum_{n=0}^{\infty} \alpha^{n}\left(V_{q, w}^{n} f\right)(x) \\
= & f(x)+\alpha \sum_{n=1}^{\infty} \alpha^{n-1}(1 /(n-1)!) q(x) \int_{0}^{x}(Q(x)-Q(t))^{n-1} f(t) w(t) d t \\
= & f(x)+\alpha q(x) \int_{0}^{x} e^{\alpha(Q(x)-Q(t))} f(t) w(t) d t .
\end{aligned}
$$

Now we assume $0 \in \operatorname{supp} f$ for $f \in L^{2}[0,1]$. We want to show f is cyclic for $V_{q, w}$ on $L^{2}[0,1]$. Suppose $\bar{g} \perp V_{q, w}^{n} f$ for all $n=0,1,2, \cdots$. Then $\bar{g} \perp\left(1-\alpha V_{q, w}\right)^{-1} f$ for all $\alpha \neq 0$. For all $\alpha \neq 0$,

$$
\begin{aligned}
0 & =\left\langle\left(1-\alpha V_{q, w}\right)^{-1} f, \bar{g}\right\rangle_{L^{2}[0,1]} \\
& =\int_{0}^{1}\left[\left(1-\alpha V_{q, w}\right)^{-1} f\right](x) g(x) d x \\
& =\alpha \int_{0}^{1} q(x)\left(\int_{0}^{x} e^{\alpha(Q(x)-Q(t))} f(t) w(t)\right) d t g(x) d x .
\end{aligned}
$$

So, $\int_{0}^{1} q(x) \int_{0}^{x} e^{\alpha(Q(x)-Q(t))} f(t) w(t) g(x) d t d x=0$. Let $u(x, t)=Q(x)-Q(t)$.
We will change the variables (x, t) to (u, t). Then

$$
\partial(u, t) / \partial(x, t)=\left|\begin{array}{cc}
w(x) q(x) & -w(t) q(t) \\
0 & 1
\end{array}\right|=w(x) q(x) .
$$

Since $w(x) q(x)$ is positive and continous, $Q(t)=\int_{0}^{t} w(x) q(x) d s$ is strictly increasing. So, it is invertible. Then

$$
\begin{gathered}
x=Q^{-1}(u+Q(t)), \\
0 \leq u \leq Q(1), \\
0 \leq t \leq Q^{-1}(Q(1)-u), \quad \text { and } \\
0=\int_{0}^{Q(1)} e^{\alpha u} \int_{0}^{Q^{-1}(Q(1)-u)} f(t) w(t) g\left(Q^{-1}(u+Q(t))\right) \\
\times\left[1 / w\left(Q^{-1}(u+Q(t))\right) q\left(Q^{-1}(u+Q(t))\right)\right] d t d u \text { for all } \alpha \neq 0 .
\end{gathered}
$$

Hence $0=\int_{0}^{Q^{-1}(Q(1)-u)} f(t) w(t) g\left(Q^{-1}(u+Q(t))\left(1 / w\left(Q^{-1}(u+Q(t))\right) d t\right.\right.$ on $0 \leq u \leq Q(1)$. Let $s=Q^{-1}(Q(1)-u)$. Then $Q(s)=Q(1)-u$ and $0=$ $\int_{0}^{s} f(t) g\left(Q^{-1}(Q(1)-(Q(s)-Q(t))) w(t)\left[1 / w\left(Q^{-1}(Q(1)-(Q(s)-Q(t)))\right] d t\right.\right.$. Let $h(x)=Q^{-1}(x)$ and $k(x)=Q^{-1}(Q(1)-x)$ for $0 \leq x \leq Q(1)$. Let $F=(f / q) \circ h$ and $G=(g / w) \circ k$ be defined on $0 \leq x \leq Q(1)$. Then F and G are in $L^{1}[0, Q(1)], 0 \in \operatorname{supp} F$, and $0=\int_{0}^{s} F(Q(t)) G(Q(s)-$ $Q(t)) q(t) w(t) d t$. Let $Q(t)=v$. Then $w(t) q(t) d t=d v$ and $0 \leq v \leq Q(s)$. - So, $\int_{0}^{Q(s)} F(v) G(Q(s)-v) d v=0=\int_{0}^{Q(s)} F(Q(s)-v) G(v) d v=F * G$. By the Titchmarsh Convolution theorem [T], (see [4]), $G(v)=0$ a.e. on $0 \leq v \leq Q(s)$. But $s=Q^{-1}(Q(1)-u)$ and $0 \leq u \leq Q(1)$. So, $0 \leq Q(s) \leq Q(1)$. That is, $(g / w) \circ k(v)=(g / w)\left(Q^{-1}(Q(1)-v)\right)=0$ a.e. on $0 \leq v \leq Q(1)$. Since w is positive, $g\left(Q^{-1}(Q(1)-v)\right)=0$ a.e. on $0 \leq v \leq Q(1)$. Hence $g(x)=0$ a.e. on $[0,1]$. Hence f is cyclic for $V_{q, w}$.
Theorem 8. If $q(t)$ and $w(t)$ are positive on $[0,1]$ and continuous on $[0,1]$, then $V_{q, w}$ is unicellular.
Proof. Let M be an invariant subspace of $L^{2}[0,1]$ for $V_{q, w}$. If M contains f such that $0 \in \operatorname{supp} f$, then f is cyclic for $V_{q, w}$, so $\operatorname{span}\left\{f, V_{q, w} f, \cdots\right\}=$ $L^{2}[0,1] \subset M$, i.e. $M=L^{2}[0,1]$. Else $0 \notin \operatorname{supp} f$ for any f in M. Thus there is $a_{f}>0$ such that $f=0$ a.e. on $\left[0, a_{f}\right)$ for each $f \in M$. Let $a_{f}=\sup \{0<a \leq 1: f=0$ a.e. on $[0, a)\}$ and if $\alpha=\inf \left\{a_{f}: f \in M\right\}$, then an easy argument shows that $\alpha>0$. Clearly, $M \subset L^{2}[\alpha, 1]$, and M contains an element g such that $\alpha \in \operatorname{supp} g$. We will show that g is cyclic for the restriction operator $V_{q, w} \mid L^{2}[\alpha, 1]$ to conclude that $M=L^{2}[\alpha, 1]$. Let $W(u)=(1-\alpha)^{\frac{1}{2}} w(u(1-\alpha)+\alpha)$ and $Q(u)=(1-\alpha)^{\frac{1}{2}} q(u(1-\alpha)+\alpha)$, for $u \in[0,1]$. Let $U_{\alpha}: L^{2}[\alpha, 1] \rightarrow L^{2}[0,1]$ be defined by

$$
\left(U_{\alpha} h\right)(x)=(1-\alpha)^{\frac{1}{2}} h(x(1-\alpha)+\alpha) \text { for } \quad x \in[0,1] .
$$

Then it can be easily be shown that U is unitary and that $U\left(V_{q, w} \mid L^{2}[\alpha, 1]\right)$ $U^{*}=V_{Q, W}$. But Q and W are positive and continuous on $[0,1]$, and if $g \in L^{2}[\alpha, 1]$ with $\alpha \in \operatorname{supp} g$, then $U_{\alpha} g \in L^{2}[0,1]$ with $0 \in \operatorname{supp} U_{\alpha} g$. So, by Theorem $7, U_{\alpha} g$ is cyclic for $V_{Q, W}$, hence g is cyclic for $V_{q, w} \mid L^{2}[\alpha, 1]$.

From Theorems 6, 8 and the Titchmarsh Convolution theorem $[T]$ that is proved in [4], we have:

Theorem 9. If $q(t)$ and $w(t)$ are positive and continuous, then the Volterra-type integral operator $V_{q, w}$ is unicellular. Moreover, the generalized Titchmarsh Convolution theorem is always true.

References

[1] R. Beals, Topics in Operator Theory, The University of Chicago Press, Chicago and London, 1971.
[2] P.R. Halmos, A Hilbert Space Problem Book (second edition), Springer-Verlag, New York, 1982.
[3] G.K. Kalish, A Functional Analysis Proof of Titchmarsh's Theorem on Convolution, J. Math. Ana. and App., 5(1962), 176-183.
[4] J. Mikusinski, Operational Calculus, Pergamon Press LTD, New York, 1959.
[5] H. Rajavi, P. Rosenthal, Invariant Subspaces, Springer-Verlag, New York, 1970.
[6] H.L. Royden, Real Analysis, The Macmillan Company, New York, 1971.

Department of Mathematics, Taegu University, Taegu, Korea

