AMINO ACID DIGESTIBILITY AS AFFECTED BY VARIOUS FIBER SOURCES AND LEVELS

2. THE RELATIONSHIP BETWEEN FIBER LEVELS AND AMINO ACIDS DIGESTIBILITY

Nongyao, A¹, In K. Han², Yun J. Choi and N.H. Lee³

College of Agriculture Seoul National University, Suweon 441-744, Korea

Summary

A number of correlation and regression analyses were performed on data from apparent and true digestibility of amino acids at iteal and feeal level with finishing pigs, in order to investigate whether these amino acid digestibilities could be predicted with certainly degree on their fiber fractions content (chemical analysis). The data comprised 16 diets varying in 4 levels of crude fiber and from 4 fiber sources. The relationships between fiber fractions including crude fiber (CF), NDF, ADF lignin and cellulose contents on apparent and true digestibility of almost all amino acids in both ileal and fecal level were negative, except glutamine at fecal level. In apparent digestibility at ileal level, the correlations of fiber fractions were moderate (r of NDF = 0.53 to 0.63; ADF, 0.50 to 0.77; cellulose, 0.50 to 0.75), with an exception of CF content was relatively high (r of 0.58 to 0.81). The correlations to true digestibility of amino acids were weaker. In case of at feeal level, the higher correlation (negative) was found with NDF than CF content. Estimations of amino acids digestibility were performed using regression equation. The data showed that apparent digestibility of amine acids could be estimated for almost amino acids except arginine, threonine, value and tyrosine at fecal level and phenylalaine, value and glycine at iteal level. The best prediction at iteal and fecal level ($r^2 = 0.55 + 0.77$ and 0.52 + 0.76), respectively was obtained with NDF content. Prediction for true digestibility of amino acids, none of fiber fractions could be estimated for arginine, leucine and valine at all collection levels. At ileal level, CF could be used for most of amino acids except phenylalanine, glycine and proline; cellulose, only for lysine and methionine and NDF, only for proline. At feeal level, glutamine digestibility could be estimated only from CF and ADF content. The best predictor at ileast level was ADF content whereas at fecal level was NDF content. These results indicate that lignin content could not be used as predictor for all amino acids at both levels neither in apparent nor true digestibility.

(Key Words: Amino Acid Digestibility, Fiber Levels, Fiber Fractions, Correlation, Prediction Equation, Cannulated Pigs).

Introduction

Fibrous feedstuffs had been reported to reduce the digestibility of nutrients, including protein. Most of studies have been assessed using crude fiber as the component representing dietary fiber. However, depending on the relative contents of other fiber fractions, crude fiber represents only these correlation incorporating into prediction equation, based on chemical analysis parameters.

Received December 22, 1989

part of the real intake of the animals (Van Soest and McOueen, 1973). Sources and chemical composition of fiber used, as well as method of measurement may play a role in the accuracy estimations of digestibility. Unfortunately, there is limited published evidence relating fiber fractions and amino acids digestibility in fibrous feedstuffs. The information on the fiber content affected protein and amino acids digestibility were reported by Taverner and Farell (1981), in wheat and grains, Kreinbring et al. (1988) evaluated the addition to finishing pig diets of alfalfa, green rye and whole corn plant. Those forages, produced in temperate area, reduced digestibility of protein and amino acid to the terminal ileum and over total tract. The attempt of this study had been made to find out the relationship between fiber fractions and amino acids digestibility and utilized these correlation incorporating into prediction equation, based on chemical analysis parameters.

¹Present address: Faculty of Agriculture and Industrial Science, Chandrakasem Teachers' College, Bangkok 10900, Thailand.

²Address reprint requests to Dr. In. K. Han, Animal Science Department, College of Agriculture, Scoul National University, Suweon 441-741, Korea.

³Nutrition and Physiology Research Laboratory, Korea Food Research Institute, Seoul, Korea.

Accepted October 17, 1990

Materials and Methods

The data used originated from experiments with finishing pigs (70-90 kg) performed to determine the digestibility of amino acids that have been published (Nongyao et al., 1990). The diets varied in 4 levels of crude fiber (1, 3, 7 and 9%) from alfalfa meal, rubber seed meal, leucaena meal and cellulose. As shown in table 1, the average fiber fractions content of the diets were varied according to added fiber sources. The correlation coefficient (r), degree of determination (r^2) and

TABLE 1. THE COMPOSITION OF FIBER FRACTIONS AT DIFFERENT LEVELS OF CRUDE FIBER (1, 3, 7 AND 9%) ADDED FROM VARIOUS FIBER SOURCES!

C		A FM-series				RSM-series				LM-series			
Component	1	3	7	9	1	3	7	9	1	3	7	9	
Fiber fractic	ns (%) ²	1											
CF	1.51	3.83	8.89	11.81	1.35	3.85	5.56	8.15	1.46	4.16	8.90	11.39	
NDF	3.94	14.89	17.06	21.49	3.10	10.66	19.66	25,42	9.21	13.80	20.14	22.18	
ADF	2.05	5,36	10.48	14,87	1.77	4.09	5.70	11.76	2.17	5.34	12,46	14.19	
Lignin	0.31	1.07	1.79	3.16	0.11	0.15	0.37	0.61	0.03	0.71	2.41	2.40	
Cell.	1.09	3.07	9.05	10.55	0.27	1.74	4.29	6.53	1.00	3.47	7.83	9.46	

¹Abbreviated: AFM-series, alfalfa meal added to meet 1,3,7 and 9% crude fiber; RSM-series, mhher seed meal added to meet 1,3,7 and 9% crude fiber; LM series, leucaena meal added to meet 1,3,7 and 9% crude fiber; Cell, cellulose.

²Analysed values.

TABLE 2. THE CORRELATION (R) BETWEEN FIBER FRACTIONS AND THE APPARENT AMINO ACIDS DIGESTIBILITY AT ILEAL AND FECAL LEVEL

					Fiber	ractions				
Amino a		CF	1	NDF	1	٩DF		LIG	CE	LL
	ile	fec	ile	fec	ile	fec	ile	fec	ile	fec
Indispen	sable amir	no acids								
Arg	46	40	57	46	52	47	,26	.40	49	38
His	63	42	74	61	65	49	39	22	62	40
Lie	-,43	52	.61	.65	-,48	57	25	34	43	52
Leu	49	67	49	76	51	72	46	56	.50	65
Lys	61	60	72	70	64	64	36	44	60	58
Met	69	56	74	65	,71	.60	47	43	65	54
Phe	45	-,55	60	68	5 I	61	-,25	38	40	52
Thr	.60	48	66	64	65	54	46	34	62	47
Val	-,49	59	45	67	.54	.63	53	54	53	56
Dispensa	ble amind	acids								
Ala	.49	24	68	.52	55	32	19	02	46	.22
Asp	37	33	.59	54	.45	.40	04	09	.34	30
Glu	71	61	75	70	74	65	51	45	72	59
Gly	47	51	51	60	49	57	31	40	46	50
Pro	50	21	61	27	57	23	27	03	51	15
Ser	.66	51	.72	69	70	.57	44	.36	.66	.50
Туг	41	72	62	76	48	74	19	52	37	67

¹Abbreviated: CF, crude fiber; NDF, neutral detergent fiber; ADF, acid detergent fiber; LIG, lignin; CELL, cellulose.

regression equation were performed using the SAS (1986) by Proc Reg Procedure. The degree of determination (r^2) values that below 0.50 were omitted for estimating amino acid digestibility in regression equation, as more than 50% of other factors might confound. For improving the degree of certainly, the simple regression was improved using cubic regression model. The fiber fractions, including NDF, ADF, lignin and cellulose contents were determined according to Georing and Van Soest (1970). The representative samples of diets, ileal digesta and feces were determined for amino acid contents using amino acid analyzer model LKB 4150 alpha and chromic oxide concentration by the method of Fenton and Fenton (1979).

Results and Discussion

As shown in table 1, the different fiber fractions based on 1 to 9% crude fiber in the dicts were varied, which was the most desirable as background for prediction equation. The simple correlations between fiber fractions in the diets and apparent digestibility of amino acids are given in table 2 and in table 3 for the true digestibility, Almost correlation were negative with an exception of glutamine at fecal level in true digestibility. Statistical analyses of the degree of determination between apparent digestibility of amino acids and fiber fractions are shown in table 4 and for true digestibility in table 5. The best predictor of the apparent digestibility is NDF content either at ileal or fecal level (r² range, 0.50 to 0.77 and 0.52 to 0.76), except for arginine, threonine, valine and proline. The second best included CF, ADF and cellulose content. Neither lignin at all levels nor cellulose content at fecal level (with exception of tyrosine) could be used for prediction. In addition, arginine, threonine, valine and proline digestibilities could

TABLE 3. THE CORRELATION (R) BETWEEN FIBER FRACTIONS AND THE TRUE AMINO ACIDS DIGESTIBILITY AT ILEA!. AND FECAL LEVEL

					Fiber	fractions	,1			
Amino a		CF		NDF	1	ADF		LIG	CE	LL
	ilc	fec	ile	fec	ilc	fec	ile	fec	ile	fec
Indispen	sable amin	no acids								
Arg	27	07	39	18	32	14	04	12	28	08
His	43	33	56	54	.46	38	21	.12	-,43	.29
lle	23	47	45	68	28	50	06	24	24	43
Leu	31	62	35	77	-,33	66	30	49	34	60
Lys	.55	45	-,68	.61	58	-,49	-,31	30	55	46
Met	68	45	67	60	70	50	47	32	67	45
Phe	34	49	49	62	40	54	29	31	29	45
Thr	29	.44	.36	63	33	48	.35	.29	35	43
Val	49	41	45	60	53	45	52	34	52	39
Dispensa	ble aminc	acids								
Ala	37	28	57	57	43	34	35	11	35	28
Asp	34	28	56	52	42	35	03	04	32	26
Glu	53	.60	61	.41	56	.58	34	.56	56	.53
Gly	12	42	06	54	09	.46	003	30	10	.40
Pro	62	17	61	.25	62	19	32	.01	56	11
Ser	56	50	62	68	60	55	377	33	57	48
Tyr	43	67	65	75	47	68	19	44	.40	63

¹Abbreviated: CF, crude fiber; NDF, neutral detergent fiber; ADF acid detergent fiber; LIG, lignin; CELL, cellutose.

					Fiber f	ractions ¹				
Amino acids		0 F	N	DF	٨	DF	I	.1G	CEI	L
	ile	fec	ile	fec	ile	fec	ile	fec	ile	fec
Dietary indi	spensat	le amino	acids							
Arg	.60	.33	.38	.23	.64	.23	.30	.19	.56	.32
His	.70	.26	.62	.57	.66	.24	.26	.13	.65	.20
Ile	.52	.34	.43	.53	.52	.33	.22	.22	.53	.28
Leu	.43	.51	.51	.62	.41	.52	.33	.43	.45	.44
Lys	.72	.38	.60	.61	.68	.4]	.24	.34	.64	.34
Met	.58	.33	.61	.52	.58	.38	,31	.37	.59	.30
Phe	.40	.32	.45	.63	.38	.38	.09	.29	.40	.28
Thr	.71	.32	.50	.45	.69	.29	.35	.19	.67	.23
Val	.35	.35	.33	.45	.38	.40	.40	.40	.39	.33
Dietary disp	ensable	amino a	cids							
Ala	.63	.33	.61	.50	.62	.20	.17	.01	.61	.23
Asp	.47	.27	.77	.77	.50	.20	.15	.05	.43	.18
Glu	.81	.42	.63	.62	.78	.43	.33	,29	.71	.35
Gly	,43	.32	.45	.50	.39	.32	.15	.28	.39	.25
Pro	.55	.17	.52	.38	.59	.05	.24	.01	.53	.03
Ser	.79	.34	.59	.58	.77	.35	.34	.17	.75	.28
Tyr	.46	.53	.46	.77	.43	.57	.10	.31	.50	.45

TABLE 4.	THE DEGREE OF DETERMINATION	(R ²) OF DIFFERENT FIBER FRACTIONS AND THE
	APPARENT DIGESTIBILITY OF AMINO) ACIDS AT ILEAL AND FECAL LEVEL

¹Abbreviated: CF, crude fiber; NDF, neutral detergent fiber; ADF, acid detergent fiber; LIG, lignin; CELL, cellulose.

not predict from any fiber fraction contents. The suitability of fiber fractions as a predictor for amino acid digestibilities are summarized in table 6 and table 10. CF content could be predicted only glutamine digestibility at fecal level, but at ileal level more amino acid digestibilities could predict from CF content and probably be the best predictor. None of fiber fractions could be used for estimating true digestibility of arginine, leucine and valine neither at fecal nor ileal level. It was worthy noted that while mostly samples taken at fecal level hardly to use for predicting true amino acid digestibilitry, glutamine could predict with CF and ADF content with relatively high r^2 (0.71) and 0.77). It was interesting to find that, of the true digestibility of amino acids at fecal level NDF was the most effective to use as a predictor whereas at iteal level, ADF was.

In table 7, the regression equations for apparent digestibility at ileal level of individual amino acid

are given. Regression using NDF content had lower r^2 (0.53 to 0.63) than regression based on cellulese confent (0.50 to 0.75) and ADF content (0.50 to 0.77), respectively. All fiber fractions except lignin could be used for predicting amino acid digestibility with confidence. The CF, NDF, ADF and cellulose content could be used to elucidate up to 10 amino acids with the exception of phenylalantne, valine and glutamine.

In case of the influence of fiber fractions from various fibrous feedstuffs on the true digestibility, the regression equations were performed in table 8. Arginine, leucine, phenylalalnine, valine and glycine could not predict the true digestibility from any fiber fraction with confidence as r^2 were lower than 0.50. The amino acids that could be predicted from fiber fractions were smaller in number than in apparent digestibility. CF level could be used up to 10 amino aicds for prediction, r^2 ranged from 0.54 to 0.75. NDF content could

RELATIONSHIP OF FIBER AND AMINO ACID DIGESTIBILITY

A					Fiber fr	ections				
Amino acid	sC	e	NE)F	A	DF	11	G	CE	LL
	ile	fec	ile	fec	ile	fec	íle	fec	ile	fec
Dietary ind	ispensahle	amine acie	ls							
Arg	.17	.28	.41	.04	.22	.20	.18	.07	.17	.2.5
His	.51	.12	.40	.71	.50	.15	.12	.22	.46	.11
11e	.52	.28	,23	.55	.49	.30	.17	.23	.51	.29
Leu	.37	.44	.42	.60	.35	.47	.25	.28	.35	.40
Lys	.70	.28	.52	.41	.66	.28	.23	.25	.62	.25
Met	.67	.24	.60	.44	.65	.26	.31	.29	.65	.23
Phe	.27	.24	.41	.74	.26	.29	.03	.30	.08	.22
Thr	.55	.22	.22	.24	.51	.19	.21	.18	.12	.19
Val	.34	.21	.36	.38	.36	.26	.33	.16	.27	.23
Dictary dis	pensable ar	nino acids								
Ala	.62	.20	.44	.52	.58	.20	.15	.22	.12	.22
Asp	.61	.23	.64	.73	.61	.27	.15	.18	.18	.18
Glu	.74	.77	.41	.34	.69	.71	.23	.49	.49	49
Gly	.09	.18	.16	.42	.07	.21	.27	.18	.18	.18
Pro	.47	.10	.64	.33	.49	.13	12	.16	.16	.16
Ser	.75	.32	.46	.59	.71	.33	.31	.26	.26	.26
Tyr	.66	.45	.43	.70	.57	.47	.19	.41	.41	.41

TABLE 5. THE DEGREE OF DETERMINATION (R^2) OF DIFFERENT FIBER FRACTIONS AND THE TRUE DIGESTIBILITY OF AMINO ACIDS AT ILEAL AND FECAL LEVEL

¹Abbreviated: CF, crude fiber; NDF, neutral detergent fiber; ADF, acid detergent fiber; LIG, lignin; CELL, cellulosc.

TABLE 6,	THE SL TABILITY OF DIFFERENT FIBER FRACTIONS AS PREDICTOR OF THE APPARENT
	AMINO ACIDS DIGESTIBILITY AT ILEAL AND FECAL LEVEL

					Fiher fra	ctions ¹				
Amino acid:	C	F	NDF		ADF		LIG		CEI.I.	
	ile	fec	ile	fec	ile	fec	ile	fec	ile	fec
Indispensab	le amino	acids								
Arg	+	-	-	_	+		_	-	+	_
His	+	_	+	+	+		_	_	+	-
lle	+			+	+		_		+	
Leu	—	+	+	+	_	+	_	-	-	_
Lys	+	_	+	+	+	_	_	-	+	-
Met	+	_	+	+	+	-	-	_	+	-
Phe		_	-	+	-		_	-		_
Thr	+	_	+	_	+	_	_		+	_
Val	_	_	-	-	-	-	-	-	_	-
Dispensable	amino ac	ids								
Ala	+	-	+	+	+	_	—		+	
Asp	_	_	+	+	+	_	_	_	_	_
Glu	+		+	+	+	_	_		+	_
Gly	_	_	_	+	_	-	_	_	_	
Pro	+	_	+	_	+	_	_	_	+	-
Ser	+	_	+	+	•	_	-	_	+	
Tyr	1.0	+		+	_	+		-	+	_

¹Abbreviated: CF, crude fiber; NDF, neutral detergent fiber; ADF, acid detergent fiber; LIG, lignin; CELL, cellulose.

 2 + : degree of determination (r²) more than 0.50

- : degree of determination (r^2) less than 0.50

NONGYAO ET AL.

TABLE 7. RELATIONSHIP BETWEEN APPARENT DIGESTIBILITY OF AMINC ACIDS AND FIBER FRACTIONS (X) FROM VARIOUS FIBROUS SOURCES AT ILEAL LEVEL

Amino	Fiber	R ²		Predicted e	equation	
acids	fractions ¹	K		X ³	X ²	х
Arg	CF	0.60	90.22	+7.93	2,20	+1.32
	ADF	0.64	89.21	+6.91	-1.50	+0.07
	CELL	0.56	95,77	+4.31	-1.93	+0.14
His	CF	0.70	90.19	+4.60	-2.17	+0.14
	NDF	0.62	76.31	+\$.96	0.56	+0.12
	ADF	0.66	90.41	+2.85	-1.24	+0.06
	CELL	0.65	92.53	+1.18	-1.98	+0.16
Ile	CF	0.52	94,82	+0.48	-0.70	+0.05
	ADF	0.52	97.47	-1.30	0,21	+0.01
	CELL	0.53	96.44	-2.20	-0.33	+0.04
Leu	NDF	0.51	82.92	+4.50	-0.42	+0.01
Lys	CF	0.72	94.06	+2.60	-0.96	+0.06
	NDF	0.60	89.82	+2.13	-0.19	+0.003
	ADF	0.68	94.34	+1.69	-0.55	+0.02
	CELL	0.64	95.95	+0.65	-0.77	+0.06
Met	CF	0.58	94.09	+2,37	-1.04	+0.06
	NDF	0.61	87.51	+3.09	-0.28	+0.00
	ADF	0.58	94,80	+1,16	-0.54	+0.02
	CELL	0.59	95.18	+1,41	-1.25	+0.09
Phe	none					
Thr	CF	0.71	86.65	+5.99	-1.74	+0.10
	NDF	0.50	84.56	+2.97	-0.28	+0.006
	ADF	0.69	88.44	+3.55	-0.93	+0.04
	CELL	0.67	91.29	+2.61	-1.45	+0.11
Val	none					
Ala	CF	0.63	86.52	+7.55	2.31	+0.14
	NDF	0.61	92.72	-0.37	+0.06	-0.000
	ADF	0.62	84.50	+6.91	-1.59	+0.07
	CELL	0.61	91.97	+3.26	-2.07	+0,16
Asp	NDF	0.77	111.69	6.86	+0.69	0.02
	ADF	0.50	77.22	+14.04	-2.69	+0.12
Glu	CF	0.81	93.98	+3.50	-1.06	+0.06
	NDF	0.63	92.37	+1.76	-0.16	+0.00
	ADF	0.78	92.29	+2.38	0.60	+0.60
	CELL	0.71	96.55	+1.29	-0.81	+0.06
Gly	none					
Pro	CF	0.55	87.56	+7.97	2,08	+0.12
	NDF	0.52	95,15	-0.30	+0.05	-0.05
	ADF	0.59	87.82	+6.28	-1.33	+0.06
	CELL	0.53	93.97	+.78	-1.75	+0.13
Ser	CF	0.79	88.63	+6.75	-1.84	+0.10
	NDF	0.59	88.62	+2.40	-0.21	+0.00
	ADF	0.77	88.79	+5.16	-1.12	+0.05
	CELL	0.75	93,19	+4.03	-1.74	+0.12
Tyr	CELL	0,50	95.77	+0.98	-1.33	+0.11

^tAbbreviated: CF, crude fiber; NDF, neutral detergent fiber; ADF, acid detergent fiber; LIG, lignin; CELL, cellulose.

RELATIONSHIP OF FIBER AND AMINO ACID DIGESTIBILITY

Amino	Fiber	R ²		Predicted e	quation	
acids	fractions ¹			X ³	X ²	х
Arg	none					
His	CF	0.54	87.47	+8.04	-2.47	+0.15
	ADF	0.50	89.03	+5.15	-1.40	+0.07
Ile	CF	0.52	95.75	+1,29	0.84	+0.06
Leu	none					
Lys	CF	0.70	96.66	+1.84	-0.82	-0.05
	NDF	0.52	92.63	+1.78	-0.16	+0.00
	ADF	0.66	96.88	+1,12	0.47	+0.02
	CELL	0.62	98.04	+0.08	-0.62	+0.05
Met	CF	0.67	87.33	+10.59	-2.53	+0.13
	NDF	0.60	82,63	+5.51	-0.45	+0.00
	ADF	0.65	90,20	+6.66	-1.36	+0.06
	CELL	0.65	94.7 0	+6.68	-2.40	+0.16
Phe	none					
Thr	CF	0.55	89.21	+6.70	-1.78	+0.10
	ADF	0.5 I	91.97	+3.68	-0.92	+0.04
Val	none					
Ala	CF	0.62	89.17	+7 .30	2.19	+0.13
	ADF	0.58	87.75	+6.44	-1.47	+0.07
Asp	CF	0.61	84.36	+12.82	-3.27	+0.19
	NDF	0.64	105.86	-4.03	+0.41	-0.01
	ADF	0.61	80.65	+12.32	-2.36	+0.10
Glu	CF	0.74	95.09	+3.53	-1.04	+0.06
	NDF	0.69	95.45	+2.44	-0.06	+0.03
Gly	none					
Pro	NDF	0.64	124.99	-3.64	+0.37	- 0.01
Ser	CF	0.75	90 .63	+6.97	-1.83	+0,10
	NDF	0.71	91.37	+4.95	-1.08	+0.05
Tyr	CF	0.66	112.38	-2.48	-0.68	+0.06
	NDF	0.57	110.19	-1.36	-0.48	+0.03

TABLE 8. FELAT ONSHIP BETWEEN TRUE DIGESTIBILITY OF AMINO ACIDS AND FIBER FRAC-TIONS (X) FROM VARIOUS FIBROUS SOURCES AT ILEAL LEVEL

¹Abbreviated: CF, crude fiber; NDF, neutral detergent fiber; ADF, acid detergent fiber; LIG, lignin; CELL, cellulose.

Amino	Fiber	R ²		Predicted	l equation	
acids	fractions ¹			X3	X ²	x
		Ap	parent digestihil	lity		
Arg	none					
His	NDF	0.57	73.75		+3.48	-0.18
llç	NDF	0.53	88.19		+1.01	0.06
Leu	CF	0.51	87.56	+3.07	-0.84	+0.04
	NDF	0.62	92,60		+0.05	-0.02
	ADF	0.52	93.23	-1.08	+0.01	+0.01
Lys	NDF	0.61	90.08		+0.97	-0.06
Met	NDF	0.52	84.82		+1.32	-0.09
Phe	NDF	0.63	83.07		+2.52	0.14
Thr	none					
Val	none					
Ala	NDF	0.50	111.35	-8.1J	+0.69	0.01
Asp	NDF	0.77	125.84	-12.76	+1.22	-0.03
Glu	NDF	0.62	97.08	-0.78	+0.07	-0.00
Gly	NDF	0.50	81.19	+1.02	-0.04	-0.00
Pro	none					
Ser	NDF	0.58	101.09	-3.07	+0.25	-0.07
Tyr	CF	0.53	89.96	+0.68	-0.28	+0.01
		Т	rue digestibility	Ŷ		
Arg	none					
Hin	NDF	0.71	128.93	13.37	+1.23	-0.03
the .	NDF	0.55	101.36	-2.10	+0.17	-0.00
Lou	NDF	0.60	100.89	-1.48	+0,08	-0.00
Lys	none					
Met	none					
Phe	NDF	0.74	125.87	10.87	+0.98	0.02
Thr	none					
Val	поле					
Ala	NDF	0.52	121.84	-8.25	+0.63	10.0
Asp	NDF	0.73	125,17	-11.47	+1.08	-0.02
Glu	CF	0.77	90.85	+5.44	-1.52	+0.10
	ADF	0.71	91.11	+4.28	- 0.98	+0.05
Pro	none					
Ser	NDF	0.59	106.34	-3.61	+0.29	-0.00
Туг	NDF	0.70	104.52	-2.61	+0.21	-0.00

TABLE 9. RELATIONSHIP BETWEEN APPARENT AND TRUE DIGESTIBILITY OF AMINO ACIDS AND FIBER FRACTIONS (X) FROM VARIOUS FIBROUS SOURCES AT FECAL LEVEL.

¹Abbreviated: CF, crude fiber; NDF, neutral detergent fiber; ADF, acid detergent fiber; LIG, lignin; CELL, cellulose.

RELATIONSHIP OF FIBER AND AMINO ACID DIGESTIBILITY

ener su	22				Fiber fi	actions1				
Amino ata	C	F	NDF		ADF		LIG		CELL	
	ile	ťec	ile	fec	ile	fec	ile	fec	ile	fec
Indispensab	le amino a	rcids								
Arg	-						-	—		
His	+	—		+	+		-			
Ile	+	-	-	+		-	-	-		-
Leu		<u></u>	<u>1000</u>	+			-			-
Lys	+		+	-	+	_			+	
Met	+	-	+		+	-	-	—	+	
Phe	-	-	1000	+	-	—			-	-
Thr	+	—				-		—		
Val	-	-	-	-	-	-	-	-	-	-
Dispensable	e amirce àc	id s								
Ala	+	-	-	+	-	-	-	_	-	-
Asp	+	-	+	+		-		_	_	
Glu	+		1.0	10.0	+			_	-	_
Gly	_	-	_		_	_		_	_	
Pro	_	-	+	-	-	-	_	_	_	-
Ser	+	-			+	-		-	_	_
Tyr	+	-	-	+	+			~_	_	

TABLE 10.	THE SUITABILITY	OF DIFFERENT	FIBER FRACTIONS	AS PREDICTION OF THE TRUE
AVINO ACIDS DIGESTIBILITY AT ILEAL AND FECAL LEVEL				

¹Abbreviated: CF, crude fiber; NDF, neutral detergent fiber; ADF, acid detergent fiber; LIG, lignin; CELL, cellulose.

+ : degree of determination (r²) more than 0.50

-: degree of determination (r^2) less than 0.50

be evaluated up to 7 amino acids with r^2 ranging from 0.52 to 0.71 ADF content could be elucidated up to 6 amino acids with r^2 ranging from 0.50 to 0.66 whereas cellulose content could be estimated only for lysine and methicnine diges tibilities.

At fecal level, the regression equations for both in apparent and true digestibility of amino acids are shown in table 9. Arginine, threonine, valine and proline could not predict in neither apparent nor true digestibility. Lysine and methionine could not predict for true digestibility from any fiber fraction.

In conclusion, results of regression analyses indicated a moderate relationship between fiber fractions and apparent amino acid digestibilities, with an exception of CF which had relatively high degree of determination. The relationships for true digestibility of amino acids were poorer. At fecal level, NDF had higher correlation than other fiber fractions, whereas at ileal level, ADF was. The data suggested that lignin content could be used in neither apparent nor true digestibility at both levels.

Literature Cited

- Fenton, T.W. and M. Fenton. 1979. An improved procedure for the determination of chromic oxide in feed and feces. Can. J. Anim. Sci. 59:631-634.
- Goering, H.K. and P.J. Van Soest. 1970. Forage fiber analysis (Apparatus, Reagents, Procedures and some Applications). Agriculture Handbook No. 379. ARS, USDA.
- Kreienbring, F., J. Wunsche and U. Kesting. 1988. Studies of the apparent precaecal and fecal crude protein digestibility and of the absorption of amino acids from forage plants in fattening pigs. Arch. Tierermahr. 38:573 (abstr.)
- Nongyao, A., In K. Hun and Yun J. Choi, 1996. Amino acid digestibility as affected by various fiber sources and levels. I. Difference between ileal and fecal digestibility of amino acids. Asian Austr. J. Anim. Sci. (in press)
- SAS. 1986. SAS User's Guide: Statistics, SAS Inst. Inc. Cary, NC.
- Taverner, M.R. and D.J. Farrel. 1981. Availability to pigs of amino acids in cercal grains. 4. Factors influencing the availability of amino acids and energy in grains. Br. J. Nutr. 46:181-192.
- Van Soest, P.J. and R.W. McQueen, 1973. Cited by Dierick et al. 1989. Approach to the energetic importance of fiber digestion in pigs. 1. Importance of fermentation in the overall energy supply. Anim. Feed Sci. and Technol. 23:141-167.