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Comparisons on Approximating Methods for

Distribution of Sample Variance

Young-Ae Choi* and Jae-Kee Song*

ABSTRACT

The Edgeworth expansion, the Roy-Tiku method and the bootstrap method
for approximating the distribution of the sample variance are compared through

the Monte Carlo simulation study.

1. Introduction

A sample variance is very commonly encountered statistic, but its exact dis-
tribution is generally not known except that the underlying distribution F is a
normal or a contaminated normal distribution. So it is necessary to approximate
the probability distribution of the sample variance from a nonnormal population.

The purposes of this note are twofold : one is to study the approximating meth-
ods for the distribution of the sample variance such as the asymptotic method using
Edgeworth expansion, the Roy-Tiku method and the bootstrap method. The other
is to investigate how accurate the approximating methods are through simulation
study.

Details of three approximating methods are given in Section 2. Simulations
are carried out for comparing of three methods and the results are summarized in

Section 3.
2. Approximating Methods

Even though the sample variance is one of the popular statistics in many fields,

its exact distribution is generally not known except that the underlying distribution
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F is a normal distribution or a contaminated normal distribution. So many meth-
ods for approximating the distribution of the sample variance have been proposed.
Approximating methods using the Edgeworth expansion, the Roy-Tiku method and
the bootstrap method are explained in this section. Let Xi1,...,Xn be a random
sample from a distribution F and X and S? be the sample mean and the sample
variance defined by X = L1 Y°" | X; and 5% = 15 377 (X; — X)? , respectively.

Let o2 be the variance of F.

(1) Edgeworth expansion

Suppose that F has finite eighth moment. Let Y = 1/n(S? — o%) . Srivastava
and Chan (1989) calculate the first four cumulants £;, &2, &3 and £4 of Y in terms

of the cumulants of X

& =0,

& = a + 2n7'6E 4+ O(n7?),
& = n7th + O(n7Y),

& = nle + O(n7%).

where &, stands for the r-th cumulant of X and

a = kg + 262,
b = ke + 12k4k0 + 4I‘C§ + 81@% ,
¢ = Kg + 24ke¢ka + 32k5Kk3 + 32&2

+ 144k4k2 + 96K3ky + 48k; .

By expanding e:cp{Z;ﬂ(it)j %}, we can approximate the characteristic function
of Y. From the fact that the characteristic function uniquely determines the distri-

bution, the distribution function of Y//a can be expanded for large n as

<o

1

Pr(Y/Va<z) = ®(z) - n_a_a—%q)(l*)(z.) + nl(x2a7 8@ ()

162_3 (6) -3
5(5) 4780 () + 0,

(=2

£ 254,
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where ®(z) is the distribution function of the standard normal distribution and

®9)(2) is the j-th derivative of &(z).
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(2) The Roy-Tiku Method

Let kr , r =1,2,..., be the r-th cumulant of X and assume that | k,/0" | is
finite for all r. By using the Laguerre polynomials up to the fourth degree, Roy and
Tiku (1962) approximated the distribution of @ = (n —1)5%/20% :

v k
Pr@sv) & [ Pal)) 3 a L @) dg
0 im0
where k is the number of terms in the approximation,

1
Pm(q)z___qm—le—q’ QZO,mEO,

I'(m)

and Lg-m)(q) is the Laguerre polynomial of degree j defined by

E) = 53 ()0 (Tm +) [ T+ ), §=0,1,2,3,4

(m)

Here a;"'’s are constants defined by

af™ = T(m) Y (I N~1E@) / T(m +1),

=0

(m)

and the first four a ;  are given by

a™ =1,
agm) =0,
(m) — m A
2 2m+D)(m+1)"*"
(m) 1 m’ 2
_— ) ~1
% (2m+1)(m+1)(m+2) (2m F1°° + (2m )A3) ’
a{™ = ! ( m’ A
T Cm+D)(m+ D)(m+2)(m+3) \(2m+1)2 "
8m(2m — 1) 3m3 +16m? —2m+1 ,
amt1 ot 2m + 1 ’\4)’

with A, = «,/o".
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(3) The bootstrap method

Let F, be the empirical distribution function putting mass + at each obser-
vation X;. Let X{,...,X} be a bootstrap sample from F,, that is, each X is
independently drawn from the X;’s with probability % ,j=1,2,...,n. And let X*
and S52* be the bootstrap sample mean and the bootstrap sample variance defined by
X*=1%" X7and §%* =215 3" (X7 —X*)? respectively. Assume that there
exist the fourth moment of random variable X and let $? = 1 3°" (X, — X)?. Let
CDF(t) = Prob,{S**/S? < ¢} be the cumulative distribution of S?*/52, where
Prob, stands for the probability under the resampling. Then the bootstrap con-
sistency is easily shown from the central limit theorem and Slutsky theorem (see
Srivastava and Chan (1989)), i.e., S?*/S? and $?/0* have the same asymptotic
limit. We can obtain an estimate of CDF(t) by a{s?'gszgt} , where B is the num-

ber of bootstrap replications. In this note, two hundred trials were done for each

combination of sample size and distribution and B=200 bootstrap replications were

taken for each trial.
3. A Simulation Study

To show how accurate the approximating methods described in Section 2,
Monte Carlo simulations are done on a CYBER 170-835 at Kyung National Uni-
versity.

Let t, be the p-th percentile of distribution function of $?/0?, i.e.,
Pr(S§%/c* <t,) = p, 0 < p < 1,

where p is a specified value and o? is the variance of F. For a given t,, p is approx-
imated from three methods described in Section 2, i.e., ppw, PrT, and ppT are the
approximated values of p by the Edgeworth expansion, the Roy-Tiku method and
the bootstrap method, respectively. We take F as (i) standard normal distribution,
N(0,1) (i1) uniform distribution on (0,1), U(0,1) (iii) standard exponential distribu-
tion, Exp(1) (iv) Weibull distribution with parameters 1 and 4, Weib(1,4). For each
F, we generate random numbers from the appropriate IMSL subroutines. In cases
(ii) ~ (iv), the exact values of t, are approximated from the 4000 replications with
sample size n=100. For given t,, p=0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, and n=10, 20,
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30, 50, 100, pepw, PrT, PBT are compared with the specified value p and tabulated
in Table 1-4.

From the results of simulation, we see that
i) The three methods perform better as sample size n gets larger.
ii) The Edgeworth expansion and the bootstrap method perform similarly in al-
most all distributions.
iii) The Roy-Tiku method performs very well in normal case but not good in

uniform case even though sample size is large.
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Table 1. Comparisons of pgw, prr and ppr when F is N(0,1)

n p 0.05 0.10 0.30 0.50 0.70 0.90 0.95
PEW .066 121 323 .506 675 891 .956
10 PRT .050 .100 300 500 700 900 950
PBT .060 .100 .235 .432 685 033 .980
PEW .055 109 312 .502 688 895 .952
20 PrT 050 100 300 .500 700 .900 .950
PBT .052 089 267 468 705 919 .966
PEW 053 106 308 501 .692 886 951
30 PRT .050 .100 300 .500 700 900 .950
BT 048 085 280 484 699 912 .961
PEW .052 104 305 .501 695 897 .950
50 PRT 050 1100 300 .500 700 900 1950
PBT 045 088 286 487 .696 916 .956
PEW 051 102 303 500 697 900 950
100 PrT .050 .100 .300 .500 700 .900 .950
BT .050 096 286 .502 .703 906 .956
Table 2. Comparisons of ppw, prr and pgr when F is U(0,1)
n P 0.05 0.10 0.30 0.50 0.70 0.90 0.95
PEW 1337 375 455 513 570 652 688
10 DRT .105 169 310 413 515 664 729
BT 334 .366 444 499 556 642 681
PEW 1252 .303 421 .509 595 717 766
20 DRT -.011 074 279 436 592 812 .901
PBT .255 .303 419 508 594 716 767
PEW 198 255 397 507 615 | 761 816
30 DRT -.088 .004 249 446 642 908 1.007
PBT 203 260 397 507 614 758 813
PEW 130 191 362 505 646 822 880
50 PRT -.179 -.001 198 456 714 1.033 1.133
PBT 132 192 364 507 648 821 880
PEW 1052 103 302 .503 701 906 953
100 PRT -.249 -.209 105 466 830 1.187 1.245
PBT 056 107 306 506 703 903 950

- pew : The approximated value of the Edgeworth expansion

- prr : The approximated value of the Roy-Tiku method

- ppr : The approximated value of the bootstrap method
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Table 3. Comparisons of pgw, prr and ppr when F is Exp(1)

n p 0.05 0.10 0.30 0.50 0.70 0.90 0.95
10 PEW .396 454 .585 676 770 .892 .945
PBT 215 .245 .337 432 612 814 .873

20 PEW .278 .344 501 .613 725 .859 910
PBT .166 206 332 464 657 .842 .905

30 PEW .209 278 453 .582 711 .858 907
PBT 142 184 .316 .468 .664 .861 .920

50 PEW 126 195 .391 .548 705 871 918
PBT .088 128 .284 .464 687 .904 955

100 PEW .040 .092 .301 .507 718 .909 .949
PBT .047 .080 .247 458 121 934 973

Table 4. Comparisons of pgw, prr and ppr when F is Weib(1,4)

n p 0.05 0.10 0.30 0.50 0.70 0.90 0.95
PEW .354 .394 484 546 | .605 .686 720

10 DRT .361 401 491 .552 611 .692 726
PBT .308 344 435 505 578 686 732

PEW .262 314 440 531 .618 733 .780

20 PRT .264 317 443 .533 620 735 781
PBT .236 .288 417 .518 .615 747 798

PEW .204 262 412 .524 .632 769 .822

30 DRT .206 .264 414 .523 .633 170 .822
PBT 194 .249 400 518 .634 776 .830

PEW 133 193 372 .516 .656 .822 .878

50 PRT 133 194 374 517 .656 822 .878
PBT 128 187 361 506 653 828 .885

PEW .052 102 .308 .508 .703 .900 .948

100 PRT .052 .102 .309 .508 703 .899 947
PBT .053 101 .304 .506 704 .903 .949

- pew : The approximated value of the Edgeworth expansion

- prr : The approximated value of the Roy-Tiku method

- ppr : The approximated value of the bootstrap method




