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Partially BTIB Designs

for Comparing Treatments with a Control}

Kwang Hun Kim*

ABSTRACT

Bechhofer and Tamhane(1981) developed a theory of optimal incomplete block
designs for comparing several treatments with a control. This class of designs is
appropriate for comparing simultaneously p > 2 test treatments with a control
treatment (the so-called multiple comparisons with a control (MCC) problem) when
the observations are taken in incomplete blocks of common size K < p+ 1.

In this paper we want to extend to partially BTIB designs with two associate
classes for the MCC problem. We propose a new class of incomplete block designs
that are partially balanced with respect to test treatments. Because the class of
designs that we consider is larger than the class of designs in Bechhofer and Tamhane
and provides us with designs that improve on the optimal designs in their class. We
shall use the abbreviation PBTIB to refer to such designs. We study their structure
and give some methods of construction.

Also we describe a procedure for making exact joint confidence statements for
the MCC problem in PBTIB Designs with two associate classes. We study Opti-

mality, Admissibility considerations in PBTIB designs with two associate classes.
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1. Introduction

This article deals with the problem of comparing simultaneously several treat-
ments, called test treatments, with a special treatment called the control. For this
problem the earliest work was carried out by Dunnett(1955,1964). Dunnett(1955)
posed (but did not solve) the problem of the optimal allocations. This optimal
allocation problem was solved by Bechhofer and his coworkers(1969,1970,1971).
Bechhofer and Tamhane(1981) proposed a new class of incomplete block designs
which they referred to a Balanced Treatment Incomplete Block(BTIB) designs for
the MCC problem. In the present article, we want to extend to Partially Balanced
Treatment Incomplete Block(PBTIB) designs with two associate classes for the
MCC problem: we suggest a design that allocates the control treatment occurred
with any test treatment an equal number of times in blocks, the test treatments
forming a partially balanced incomplete block(PBIB) design with two associate
classes in the remaining plots of the blocks. Bechhofer-Tamhane article is basic to
the development in the present article. Qur goal of this of this paper is the consider
a general class of optimal PBTIB designs that is appropriate for the MCC problem.
This paper consists of 5 Sections. In Section 2,3,4 and 5, we give the basis theory
underlying PBTIB designs, and include some methods of construction. The method
of analysis is described. Optimality, Admissibility considerations are discussed in

some detail. Examples of article are considered of Group Divisible PBTIB.

2. PBTIB Designs with Two Associate Classes
2.1 PBTIB designs
Let the p + 1 treatments be indexed 0,1,---,p with 0 denoting the control

treatment and 1,---,p denoting the p > 2 tests treatments. Suppose that the

experimental units are grouped into b sets, called blocks, of k units each, where
k<p+1. (2.1)

This mean that we are in an incomplete block design situation. N = kb is

the total number of experimental units. If Y;;, is response obtained by applying
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treatment 7 to the hth plot of block j, then the usual additive linear model (no

treatment X block interaction) of response the we shall deal with is

Yijh = p+ 7+ Bj + €ijn (2.2)

ZT,-:Zﬁj=0;i=0,-~,p;j=1,---,b;h=1,---,7‘,‘]‘(1',']'=0,1,---,k—1);

where r;; denotes the number of experimental units in block j assigned to treatment
¢. There is no observation Y;j; if r;; = 0. In (2.2), p denotes the general mean,
7; the effect of treatment i, §; the effect of block j, and the ¢;j5 are assumed to
itd N(0,0?%) random variables.

It is desired to allocate the treatment 0,1,---,p to the blocks in a way that
allows the best possible inference (exact joint confidence statement) on the vector
of control-test treatment contrast (rg — 71,--+,79 — 7p) based on their BLUE'S
7o — 7:(1 £ ¢ < p) in the sence of optimality.

Since it is desired to make a confidence statment (employing one-sided or two-
sided interval) that applies simultaneously to all of the p differences 7o — 7:(1 <
i < p), we shall regard our problem as being symmetric in these differences. In the

sequel,we consider a class of designs for which

Var{fy — 7} = c*c*(say) (1 <1 < p), (2.3a)
corr{fy — Ti1, 7o — Tia} = ;1
(if the i;th and ith treatments are first associates, i3 # 19;1 < i1,i2 <p) (2.3b)
and
corr{fy — 731,70 — Tia} = p2

(if the 7;th and ipth treatments are second associates,iy # i2;1 < 11,1, < p);

the parameters C?, p; and p; depend on the design employed. We shall refer to
such designs as partially Balanced Treatment Incomplete Block(PBTIB) designs
with two associate classes since they are partially balanced with respect to (wrt)
the test treatments.

The following theorem states the necessary and sufficient conditions that a

design must satisfy in order to be a PBTIB design.
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Theorem 2.1 : For given (p, k, b) consider a design with the incidence matrix
{rij} and suppose the ;. test treatments constitue a partially balanced association
schems with two classes. Let A; = Z?:l ri;ri+; denote the total number of times
that the sth treatment appears with the ¢'th treatment in the same block the whole
design (1 #1';0 <, ' < p).

Then a design with {r,;} is PBTIB if and only if (iff)

AOI = s = /\OIJ = )\0 (say), (24)

Xii = Ay(if the ¢th and i’ th treatments are first associates, ¢ # ¢ ; 1 < 4,1/ < p)
and A,y = Xy (if the sth and 7/th treatments are second associates, 2 #1;1<0,
i <p).

proof : See Kim(1987) -

Remark 2.1 : We noted that Theorem 2.1 places no restrication on r; =
Z?=1 ri;(1 < ¢ < p), the number of replications of the ith test treatment, and
hence a design can be PBTIB without the r;(1 < ¢ < p) being equal. Such a design
for (p,k,b) = (4,3,8) and Ao = 2,\; =0, Ay =3 withry =7, =5,713 =4,74, =06 1s

given by

00001122]
11221 4 2 4.
3 4 3 43 4 3 4]

2.2 Generator Designs

For constructing an implementable PBTIB design with two associate classes

we begin with the concept of a generator design.

Definition 2.1 : For given (p, k) a generator design is a PBTIB design (not
necessarily connected or implementable) such that no proper subset of its blocks
forms a PBTIB des’gn under the same association scheme of same order and none

of its blocks contains only one of the p+ 1 treatments where we denote that a PTIB

0 0 --- 0
design { 0 0 --- 0 p is an elementary generator design.
1 2 p

We consider the following example for & = 2 and p > 4 (except prime number)



Partially BTIB Designs 11

ILp=4k=2 (2.5a)
~Jo o o0 0 _[12 3 4 12
%—L234] a‘4123y %-b4}
D._]0 0001 234 D 0000 1 2
T11 2 3 4 41 2 3)° 711 2 3 4 3 4

are BTIB and PBTIB designs with (A, A1, A2)=(1,0,0), (0,0,1), (1,1,0), (1,0,1),

respectively; however, only Dy, Dy, and D, are generator designs.

II.p=6k=2 (2.5b)
000 00O 1 2 3 4 5 6
D“‘L 2 3 45 4’ lh_[64 5 3 12}
D]l 11223445
2712 3 4 3 5 6 5 6 6|’
D.—]0 00000123456
5711 2 3 4 5 6 6 45 3 1 2|’
D.—|000000 111223445
1711 2 3 4 56 234356 5 6 6

are BTIB and PBTIB designs with (Ao, A1,A2) = (1,0,0), (0,0,1), (0,1,0), (1,0,1),
(1,1,0), respectively; however, only Dy, D, and D, are generator designs.

As shown before, for p > 4 (except prime number), £ = 2 there are exactly
three generator designs. Although, for each p > 4 (except prime), k = 2 there are
three generator designs, it is not clear whether for any (p, k) there are only finitely

many generator designs.
2.3 Construction of PBTIB designs

Now we consider only implementable PBTIB design. Suppose that for given
(p, k) there are n generator designs D;(1 <7 < n) with two associate classes under
the same association scheme of same order.

Let /\gi),/\gz‘), and /\gi) be the design prameters associted with D;,and let b;
be the number of blocks required by D;(1 < ¢ < n). Then an implementable
PBTIB design D = UL, f;D; obtained by taking unions of f; > 0 replications
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of Di(1 < i < n), at least one of which has Ag > 0, has the design parameters
do = Tr FAY 0 = D, FNY e = 0, £iAy) and requires b = T, fibs
blocks. The set D; with fi > 0 will be refered to as the support of D. For instance,
from Dg, Dy of (3.4), implementable PBTIB designs of the type D = foDoU f1 Dy
can be constructed for fo > 1,f; > 0; the corresponding design parameters for
D(p = 4) are Ao = fo,A\1 = f1,b = fop + fip. To this end, for £ > 3 we now
state several methods of constructing generator designs for obtaining implementable
PBTIB designs with two associate classes.

Method I: The preceding example suggests the following method of construct-
ing a class of generator designs: For given (p,k), a generator design D, will have
m + 1 plots in each block assigned to the control treatment; the p test treatments
are assigned to the remaining k — m — 1 plots of the b, blocks (0 < m < k - 2)
in such a way as to form a PBIB design. The generator design Di_; contains no
control treatments. For (p, k) = (4, 3) we have the following three generator design

in this class.

0000 0000 1 2 3 4
Do=|1 2 3 4|, D=0 0 0 0|, D={1 2 3 4|. (26)
3 4 21 1 2 3 4 4 3 1 2

Method II : Consider a group-divisible partially balanced incomplete block
(GD-PBIB) design with two associate classes between t treatments in blocks of size
k. The association scheme of such a GD-PBIB design can be represented in the
form of an m x n array (with mn =t). Any two treatments in the same row of the
array are first associates, and those in different rows are second associates.

Case 1. n = 2 : Suppose that m > k and m is positive integer (> 3); one
can then take p = 2(m — 1) and arrange the treatments in order of groups so
that the first n treatments form the second group, and so on. We relabel the
entires in the remaining groups except the treatments 1 through p by zeros, thus
obtaining a PBTIB design. Such a design may not be a generator design and may
contain some blocka that must be deleted. After deleting such blocks, a PBTIB
design is obtained. By identifying the support of this resulting design, the desired
generator design(s) are obtained. Some (or all) of these can usually be obtained
by the Method L To see the use of this case, (1) Consider the GD-PBIB design
(for k = 2,t = 6,m = 3,n = 2,b = 18\ = 2,A; = 1) in the monograph by
Caltworthy(1956), which has the following association scheme:



Partially BTIB Designs 13

1 2
3 4.
5 6

By relabeling the treatments 5 through 6 by zeros, one obtains the union of
a PBTIB design with a design containing one block with only zeros. After that
block has been deleted, the support of the remaining PBTIB design consists of the

following;:

o 0 000
2 replications of [1 2 3 4] ) (2.7a)
. 13
2 replications of o 4 ° (2.7b)

(2.7¢)

1 21 2
3 4 4 3

1 replications of [

Thus the designs given by (2.7a) through (2.7¢) are generator designs for p =
4, k = 2: the three designs are obtainable by Method I. (2) Consider the GD-PBIB
design (for k = 3,t = 6,m = 3,n = 2,b = 8,A; = 0, Ay = 2), which has the following

association scheme:

1 2

3 4

5 6
By relabeling the treatments 5 through 6 by zeros, one obtains the union of a PBTIB
design. The support of the PBTIB design consists of the following:

0 0 0 O
2 replicationsof {1 2 3 4 (2.7d)
3 4 2 1

Thus the design is generator design for p = 4, k = 3: the design is obtainably by
Method 1. (3) Consider the GD-PBIB design #Rj(fork = 3,t =6,m =3,n=2,b=
6,1 = 2,X2 = 1) in the monograph by Bose, Clatworthy, and Shrikhande(1954),

which has the following association scheme:
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1
3
5

SN

By relabeling the treatments 5 through 6 by zeros, one obtains a PBTIB design.
The PBTIB design consists of the following:

0000 1 2
001133 (2.7¢)
13 4 22 4 4

Thus the design is generator design for p = 4, k = 3; the design is not obtainable
by Method 1.

Case 2. m > 2,n > 3 : If p > 4(even); one can then take p = m(n — 1) (or
n(m — 1)) and arrange the treatments in order of columns so that the first m(or n)
treatments from the first column, the next m(or n) treatments from second column,
and so on. We relabel the entries in the remaining columns except the treatments
1 through p by zeros, thus obtaining a PBTIB design. Such a design may not
be a generator design and may contain some blocks that must be deleted. After
deleting such blocks, a PBTIB design is obtained. By identifying the support of
this resulting design, the desired generator design(s) are obtained; some (or all) of
these can usually be obtained by the method I.

For instance, consider the GD-PBIB design #Rj(for k = 3,t = 9,m =
3,n = 3,b = 27,71 = 3,A2 = 2) in the monography by Bose, Clatworthy, and

Shrikhande(1954), which has the following association scheme:

S Ut W
O 00 =

1
2
3

By relabeling the treatments 7 through 9 by zeros, one obtains the union of
a PBTIB design with a cesign containing one block with only zeros. After that
block has been deleted, the support of the remaining PBTIB design consists of the

following:

(2.8a)

3 replications of

> = O
or N O
DWW o
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0 000O0O0T14
2 replicationsof {1 1 2 2 3 3 2 5}, (2.8b)
5 6 46 4 35 3 6

Thus the design given by (2.8a) through (2.8b) are generator designs for p =
6,k = 3 ;the first design is obtainable by Method I, while the second design is not.

Method III : Consider a triangular partially balanced incomplete block(TR-
PBIB) design with two associate classes between t treatment in blocks of size k.
The association scheme of such a TR-PBIB design can be represented in the form
of an n X n symmetric array (¢ = n(n — 1)/2,n > 4) of n rows and n columns by
leaving the main diagonal empty, and writing the treatments in the places above
the diagonal (repeating them symmetrically below the diagonal). Two treatments
are first associates if they appear in the same row (or the same column) of the array;
otherwise they are second associates. For n > 5 one can take p = {—(the elements in
the last column (or row) and arrange the treatments in the places above the diagonal
in order of columns so that the first one treatment form the first column, the next
two treatments form the second column, and so on (repeating them symmetrically
below the diagonal). We relabel the entries in the remaining columns except the
treatments 1 through p by zeros, thus obtaining a PBTIB design. Such a design
may not be a generator design and may contain some blocks that must be deleted.
After deleting such blocks, a PBTIB design is obtained. By identifying the support
of this resulting design, the desired generator design(s) are obtained; some (or all)
of these can usually be obtained by the Method I. For instance, consider the TR-
PBIB design (for k = 2,t = 15,n = 6,b = 60, A; = 1,\; = 0) is the monograph by
clatworthy(1973), which has the following association scheme:

* 1 2 4 7 11
1 « 3 5 8 12
2 3 « 6 9 13
4 5 6 « 10 14
7 8 9 10 *x 13
11 12 13 14 15 *

By relabeling the treatments 11 through 15 by zeros, one obtains the union of a
PBTIB design with a design containing one block with only zeros. After that block
has been deleted, the support of the remaining PBTIB consists of the following:
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. 0 000O0O0OOTO0OTU 0O O
5)
2 replications of 193 456 78 9 10] , (2.9a)
1 replication of
1111 1122222331333 3 44255 5
2 3 45 7 83 467956789 105 6 6 & 10
6 6 7 7 8 9 10 10
‘)
9 10 8 10 9 7 8 9 (2.99)

Thus the designs given by (2.9a) through (2.9b) are generator designs for p =
10, k = 2:the two designs are obtainable by Method I.

Method IV : Consider a latin aquare partially balanced incomplete block (LS-
PBIB) design with two associate classes between t treatments in blocks of size k.
The association scheme of such a LS-PBIB design can be represented in the form
of an n X n array (¢ = n?). Two treatments are first associates if they appear in the
same row or in the same column of the array; otherwise they are second associates.
For n > 4 one can take p = t—(the elements in the last column and row) and relabel
the entries in the last column and row by zeros. We arrange the treatments in the
remaining columns and rows in order of rows, thus obtaining a PBTIB design. Such
a design may not be a generator design and contain some blocks that be deleted.
After deleting such blocks, a PBTIB design is obtained. By identifying the support
of this resulting design, the desired generator design(s) are obtained; some (or all) of
these can usually be obtained by the Method I. For instance, consider the LS-PBIB
design #LS3 (for k = 2, = 16,n = 4,b = 48, \; = 1, A; = 0) in the monograph by
Clatworthy(1973), which has the following association scheme:

1 2 3 10
4 5 6 11
7 8 9 12
13 14 15 16

By relabeling the treatments 10 through 16 by zeros, one obtains the union of a
PBTIB design with a design containing one block with only zeros. After that block
has been deleted, the support of the remaining partially PBTIB design consists of
the following:
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o
(==
o
o
o
[om}

N 00 0
2 replications of [1 9 3 9] , (2.10a)

N
¥4
=21
-3
(¢ ]

2 3 3 4 4 45 56 778
8 6 956 76 8 9 89 9](,2'106)
Thus the two designs given by (2.10a) through (2.10b) are generator designs

for p = 9;the designs are obtainable by Method I.
Method V : Suppose that for given (p,k) we have a generator design D; with

2 2
3 5

. 1111
1 replication of [ 9 3 4 7

Ao > 0.Then a new generator design D, for the same (p,k) can be obtained by
taking a “complement” of D, in the following way : Separate the block of D; in
different sets so that each block in given set has zero assigned in an equal numbr of
plots (0 times, 1 time, etc). For example, consider the design (2.7e) the blocks of

which can be seperated into three sets a follows:

00001 2
Di,=|0 0 1 1 3 3
3 4 2 2 4 4

For each set of D write its “complementary” set (with zero assigned in the
same number of plots) so that the union of that set with its complementary set
forms a generator design ; if r;j; = 0 or 1 (1 < ¢ < p) then that union is simply a
generator design that can be constructed by Method I. These complementary sets
in the present example are

0 0 00 11
0 0}, 3 31, 2 21;
1 2 4 4 3 4

by taking their union we obtain the generator design D;. The b-values for D;

and its complement D, are not in general equal, although in the precesent example

they are.
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3. Joint Confidence Statements
3.1 Expressions joint confidence interval estimates

We first record the expression derived the PBTIB(group divisible, triangular,
latin square) for the BLUE 75 — 7; of 79 — 7 (1 < 1 < p) and their variance, two
correlations and average correlation. Let T; denote the sum of all observations
obtaind with the ith treatment (0 < ¢ < p), and let B denote the sum of all
observation in the ith block (0 < j <b).

Define B = S.°_, ri;B; and let Q = kT; — B¥(0 < i < p), and let Si(Q;) be

‘_4]:1
Qi1 + Qiz + -+ + Qin, when iy,ia,---,1,, are k th associates of 7 th treatment
(k=1,2).
Then
o —T; = !
T TN+ (Ao + pA)(ho +rads + (n2 + 1)A2)
X | QoAr[(p+ 1)Ao + ni(p+ DA A + {na(p + 2) + ny + 2} ]
— Qido(p+ 1)(Ao + pA1) — S1(Qi)Ao(p + 1)(A1 — A2)
(ni+ne=p-—1,1<¢<p). (3.1)
Also,
Var{f, — 7} = ¢*s* (1 <1 < p), (3.2)

p1 = corr(Fy — Tir, o — Ti2), (11#12; 1 <41, 12 <p; 11,22 ; first associates),
and
p2 = corr(Fy — Fiy, fo — Tiz), (11 #1125 1<il, 12 <p; 11,12 ; second associates),

The expressions for (3.1) through (3.2) are derived in the Appendix of Kim(1987).
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Table 1. Analysis of Variance Table for Partially 3TIB Designs

Source of Variation Sum of Squares df.
H :S51(Q)(A1 A
Treatments )f=1[(1%3' ‘i‘ )Zslﬁ%l )—Qk;(((ﬁl;;b)z)i p
. (A1=22)Qo[(Ao— Qi)=n1(Mo—M1 Qs
(Adjusted) | =3 0, g o DAy
_PQID(D+(M1—22)(p+1)Xo)
kA()\o-Fp/\))zAg 2
(Pro+22)Q
ot KpHDh ,
Blocks 1yy B -& b1 |
Error (by subtraction) N-p-b |
Total - & N-1

An unbiased estimate S? of 02 based on v = N —p—b degrees of freedom(df) can
be computed as SSerror/(n — p— b) where SSerror can be obtained by subtraction
(as in partially BIB designs) from Tablel.

A and D denote (g + n3A; + (ng + 1)A2) and (A9 — A2)(Ao — pA1) — (M —
A2((n2 + 2)\g + n1A1)), respectively. The expressions in table are derived in the
Appendix of this paper.

We note that if Ag, A1, A2, then 5SSt cat(ad;.) reduces to

Q3(p+1)* oA =1 9F
k(p+1)222(Xo + pA1) k(Ao +pA1)

(i.e., the same expressions as for a BTIB design).

Remark 3.1 : For many PBTIB designs (group divisible, triangular, latin
square) we have r;; > 1, and thus within-block replication occurs. For such designs
the sum of squares(SS) for error can be partitioned into SS due to “pule error”
and SS due to “interaction”, and this decomposition can be used in testing the
additivity assumption or the assumption of block-to-block variance homogeneity.

Such tests are not pursued in this paper.

Remark 3.2 : It is easily shown for PBTIB designs that the 7; have

variance=n2?0?(say), two correlations vy, v, and use have the relationship
Var{# — #;} = 2(1 — v1)n?o?
= 2(1 — p;)ca?,

(¢ #7;1 < 1,7 < p; first associates),
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and

Var{#; - #;} = 2(1 - va)n’0”
= 2(1 — py)cta?,
(i # 7;1 <i,7 < p; second associates). (3.3)

Thus the relative precision of the estiamtors 7o —7;(1 < 7 < p) for the MNN problem

w.r.t the estimators 7; — 7;(¢ # 5,1 < ¢,j < p) for the pairwise comparisons among

the p test treatments is given by
Var{f; - 7;
Variti =) _a1— p),
Var{fy — 7}

(1,j : first associates)

and

Var{#; = 7;} _
Var{fo — #:} 21 =p2),

(i,j : second associates). (3.4)

Note that the relative precision is >< 1 depending on whether p, ><  (t =1,2).

4. OPTIMAL DESIGNS
4.1 Optimality

Now we consider a rational for not only choosing a designs from a set of com-
peting PBTIB designs with two associate classes but also comparing PBTIB designs
with two associate classes with BTIB designs,

We consider here the case of confidence intervals; o2 is assumed to be known.

We limit consideration to confidence intervals of the form {rg — 7, > 7o — i —
d (1<i<ip)lor{fp—Ffi—-d<ro—1i<To—Ti+d (1<i<p)}, whered>0is
a specified “yardstick” associated with the common width of confidence intervals.
The probability P associated with this joint confidence statment can be writtern as

the following.
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(I) One-sided intervals:

P=Pr{irg—m, 2% —1% (1<i:<p)}
n2

d .
~Pr(z,1<— i=1,---,m+1, 7=1,- n1+1+1)
n1+1
¢"‘+1[ p1 = p2
[ ey

{Zx - }+wh'p1+(h—1)p2+——
"Ver+ G =2p/pi + (G = Dpz Ver+(m—2)p, o

X dp(z1) -+, dd(T(n2/n1+1)+1) (4.1)
(II) Two-sided intervals :

P=Pr{fo—fi—d<f-#%+d (1<i<p)}

d d . .
--Pr{_—<zl]—-;‘,—, ’L:ly"'anl+17.7=1"”?nlnj_1+1}
n1+1

P

[ [ [
p2 ) ver+(h=1)p d}
x; + zp + —
(Z Vo + G = 2)p2v/or + (G - Ve Vet (R=2)p; co

¢{T/T‘1777m<§ VG- 2)/):2://’1 U= 1)"2>

+$h\/P1+(h“1)02 __d_H
Vpr+(h—2)p2 co

X dé(z1), (T (n2/n141)41))

where (Zy,--+,Zp) has a p-variate standard normal distribution with p1, p2, and
#(-) denotes the standard univariate normal distribution function. Note that for
given P and specified d/o the probability P of (5.1) depends on the PBTIB design
employed only through ¢, p.

This fact will facilitate comparisons between PBTIB designs. In these compar-

isons we mainly restrict consideration to PBTIB designs with possibly unequal b
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values for given (p.k) ; however, our results can be extended to the comparison of
PBTIB designs with unequal k values.

We start by marking the following definition :

Definition 4.1 : For given (p,k) and specified d/o the PBTIB design that
achieves a joint confidence coefficient P > 1 — a with the smallest b is said to be
optimal for that value of 1 — a.

To determine the optimal PBTIB design for given (p,k),1 — o and specified
d/co, one would proceed as follows :

Find the design that for given (p,k.b) and maximized P, and then very b to
find the smallest b for which the maximum P is > 1 — «.

In the search for the optimal design for given (p,k), it is desirable to eliminate
from consideration certain designs that are uniformly dominated by other designs

and hence cannot be optimal for any d/g or 1 — a.
4.2 Admissible Designs and Minimal Complete Class of Generator Designs

We define the concept of inadmissible and admissible designs. As noted before,
these concepts are motivated by problem of joint confidence interval estimation of

the p — 7

Definition 4.2 : Suppose that for given (p,k) we have two PBTIB designs
D; and D, with parameters (by, /\él), /\gl), )\gl),cf, p1) and (b, )\(()2), /\(12‘), )\g‘z),c%, p2)
and with b; < by, Dy is inadimissable wrt D, iff for every d and o,D; yields a
confidence coefficient P at least as large as (larger than) that yielded by D, when
by < by(b; = by). If a design is not inadmissible, then it is said to be admissible. If
by = ba, c% = c3, p1 = p2 (or equivalently b, = by, )\f)l) = /\52), )\gl) = }\52), )\(21) =
)\22) },then Dy and Dy are equivalent. For given (p,k) the candidates for an "optimal”
design will be all admissible PBTIB designs that can be constructed by forming

unions of repiications of all known generator designs for that given (p,k).

Theorem 4.1 : For given (p,k) consider two PBTIB designs D¢ and D, with
parameters (b, ci, p1) and {by, c3, p2), respectively. Design D; is inadmissible wrt

design Dy iff by < by, ¢ < ¢ and p; > pp with at least one inequality strict.



Partially BTIB Designs 23

Proof of sufficiency: From (4.1) we see that as C decreases for fixed d, o
and p (p increases for fixed d,o and C),the confidence coefficient P increases. The
monotonicity wrt p follows from Slepian’s inequality.

Proof of necessity: Suppose that the confidence coeflicient associated with D,
is larger than the confidence coefficient associated with D, for every d and p. Then
¢ < ck(p1 > p2) follows from letting d T oo(d | 0).

For an application of this theorem consider the following two GD-PBTIB de-
signs for (p, k) = (4,3) ;

00001 2 0000113
D,=1{001133|, Dy=({00002 2 4
342 2 4 4 1234344

For these designs A" = AP =2 A = AP =2 2\ = AP =1 and
by =6 < by = 7. Hence ¢ = ¢} = 11/16, p; = p2 = 13/33, and thus both D; and
D, yield the same P for every d and o ;however D, is admissible wrt D because

D; requires a larger total number of observation than does Dj.

Remark 4.1 : For given (p,k) Definitions 4.1 and 4.2 can be considered to
the comparison of PBTIB designs not only with unequal & values but also with
unequal k values. Such comparisons would be of interest to the experimenter who
is faced with the choice of block size,;subject to the restriction that the common
block size k < p + 1. In this case, for given P and specified d/o the PBTIB design
that achieves a joint confidence coefficient P > 1 — a with the smallest N = kb
is said to be optimal for that value of 1 — @. If this more general definition of
optimality is used, the characterization of inadmissibility given by Theorem 5.1
would be modified as follows: For given P consider two PBTIB designs D; and
D, with parameters (by, k1, c%, p1) and (by, ko, 3, p2), resepctively. Design D, is
inadmissible wrt Dy iff Ny = k1by < Np = koba, ¢? < c2, py > p2 with at least one

inequality strict.

For an application of this more general definition consider the following two

GD-PBTIB designs for (p, k) = (4,4) and (p,k) = (4,3) ;

88(1)(1’(1)3 00000000 OO0 1 2
Di=|] 043 53l 2={001 111122333
A 34 22 23 43 4444
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Both D; and D, have C? = 4/13, p = 19/60 and therefore achieve the same
P. However, D, for k = 3 has N = 36, while D; for k = 4 has N = 24.

Thus although each design is admissible for its own k value, D; is inadmissible
wrt Dy.

Remark 4.2 : An application of Theorem 5.1 can be extended to the case
of joint two-sided confidence intervals. Of course, the optimal designs might be
different in the one-sided and two-sided cases for the same (p,k) and d/o. The same

2 except that then one would have to specity

general ideas carry over for unknown o
the expected common “width” of the confidence intervals. We give the definition

of the minimal complete class of generator designs.

Definition 4.3 : For given (p,k) the smallest set of generator designs {D;(1 <
i < n)} from which all admissible designs for that (p,k) (except possibly any equiv-
alent ones) can be constructed is called the minimal complete class of generator
designs.

We note that for given (p,k), the minimal complete class is unique up to sub-
stitution of any generator design in the set by an equivalent one. This fact follows
from the definition of the minimal complete class.

To obtain the minimal complete class from a given set of generator designs we
proceed in two steps. In the first step we delete any equivalent generator designs
(except, of course, one reprensentative of each set of equivalent generator designs).
If the union of two or more generator designs yields an equivalent generator de-
sign, then we choose to eliminate the latter design from consideration and there by
maintain more flexibility for our construction of designs involving larger numbers

of blocks. Thus, for example, p = 4,k = 3 the designs

D, =

w = o

0
2
3

=N O

1 3 0 0001 2
, Dy =11 4|, D;=|0 0 1 1 3 3}.(42)
2 4 34 2 2 4 4

== O

are all generator designs, but Dj is equivalent to D;U D,: hence we choose to retain
only D; and D, but not D3. This lead us to the following definition.

Definition 4.4 : If for given (p,k) we have n > 2 PBTIB generator designs

D;(1 < i < n), no two of which are equivalent, and no one of which is equivalent
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to the union of replications of one or more of the other generator designs. Then

{D;(1 £ i < n)} is referred to as the set of nonequivalent generator designs. It

would be tempting to eliminate any inadmissible generator designs-room the set of

nonequivalent generator designs. However, it is not in general true for given (p,k)

that if design D is inadmissible, then every design DUD’ is also inadmissible.
Thus, for example, for p = 4, k = 3 the GD-PBTIB designs

[0 0000011 2 2]
Dy =1{0 0001331 24},
1 2 3 42 4 3 4 3 4]
(000000000 O]
D,={0000000O00O0 1 3],
1 234123424

L -

which are union of generator designs, have )\gl) = 3,)\&1) = 1,)\21) = 2, /\32) =
5,/\52) = 1,/\32) =0, and b; = b, Hence ¢? = ;—g— <ck= %%,pl = % > pp = %, and
D, is inadmissible wrt D;. However, DoU D; is admissible wrt D;U D3 where

D3=

LW W
o N

2
2
3

Lo V]

Hence in this case it would not be desirable to eliminate D, from our set of
admissible designs.

In the second step we delete the so-called strongly ($-) inadmissible generator
designs from the set of nonequivalent generator designs obtained in the first step.
The concept of S-inadmissibility is defined as follows.

Definition 4.5 : If for given (p,k) we have two PBTIB designs D; and Dy
(not necessarily generator designs), we say that D, is S-inadmissible wrt Dy if Dy is
admissible wrt D,, and if for any arbitrary PBTIB design D; we have that D,U D3
is inadmissible wrt DU Dj.

Theorem 4.2 : A sufficient condition for S-inadmissibility of a PBTIB design
Dy wrt a PBTIB design D with the same (p,k) is that

by < by, ASY = 28D, A > A0, A > AP (4.3)
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with at least one inequality being strict.

Proof. If /\gl) = )\52)’ )\(21) = Agz) and b; < by,then the result is obvious. If
/\gl) > /\§2) and )\(21) > /\§2), then the result follows from the fact that for fixed Aq
the parameter C? is a deceasing function of A;, A2 and p is an increasing function
of A;Xy. As an illustration of A\;, A, and p is an increasing function teo CD-PBTIB
design for (p, k) = (4,3);

0000 1 2 0000O0T1 3
Di=1]001133|, Dy=1]00001 4
342 2 4 4 1 23 4 2 4

For these designs )\81) =2, )\51) = 2, /\gl) =1, by = 6, and /\82) =2, /\gz) =
2, /\gz) =0, b, = 6. Hence D, is S-inadmissible wrt D,. We use a special case of
(4,3) namely b; < bo, )\gl) = /\32), /\gl) = /\§2), Agl) = /\g2) repeatedly in the sequel
to decide whether a given design D; is S -inadmissible or equivalent wrt another
design D;.

There are certain PBTIB designs that are S-inadmissible as defined before but
that can be deleted without any loss from our set of generator designs.

The identification of such designs requires the concept of combination (c-)

inadmissibility, which is more general than S-inadmissibility.

Definition 4.6 : Suppose that for given (p,k) we have n > 2 generator designs.
{D;(1 € i < n)}, which are nonequivalent, and none of which is S-inadmissible.
The designs D,D’,D” described later are constructed from the designs in the set
{D;(1 < i < n)}. consider a PBTIB design D, and an arbitrary PBTIB design D’.
If for every D’ there exists a PBTIB design D” such that DUD’ is either inadmissible
wrt D” or equivalent to D”, and D is not included in D”, then we say that D is
C-inadmissible wrt the set {D;(1 < i <n)}

Remark 4.4 : If a design {D;,---,D,} that contains only generator de-
signs that are nonequivalent and none of which is S-inadmissible, and if D; is
C-inadmissible wrt that set, then D; can be deleted from the set, and we shall
say that D; is C-inadmissible wrt the set {D;(j #1), (1 < < n)}.

Remark 4.5 : We point out some critical distinctions between S-inadmissible

and C-inadmissible designs. First, we note that Theorem 5.2 provides an easy
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way of checking whether certain PBTIB designs are S-inadmissible wrt certain
other PBTIB designs for that (p,k). On the other hand, in order to identify a
C-inadmissible design it is necessary to examine every different elementary combi-
nation of generator designs, and in some cases higher order combinations, and show
that each such combination leads to admissible or equivalent designs. We also note
that unions of certain designs with C-inadmissible designs may be admissible, but
each such admissible designs may be admissible, design is equivalent to some other
design not involing that C-inadmissible design. Such a possibly cannot arise with
an S-admissible design. In the equel, we point out that if a design is identified as
being S-inadmissible using the sufficient condition of Theorem 4.2, then that design
can be permanently deleted without loss, even if it is not known whether the set
{D;(1 <1 < n)}, contains all generator designs for given (p,k). This is in contrast
to the situation concerning a C-inadmissible design, which is defined wrt the set
{Di:(1 <i<n)}. A design can be C-inadmissible wrt {D;(1 < ¢ < n)}, but not so
wrt {Di(1 <7 < n+ 1)} where there this new set contains then = original designs
plus one additional one and consists of n+1 designs that are nonequivalent, none of
which is S-inadmissible.

Thus a C-inadmissible design can be eliminated unless it is known that {D;(1 <
¢ < n)} contains all nonequivalent and non S-inadmissible generator designs for the
particular (p,k) of interest. For p > 4, and k = 2 these sets are given by (2.5a), and
(2.5b), respectively.

As ststed before, if the set {D,, -, D, }contains all generator designs for given
(p,k), and if {D;,---,D;n} with m < n is the subset that contains all nonequiva-
lent, none- S -inadmissible and non- C-inadmissible generator designs, then the latter
set will referred to as a minimal complete class of generator designs for given (p,k).
The designs in the minimal complete class will serve as building blocks for all PBTIB
designs which will be of interest to us in our search for the optimal design. we il-
lustrate Definition 4.3 by giving in the following Tables 2.3 and 4 our conjectured
minimal complete class of generator designs for k = 3,p = 4. Using this tables we
have computed catalog of admissible designs for each b and also optimal designs for
selected d/o and 1 — o in the Table 5.
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Table 2. Conjeétnred minimal complete class of

3

generator designs for p=4, k
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Table 3. Conjectured minimal complete class of
generator designs for p=6, k=3 (m=2, n=3)
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Table 4. Conjectured minimal complete class of

3, n=2)

generator designs for p=6, k=3 (m
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Table 5. Optimal Designs (Bechhofer and Tamhanei)

05 06 07 08 09 10 11 12 13 14 15 16

kmn p 0 1 2 b
(dfa
322 4 1 1 0 2 .2329 .2636 .2960 .3300 .3653 .4016
322 4 2 2 0 4 .2984 .3470 3979 .4502 .5030 .5553 .6063 .6551 .7011 .7438 7827 8177
(.1880.2339 .2631 .3051 .3493 .3952 .4422 4894 .5363 .5822 .6265 .6687)
322 4 2 2 1 6 4107 4682 5262
(-3915.4582 .5257)
322 4 4 2 1 8 .5952
(.5914)
322 4 4 2 1 10 .7920 .8465 .8902 .9238 .9487 9665 .9788 .9870
(.7907.8388 .8795 .9139 .9402 .9596 .9735 .9831)
322 4 7 3 2 14 7508 .8228
(.7399.8029)
kmn p 0 1 2 b 04 05 06 07 08 09 1.0 11 12 13 14 15
322 4 8 4 2 16 .9064 .9425 .9664 .9813 .9900 .9950 9976
(.9034.9387 .9628 .9785 .9881 .9938 .9969)
322 4 10 4 3 20 .7646 .8456 .9050 .9451
' (:7630.8358 .8932 .9342)
322 4 1 5 3 22 .9223 9574 .9781 .9895 .9953 .9980 .9992 .9997
(.9211.9556 .9766 .9885 .9947 .9977 .9990 .9996)
322 4 12 6 3 24 .9988 .9996
(.9988.9996)
kmn p 0 2 b 01 02 03 04 05 06 07 08 09 10 11 1.2
323 6 2 0 6 1828 .2281 .2785 .3333 .3912 4511 .5114 .5708 .6280 .6819 .7316 .7766
(.0815.1060 .1349 .1685 .2065 .2485 .2940 .3424 .3927 .4442 .4959 .5468)
332 6 2 2 1 10 A177 4868
323 6 3 2 13 .8707 .9078 .9362 .9571 .9719
332 6 4 2 1 14 7862 .8442 8902 .9252 .9506 .9684 .9804
(.7751.8250 .8671 .9016 .9289 .9499 .9656)
323 6 3 3 1 15 .7400 .8025
(.7276.7996)
332 6 3 3 2 17 .6349 .7122
(.6063.6576)
332 6 6 2 1 18 .9783 .9878 .9934
(.9773.9869 .9927)
332 6 4 4 2 20 .8290 .8826
332 6 6 4 1 20 9249 .9544 .9734 .9852 .9921 .9959
332 6 5 3 2 21 .6944 7791 .8478 .9000 .9374 .9626 .9787 .9884 .9939 .9970
(.6911.7640 .8261 .8764 .9153 .9047 .9671 .9812 .9897 .9945)
332 6 4 4 3 24 .6456
(.6274)
kmn p 0 1 2 b 63 04 05 06 07 08 09 10 11 12 13 14
323 6 3 8 1 25  .3531
(-3362)
323 6 4 5 2 25 4425
(.4424)
332 6 7 3 2 25 .8293 .8925 9361 .9642 .9810 .9905 .9955
(.8276.8871 .9299 .9587 .9769 .9878 .9938)
323 6 6 4 2 26 .7606 .8396
(.7522.8376)
332 6 5 5 3 27 5750 .
(.56586)
323 6 7 4 3 28 6075 7216 .8156 .8860
(.5900.6855 .7696 .8391)
332 6 9 3 2 29 9583 .9788 .9899 .9955 9981

(.9578.9781 .9893 .9951 .9979)
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8977 .9424 .9698 .9852 9932 .9971 .9988
(.8736.9276 .9617 9810 .9911 .9961 .9984)
6158
(.6087)
8926 9411 .9700 .9858
(.8868.9335 .9635 .9812)
7380
(.7366)
01 02 03 04 05 06 07 08 09 10 11 12
2270
(.2189)
8575 .9210 .9587 .9810 .9918 .9967
(.8567.9182 9568 9790 .9905 .9960)

7754 8643
(.7696.8634)
6717
(.6586)
7904
(.7872)
8778
(.8685)
9873 .9949 9981
(.9873.9949 .9981)
5705
(.5688)

.9757 .9899 .9962
(.9738.9890 .9957)
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5. Discussion

We introduced a new general class of incomplete block desugns that are ap-
propriate for use in the MCC problem. We refer to these as partially balanced
treatment incomplete block (PBTIB) designs. The basis results concerning the
structure of such designs are derived, and the properties of the relevant estimates
obtained with such designs are given. Admissibility and inadmissibility of these
designs are defined, and these criteria are used to eliminate inferior designs. In the
search for optimal designs it suffices to restrict consideration to admissible designs.

It is shown how the concept of S-inadmissibility C-inadmissibility can be used
to obtain a minimal complete class of generator designs from which catalogs of
admissible designs can be constructed.

The combinatorial problem of constructing all PBTIB designs for given (p,k,b),
and the procedure for choosing an optimal design from such a set, are not solved in
the present paper. however, some methods of design construction are given.

The aforementioned problems are related in the sense that to solve the op-
timization part completely one must have constructed most, if not all, generator
designs for given (p,k); the problem of determining how many generator designs
exist for arbitrary (p,k), and then enumerating them, appears to be a formidable

one.
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