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1. Introduction

Because of the importance of path spaces to analysis, geometry and other fields, it
is desirable to develop a geometric integration theory or a de Rham theory for path
spaces. Having in mind this goal, we are going to consider a large class of path space
differential forms, which can be constructed from usual differential forms by a method
of iterated integration,

The purpose of this paper is to present a process of iterating the integration of
differential forms and to demonstrate its usefulness in relating the analytical and the
topological aspects of differentiable spaces.

In detail, the concepts of this paper is described as follows. In section 2, we
develop the general theory which is a background for the section 3 and 4. And the
definitions of the iterated integral Jw,w-w, are given by two different way. In Propo-
sition 2.10, we shall prove that the two definitions agree,

Section 3 is devoted mainly to establishing de Rham type theorems.

Let X and Y be differentiable spaces and 4 : Y— X differentiable map and let 4x and
Ay be differential graded subalgebra of A*(X) and A*(Y) respectively. Assume that
dAL =A¢ dAX), and dAL = A} (NdAY).

Theorem 3.6 If H'(Ax)—> H'(Ay) is an isomorphism (resp. epimorphism) and
H*(Ax)— H?*(Ay) is a monomorphism, then H°(A'y)—->H(A’) is an isomorphism
(resp. epimorphism), where A’k is the subcomplex of A*(Q,,(X)) spanned by iterated
integrals,

In Theorem 3.7, we shall prove that under what condition, H(A’)=H(B), where
B=Homz(F(C.), k), F(C«) has a basis all elements of the type [¢y|--l¢c,], r220, where
each ¢,e=C,(X) for s>>2 and k is the field of all real (or complex) numbers.
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Section 4 deals with the properties of formal power series connection w,
Especially, we prove the Theorem 4.4 :

Let M be a differentiable space such that the exterior algebra A#(M) is generated
by A°(M) and dA°(M) and let w be locally flat modulo a homogeneous ideal 9 of
k[[X71]. Then there is a ring homomorphism

Hy(Qeo(M)) — kL[X]]/9.

2. Iterated Integrals

Throughout this paper, % will denote the field of real (or complex) numbers. By
a convex m-region, we mean a closed convex region in R". A convex (-region consists.

of a single point,

Definition 2.1. A differentiable space X is a Hausdorff space equipped with a
family @(X) of maps called plois which satisfy the following conditions. ([4], 61,71

(i) Every plot is a continuous map of the type ¢ :U——X, where U is a convex
region,

(iiy If U’ is also a convex region (not necessarily of the same dimension as /) and
if 8 :U’—>U is a C”~map, then ¢ is also a plot.

(iii) Each map {0} —— X is a plot.

(iv) Let ¢ : U—> X be a continuous map and let {4, : U,—»U} be a family of
C”-maps, U,U, being convex regions, such that a function f on U is. C” if and only
if each fof, is C” on U, If each ¢-8, is a plot of X, then ¢ itself is a plot of X.
If X satisfies only (i), (ii) and (iii) of the above conditions, then it is called a

predifferentiable space.

Definition 2.2, Let X and X’ be differentiable spaces. A differemtiable map is a
continuous map f : X-—- X’ such that, for every plot ¢ of X, f¢ is & plot of X',

Example: (1) Every C”-manifold M (with or without boundary) is a differentiable
space, whose family of plots consists of all C*~-maps from a convex region to M,

(2) Let X be a differentiabe space with a family ®(X) of plots. For each subspace
SC X, if we take a family @(S) of plots such that ¢e=0(S)<D>d=®(x) and the
image of ¢C=S, then S is also a differentiable space, which is called a differentiable

subspace of X.
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(3) Every simplicial complex K induces a natural differentiable space structure on
| K|, whose family of plots consists of all maps of the type

v lam % k|

where U is a convex region, A" is the standard n-simplex, & is a C"-map and ¢ is

a simplicial map.

Definition 2.3, A p-form w on a differentiable space X is a rule that assigns to
each plot ¢ : U—— X a p-form ws on U satisfying the condition ([6],[7]) :

If §:U'—-U is given as in (ii) of Definition 2.1, then wsy=0%wy, where 6* is a
homomorphism induced by 4. |

In an obvious manner, we obtain the exterior algebra A*(X)= ¥ A4?(X) whose sum,
k-action, exterior product and exterior differential are respectively given by the

formulas ([6]) :

(w+a')s=ws+w’y, (Cw)s=cwy, (wAw’)s=weAw'y

and (dw)¢=dwy, where cc=k.

The de Rham cohomology will be denoted by H*(X) ([61). i f:X-—X'is a diff-
erentiable map, we shall usef* to denote both of the induced maps A*(X Py A¥(X)
and H*(X)— H*(X).

A piecewise smooth path (or simply a path) on a differentiable space X is a
continuous map a : J— X such that, for some partition 0=1,<t1<(---<4,=1 of the
unit interval I, each restriction a| [#._,#.] is a plot of X. Let P{X) denote the space
of all paths on X with the compact open topology. Every map a:U— P(X) gives

rise to a map

Gg t UXT > X

given by (& t)r—a(&)(t). A plot of P(X) is defined to be a continuous map
a: U~ P(X), U being a convex region, such that, for some partition 0={#,<¢;<--
<t,=] of the unit interval, the restriction of ¢, to each Ux[t;.y, t.] is a plot of X.
If wesA*+(X), then ws, denotes the piecewise defined (p+1)-form on UxI whose
restriction on each U x[#i 1, ] 18 @4 juti; ), o2
Let U be a convex z-region in R", whose coordinates are §=(§',---§"). Then UXxT

has (&,¢) as coordinates. By a A*(U)-valued function of ¢t (on I), we shall mean an
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element of the subalgebra of A%U x I) which is generated by 4&!, .-, d&" and AU xI).
In particular, a A*{(U)-valued function w({) is a p-form in A*(Ux 1) of the type

w(t)=a;...:,(&t) dE11A--AdE",

For a,bel, define

j"w(t)dzz z:(ﬁm oo (6 AN AE A AdE,

Thus J' ‘w(t)dt is again a AP(U)-valued function of . If wi(£), ws(t), are A*(U)-

valued functions of £, define inductively
b b [t )
j wi(8)dbw,(t)dt = j [J' oy (O)dt w0, (D)dE ] Aw, (£ dt.
Lemma 2.4, If a,b,c<1, then

rw,(t)dt---w,(z)dt:rwl(t)dtu-w,(t)dz+~-- +Iiw1(t)dt-"wi(t)th

J:wm(t)dt---w,(t)dt-i—--- +I:w1(t)dt---w,(t)dt.
Proof, If w,({)=32a:,..., (£ t)dEN A -AdE, then we have
J':a)l @dt= Z:(,Iia,l. e, (8, 0)dE) dEN A AdEr

=3[ e @D dt+[ a6 DADAE A AAED

= j *wr(8)dt+ j :wl(t)dt.
Assume that for r>>2,

rwl(l)dt'"wr_x(t)dt:rwl(t)dtu-w,_;(t)dt . +J:w1(t)dt~'-wi(t)th

j :wi+,(t)dx-~-w,_1(t)dt+.-- + J' :w,(t)dt---w,_l(t)dt.
‘Then we get
j ‘01(8)dt -, (Eydt = f :[f‘w,(t)dz---w,_,(t)dt]Aw,(z)dt
= j r j ‘01 (O dt -0,y (£)dE] A, ()AL +ﬁ[j:w,<z)dt---w,_,(t)dzj,w,(t)dt

b c (b
= j PROYEROYE f T J' o)ty (DdL+

— 86 ~
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k- I :w,(t)dt---w..(t)th [ :wgﬂ(t)dt---wy-l(t)dt“l""'

.t j :w,(t)dt---wr-x(t)dtJAw'(t)dt
=[lwiwato wat+ [ witdto @ataf o 0 at+--
+[Londtw B at A )t B dt +--
.;.Ew,(t)dt---w,(t)dt. /17

Every (p+1)-form on Ux1I, p>>0, can be uniquely written as diAd o' (1) +o" (1),
where o’(¢) and w”(¢) are respectively A*(U)-valued and A**1(U/)-valued functions of
{on l,

Let w be a (p-+1)-form on a differentiable space X, If a:U—P(X) is a plot,
then the (p-+1)~form wy,, which is piecewise defined on U x 7, can be uniquely written
as ditAd o’ (t)+w"(t) where o'(f) and w"(¢) are piecewise defined A*(U)-valued

functions of ¢, We define

w(a, @) =w'().
Put

AN (X)) =324 (X).
0
If w,, w, ~-=A47(X), define lemw,GEA*(P(X)) such that, for any plot a : U—P(X)
(Jor-o=[ i@ ddt--o.(@OASAAW) oo (A)

For =0, we put le---w,xleA° (P(X)). We see that if there exists a C™-map
6 : U’—>U such that a’=af : U'— P(X), then

([er-edo=0*wr-w)..

Observe that, if each w; is a p~form on X, then fw,---w, is a (p1+-+p-r)-form
on P(X).

Let %, 2;=X. A plot a : U—— P(X) is said to be from z, (resp. to 1), if a(¢X0)
=z, (resp. a(&)(1)=x;) for any &éU. Let a,f: U~ P(X) be plots with a(&) (1) =
B(£)(0) for any £=U. Define the plot

ap : U— P(X)
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such that

a(§)(2)  for O<i<F

af(&)() = [
B(&)(2t—-1) for + <1<,

Define the plot a™ : U—— P(X) such that (a ) (£)(t)=a(§)(-t), If a: U—s P(X)

is a plot to x and if a’ : U’-—> P(X) is a plot from the same point x, define the plot

axa' :UxU'—sP(X)
gsuch that

a(&)(2t)  for 0<t<+

(axa’) (& 7)) = (
a'(n)(2t—1) for +<t<1,

Observe that, if

b UXU'—U, pp: UXU'—U’
denote projections, then

axa'=(ap)(a’'pz).

Proposition 2.5. If af is defined, then

(J.wx"'wr)ap:-'ﬁr(wa"'w:)mA (jwl+l"'wr)ﬂo

Moreover, if r>1, then (Iw,---w,)..-_z:&

Proof. Put y=af. Then, by Lemma 2.4,

1 . « ‘
(Jorwnr=[ wur, b0, (r, Pt

0LigT,

3 . . t . .
=2 owl(r' r)dt-w/(7, ?’)thhwm(?‘, rdt-w.(r, T)dl

which is equal to
(w0t (oo

If B=a™, then for +<it<1,

[jotr.Data g Dat=[ aat Do, e

Use the above formula for /=1 and apply Lemma 2.4 to the right hand side of proof

— 88 —
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of the first equation. Hence
0 . .
(Jor-w)e=[ oz, at-a.r, at=0. 17/
Corollary 2.6. If axa’ is defined, then
(J‘wl"‘wr)aun' ':‘;)ggr(jw!'“wi)a X (Jw-‘+l"'wr)n'-
Proof. Since axa’=(apy)(ap,),

([orwdew=22 28 ([0 )it 5 ([orem0)0

= (for-0dex([orwde. 17/

0gigr

By a compact piot, we mean a plot such that its domain is compact,
Let w, be a p~form on X, i=1,2,--, If a: U~ P(X) is 2 compact plot, define, for
r>0

”,w ) ju(fwl--.w,),, when dim U=p,+++p,—7
e, =

, Otherwise,

Extending by linearity, j’ Ju is defined for any iterated integal I #, where # is a
form sum. When »=0, we use the convention:

ijl---w,zém where n=dim U and 4,, is the Kroneck's notation. QObserve that if
n=(), then the plot a can be taken of the type {0}—P(X). Therefore if »=0, then
[ora.=1200P X))

For the case of =1, shserve that

LI“"ZL.Q)"

If axa’ is defined, then

J'a”,fwl-"o), osisrjaf wI I“’-H"‘wn .................. (B)([G]).

For forms w;, -, w, on X, we can given the definition of Ia);--‘m, as another way.
Now a A*(X)-valued function u of t on I is an element of A*(X x[I) such that, for
every plot ¢ : U~ X, the p-form wuy. is of the type

— 89
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2oa. .., (8, 0)dEN A AdE

where 1=1, denotes the identity map of I and &=(&,.-, &%) denotes the coordinates
of U, For t,&I, u#(t;,) is the image of » under the homomorphism induced by the
inclusion X=X x {f,}CX xI,

If » is a A*(X)~-valued function of £ on I, define
ruthA"(X), a,b, 1.
such that
b b .
([uans=2=([a,... @ a0 ag 4 Adg.

Similary define the A?(X)-valued function 0u#/8¢ of ¢ on I such that (du/dt)e,; is
obtained the differentiating the coefficients of us,, with respect to :.

Every p~form v on X x[I can be uniquely written as
v=diAv +v"

where v’ and ¢” are respectively A*71(X) and A?(X)-valued functions of £ on I. We
shall denote »'=(3/0,), v, which coincides with the usual notation for an interior

product in the e¢ase where X is a manifold,

Lemma 2.7. If /o, f1: X'— X is differentiable maps and F: X’'x]— X is a
homotopy from f, to fi, then F induces a chain homotopy

fp P AX)— AX)
given by wh— ] :((a/at)J F*w) dt such that
df +[a=rz-rs.

Proof. Let 4’ denote the exterior differential in X’. If ws=A?(X) and Fro=v=
dtAv' 40", then

de+ f o= j :d<v'dz+ j :((B/Bt),, F*dw)dt,

Since Fraw=p=dtAv'+v" and v'= 220’ uui,. (£, 1) dE 1A, AdE j*1 and
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For any element # in a graded vector space A*(X), put Ju=(—1)deruy,

Definition 2,9, For forms w;, -, w, on X, define Jw,:zj'p;* wy and for r>1,

fwx-~-w,=I'(war--w,-x)/i P w,.

Set

{1 if =0
J'wx---wr:-
0 if r<0.

Elements of the graded subspace of A*(P (X)) spanned b'y all Iw,-~~w, r=>0, will be

called sterated integrals. Now, the definition of J. w;w, was given as two different

ways. In the proposition 2.10, we are going to verify that they are equal,

Proposition 2.10. In the above situation, the present definition agrees with the
definition of (A).
Proof, Put w/=(0/at), F*p;*w, and #,=F*|w,;-w,, both of which are A*P(X)-

valued functions of Z on I. Since F is a homotopy from %ep, to 1pwxy, We have

u,(1)=fw1---wr.
If @ : U— P(X) is a plot, then
(0! )ax1=(3/88) ; (F*p1*w,)aur=1(8/0t), ()4,

which is w, (a,&) as defined in (A). Therefore, in order that the two definitions

agree, it suffices to verify that
@=[ ([P0t tater A0ttt Ddt_Da0; (¢t
U, =14, i 1 Awr L,y ra1) AWy (Lr re
For r>1, #. is a A*(P(X))-valued function of ¢ on 7 such that

4, (5) =J::;’(t)dt

where since if u,=F'j'o, then w,(s)= I;((a/at),F“v)dt, o' (£) = (3/31) F*(Jjw,-»

w,ad prr*w,)=(9/0t), (Ju..1(£)A F*prw,),
According to Lemma 2.8, w._, is also a A*(P(X))-valued function of ¢ on I so that
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o' =32a" wui, (€1, 1)dE {14 AdE #, where &=(&#,-,§ ) is a coordinate of X',
@/31), Fro=v’ and dF*w=diA(~d'v'+Br0") +d's".

Hence

dLa)+ J' Fdw=j:d'v'dt+ J :(—-d’v’+*g~t—v”) dt

=" -v" O =rFo-flw. ///

In the special case where X=X’ is a convex set in R”" and F representing a

contraction, the above lemma is the usual Poincaré lemma. Therefore we call L the
Poincaré operator of the homotopy F.

For every te=], there is a differentiable map p, : P(X)~——X given by 71——7(2).
Let y* be the path such that 7'(z)=7({z). Denote by p, : P(X)—— P(X) the differe-
ntiable maps given by y~—7r*. Denote by 7, the constant path at x in' X. Denote by
7 : X— P(X) the canonical differentiable map given by x~—%,. Then there is a
homotopy P(X) xI—— P(X) from 7op, to the identity map lpx given by (7, {)r— 7",

This is the homotopy obtained by contracting each path along itself, Denote by

[ arcpoon—are )

the resulting Poincaré operator, Let F: P(X)x I~ P(X) be a homotopy from %ep,
to the identity map lpxy given by (7, f)r—7%,

Lemma 2.8. If v=A?(P(X)), then u:F*I'v is a A*-'(P(X))-valued function of ¢

on I, and

u)=[ (@0, Froyd,  sel.

Proof. Put a’=Fo(ax1;) and a"=Fs(a’x1;) for any plot a:U— P(X), Then
a"(&,t,8) (r) =a(&) (r)=a(€) (tst) and can be factorized as

UxIxI2eXB w1 — 2 pex)

where g : I xI-—-17 is such that (¢, s)r—sts,
We get vy =ditAv’+v". Then v,r=d(st)A v'(st)+v"(st)=dt A sv’(st)+(dsA tv'(st) +v"(s51)).
Hence

E*[ Dari=(['u=[ s (styat= [ Wat=[@/3), Feorar. 11/
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v () =u,_1(t) A((0/38); F*p*w,) =2, 1() A @/ (t).

Finally, it follows by induction. ///

3. A de Rham Theorem for the Loop Space

Throughout this section, o, w;, w,, -~ will denote forms on X of positive degrees
b, D1, ba, -+ respectively. Denote by P(X; x,,%) the differentiable subspace of P(X)
consisting of those paths which initiate from x, Let r be a permutation of 7 letters,
Then wiA---Aw, and w.qyA---Aw.,, differ only by a sign, which depends on the per-
mutation z and the degrees py, -, p, and will be denoted by &(z; py, -, P.).

Recall that an (r,s)-shuffle & is a permutation of r-s letters such that

o) <L (), o (1)< Lo+ 5).

If £1(2), f2(¢)--- are piecewise continuous functions, define for r>]

b bt
[Lriatersae=[ ( riaeers, .t roar,
Then
b .4 b
([.riater.a) ([ frndtefrndty = f andto S acrrndt

summing over all (r,s)-shuffle ¢ ([4]). Its verification can be illustrated by the

following particular cases:

[Lriae[ saar=["t[ £t o ([ frat) 7202
=["riat frat+ [ reat 7.1,
([Lrian(]’ rat rany=["1([ r.at[ ruaty fo[ raat 110ty pi700
= [ riat raat ruar+ [ riat piae poare [ raat 7at 1a,
([ 71t raany ([ rat fuay=-= [ rat fat roat roat+ [ 51at feat ot 7t
+[fiat £iat 5iat fod+ [Lraat st raat raar+ [ roat g.at 5 g
+[ rsat £t 7.0t fa.

It follows from the definition of iterated integrals that, in A*(P(X)),
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!wp--w,/l Iwr+l"'wr+:= Ze(ﬂ; pl""1:"'ppf+:"‘I)Iwr(l)"'wt(r+a)'
Proposition 3.1. If f&=4%(X), then in A*(P (X)),

le”'whl(fwt+1)wl+2"'wf=[wl‘"w"Z(fwi-l)wi-t-l"'wf

+j‘wr--w¢-1dfw,+;~--w, 1<i<r.
Proof. For any plot a : U—s P(X), if we put w,=df, then
(U‘(Cl a):i fo¢
i ] at a

since w;¢,=(2"3%rf°¢.)+—%— fo¢, dt, where x* is the i-th coordinate of U. Let

at: U— P(X) be the plot given by a'(&)(r)=a(§)(¢7), 0<r<1. Since

1
(le"'wr)a=J‘o(jw1"’wr—l)a'/1 wr(an d)dt)
it suffices to verify proposition for the case of s=r—1. Then we have for r>2

(Jorwr-de=[ (Jororsa G ropit
=[(fwrwret Fobel,,
—[f [ vr-0) G0 (@ 2.

Hence the proposition is proved, ///
Verify also that, in A*(P(X ;% *)),

[@rromo,+ 10 [oro,=[(Foay-w, (6] eers(©)
and that, in A*(P(X ;% %1)),
f(x1) le"‘qu—Iwz"'wr-ldfzij"’wr-z(fqu) (61 (D)
Proposition 3.2. For forms w,,-,w, on X,
dfwz~~'wr=2, (-1)"f]wr-']wa-z(dwf)wm---w,
1£ig7r
-20 (- l)iJ-]wl"']wi—l(]wiA Wi 1) Wigg Wy
1Kigr
- b wafwa-"w,%— (ffwxmwr-x)flp? Wy
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Proof. This proposition holds when r=0. For >0,

djw,w(u,zd I " j W1 w,.1) Api*w,
== [ [oro.0 482 0+ [0r-0,) 4 pF 0, By Lemma 2.7)
= ~j/(dffwx--'w,-z)A pt w,—fl(jwy--wr-j)A dpt w,
+(J [wror) 48t o,
=[ (afwrw, Dapt 0+ (=0 O [JarJo,) a9t do,

+(J j wyr,_) Ap do,

Hence the proposition follows by induction. ///

A differentiable space is said to be path commected if any two points-can be connected
by a piecewise smooth path in X.

Let A be a differential graded subalgebra of the exterior algebra A*(X) such that
dA*=A'NdA(X). The reader may keep in mind of the special case of A=A%(X).
Denote by A the cochain complex obtained from A by setting A=( for p<0, A°=
Al/dA° and A*=A*? for p<{0. Then

H*1(A) for p=0
H (&)=
0 for p<0.

Let Q.. X is a loop space at x,c=X and let C*(Q.,X;k) be a cochain complex of

smooth singular cochain of Q.,X. Then there is a cochain map

T: A—C*( Qe X ik

which assigns to each form we=A the integral of the form Iw on Q,X. We know

that the map ¥ is well-defined on A°.

Lemma 3.8. If X is connected, then the map ¥ is an injection,

Proof. Let @ be an element of A%, If p=1, we use the usual argument to show
that, if @ vanishes on Q,,X, then w must be exact on X ([7]). Assume that p>1 and
w+0, There exists a plot ¢ : U— X such that w4 vanishes nowhere on U. Construct

a plot

8: AT P(U;€0, &1}
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for some &g, &,6=lU/ such that ¢, : AP"'x I—U maps the interior of A*"'x/ homeo-
morphically into U. Put x/ =¢(&), i=0,1, and let

g AP P(X 2], 21)

be given by o(£)(t)=3(ds(&,2)). Then j ) J’ @#0. Chooss any ape=P(Xixp %) and @&

P(X;x{,%). Then a,xoxXa, is a smooth (p—1)-simplex of Q. X, and

J.,,..,., I‘“Jjwsﬁo.

Hence the ¥ is an injection. ///
For s>0, let A’(s) be the subcomplex of A*(Q.,X) spanned by iterated integrals
of the type

fwr--wr

0 r<s, w,,---,w,(—:—:A*:EA’. Then A’'= L;JA’(s) is a differential graded subalgebra
of A*(Q.X). Then

k=A'(0)CTA (1) CA (5) e

is an ascending filtration of the differential graded algebra A’, Put A’(s)=0 for s<0.

Consider the map

D RSA—r A(S) /A (5 1) reemsrrimeimseirinninni, «(E)

given by w,®---®wsh~—+jw1---ws+A’(s-1). If df=w; for some feA° one can show
that Jw;---w,---w,EA’(s——l) (by Proposition 3.1, (C) and (D)). Therefore the map @

is well-defined.

Lemma 3.4. For any path connected space X, the map @ is a bijection.

Proof. Put L.(Cu(Q.,X), k)=the vector space over £ of r-linear functions on
Ce(Q:X). Let b&,...., denote the element of L.(Cue(Q.,X), k) such that, for any
simplices ¢y, -+, ¢, belonging to Ce(Q.eX).

bup o w(Cryrrye,)= (Lwa)---(J'Jwr).

Then the map ¥ of Lemma 3.3 induces a monomorphism
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®SA—Ls(Col QXD k)

given by 0,Q@uwsh—rby. .. o,
For every p-simplex o: A’ Q, X, definee the reduced simplex o’ to be o for
>0 and o—¢ for p=0, where & denotes the 0-simplex at the base point (i.e. the null

loop) of ,,X. Observe that j jw,~--w,:0 when r=0,
£

Define the linear map
A'(S)/ A (s— 1) L, (Ca(QxX)ik)

such that J'wl---w,+A’(s—~l) is sent to the s-linear function given by

(cl' ooy, c,)h""‘"jc{ 5 wae XC‘, le"“w’

where the integral over ¢f Xx-.--x¢/ is defined by linearity. By using successively (B),

'we obtain

jc{ X X! le--'w,z (jCz’ le)---(fc; J‘w’) = (L‘jw,)m(fcjw,)

‘This means that the map A’(s)/A’(s—1)— L, (Cu(Q«X) k) is such that
le---w,+A’(s)Mbwl...,,.

Comparing with &*A—~— L,(Ce(Q:,X),k), we conclude that the map @ is injective.
On the other hand, it is obviously surjective, ///

Now, we can get the next Lemma 3.5 regarding the spectral sequence of A’,

Lemma 3,5. The cohomology spectral sequence {£,(A7)} associated to the filtered

«cochain complex A’ converges to H(A’), and

E pt=H"(A(s)/A (s— D)) =H"*(®'4) ([(61). ///
For any r,s>0, define

A (s, 5=r) = {u=A'(s) |due= A’ (s—r)}
L' i=A'"s,s—r)/A"(s~1, s~7r)
M’ = A"(s, s—r)/[AM(s—1, s=r)+d A" (s+r—1, )]
For r>s, A’(s—r)=0 since s—7r<0. Now consider the following cochain complex

— Q7 e
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0—s A7°(s) %, 471 (s)— AT (s)—— eereee,

Then we get that Kerd®= {uc=A’°(s)| d®u=0=du} = A’"(s,s—r)=H’(A'(s)) and
HY(A'(s—=1))=A"(s~1, s—r). Therefore we have the following result:

L *=L!*=HA'(s)/H*(A'(s—1)) for r>>s.
Next, we can see that
0—s A7(5)/ A" (5= 1)L, A7 (5) /A7 (5= 1) L A7 () AT (s = D)= roones

is a cochain complex, For any u#+ A’ (s—1)e=Ker d° wc=A""(s), du=duc=A" (s—1)
and u=A"(s,s—1). Also, for any u+A4’°(s—1, s—1)&L,"*, we have duc=A"'(s—1).

Therefore we get
L' i=H (A (s)/ A (s—1)).
Similary, we obtain the following result:
M/ i=H'(A(s)/ A (s—1)).
Since A’°(s, s—r—1¥A4"(s, s~r), AT(G—1, s—r—1DCTA (s~1, s—r) and if v, 4’
A(s,s—r—1 and u—u' E A’ (s—1, s—r—1), then u—u'¢ A’°(s—1), we have an injection
Ly, —t s L7
o, U v,
u+ A" (s—1,s—r—1)r—u+ A" (s—1,8~7).
The exterior differentiation induces a homomorphism 4, such that
d, L'} ——ey, M’w‘,"
u+ A" (s—1,s—ryr—du+[ A (s—r—1,8—2r)+d A" (s—1,5—-7)].
For any ue=A’"(s,s—7~—1),

dd(u+ A (s—1, s—r—1)) =d, (u+ A" (s—1,5—7))
=du+[ A" (s—r—1, s—2r)+d A"’ (s—1,5s—r)]=0.

If do(u+A°(s—1,5s—7))=0 for we=A’"(s,s—~r), then du=A"'(s—r—1, s—2r) or
du=d A’*(s—1,s—r). We can see that #=A"%(s,s—r—1) or ue=A’%(s,5—1), and hence
u+A%(s—1,s—~r—1)e=Li, or u+ A%(s—1,5—-r)=0e=L"1.

Hence we obtain the following exact sequence
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o—Lig L1y G,

By Lemma 3.4, @ : ®*A— A’(s)/A’(s—1) is an isomorphism provided the diffe-
rentiable space is path connected. Hence if X is path connected, then it follows that

there is an induced isomorphism

H(QR'A)y=H(A'(s)] A’ (s—1)).

Since H°(A’(s)/A’(s~1))=L"} and H'(A’(s)/A’(s~1))=M"}, we obtain
L'} =HY®'A) and M’} =H (®"'4).

Let X and Y be differentiable spaces and A : ¥—— X differentiable map., Let Ay
and Ay be differential graded subalgebras of A*(X) and A*(Y) respectively. Then the
differentiable map % induces a homomorphism #A*: Ay—~— Ay and a cochain map %’ :
Af — AY .

We assume that both Ay and Ay satisfy the following conditions:
dAS = A (1dA(X) and d AP =A¢ NdA(Y).

Let 2* : H'(Ax)—— H'(Ay) and &** : H¥(Ax)— H* Ay) be homomorphisms induced
by A*, respectively and let A°: H(A{ )—>H*( Ay ) be a homomorphism induced by
K.

Theorem 3.6, Let £** be a monomorphism,

(1) If A is an epimorphism, then %’° is an epimorphism.

(2) If A* is an isomorphism, then 4’° is an isomorphism,

Proof. For AyY and AyY, we have (Ly)! and (Ly):. Consider the following

commutative diagram

0 (Lx Y= (L ) 3= (M )1~
[
0 (Ly Yo (L ) b= (MY ) 1"

where the rows are exact, and the vertical arrows are induced by #’. If #2 is an
isomorphism (resp, epimorphism) and if 71" is a monomorphism, then by the five
lemma, A!,; is an isomorphism (resp. epimorphism), Since A’°(s+7—1,5) A (s+7,s)
and if ve=A"(s—1, s—r)— A" (s—1, s—r—1) then u@E A’ (s,s—r—]) we can see that
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M5, can be taken as a subgroup of M’ {/d. L7}, It also follows that if m ™" is a

monomorphism, then m ™" induces a monomorphism
m' T (MY ) A (L )y (MY )T /d (L) s

Therefore mi;] can be taken as a restriction of m’ ;" and is a monorphism,

Starting from the fact that
hi (L) i=H (@ Ax)—— H (Q'Ar)=(LY) |

is an isomorphism (resp. epimorphism) if A* is an isomorphism (resp, epimorphism})
and the fact that

m i (M) PTI=HN @A) — HA (@A) = (MY ) {8

is a monomorphism since A"* is a monomorphism, we now conclude that for >, every
P

k. is an isomorphism (resp, epimorphism). In particular
k' HOCAY (8))/HY(AY (s—1))=H(AY (5))/H (AY (s—1))

is an isomorphism (resp, epimorphism). Hence % induces an isomorphism (resp. epi-

morphism)
H (A ()= H(AY (5))
and

H°(A{ ) =lim H(A{ () =lim HY(AY (9)=H(A¥). ///

Let X be simply connected as a topological space. Let C«(X) be the chain complex
of those smooth singular simplices of X(i.e., 7: A%— X is a plot of X) that map
the 1-skeleton of the standard simplex to the base point %, of X, Then we see that
C.(X)=0. Assume that the canonical map of C.(X) into the normalized total singular
chain complex of X is a chain equivalence. According to a theorem of Adams (p. 83,
[11), the cobar construction F(Cy) of chain complex C4(X) yields the correct homology
for the loop space QX.

Recall that F(C,) has as a basis all elements of the type [¢,|---|¢,] >0, where each
¢; is an element of C,(X) for s>2. The dimension of [¢;|--|¢,] is defined to be =,

(dim ¢;~1). Now we can define the multiplication and the differential dr of F(Cy4) as

- 100 —
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follows;

Lealerler] Lerarloetrrsd=LC1] f€rss]

dplo]=[00]— 22 (-1 [w]o,.i]

where ¢ is an #-simplex in 4(X), and ;o and o, are the first /-face and the last j-face
of o, respectively, F(C4) becomes a differential graded algebra,
Let F,(Cy) be the subcomplex of F(C,) spanned by elements of the type [¢i|--|c,],

sz>r. Now we get the following descending filtration
F(Cuw)=Fo(Ca) D DF (Ca)Deer,

Note that (F,(Cx))e=0 for r sufficiently large and filtration is complete, ‘Also, note
that

dF[Cl ; e Cr:]

= p(=pdmerllecidre e, 186, el 1] mod Fys(C).

Let Cx.1 be the chain complex obtained from the reduced chain complex of ¢4 through
lowering the degree by [(i.e., (é*-l)':éq»fh q220).

There is a homomorpnism
®'Cou-1——F,(Ca)/F1i1(Ca)

given by ;@ @c,r—[c1]-+lc;] mod F,;1(Cy). Then this chain complex homomor~
phism is an isomorphism. The homology spectral sequence {£'} associated to the filtered
chain complex F(C,4) converges to H(F(Cu))=H.(QX), and

EL =H (R Cu.)

If Ho(X) is of finite type, so are E! and, consequently, H4(QX).
The cochain complex B=Hom,(F(C4),#%) has a descending filtration

k=B{(0)C-+CB(§)Trernes

where B(s) is the subcomplex of B orthogonal to F,.(Cy). Since (B(s))*=B° for s
sufficiently large, the filtration is complete, The associated cohomology spectral sequence
{E,(B)} converges to H(B)=H*(F(Cy); k) and

EP'(By=H"*(B(s)/B(s—1)).

- 10—
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Observe that
B(s)/B(s—1)=Hom; (F,(C4)/F,:1(Ca) i %) Hom,(®R'Cu.y, k).

By assuming H.(X) to be of the finite type, we conclude that {E.(B)} converges to
H*(QX;k), and shat

Ef"(B)?':(®’H"’(X;k))'+'. ...................... serseaienenas (F)

Let @ denote a partition of the unit. interval

0=a,<a,<--<la,=1.

Let H={hy,---,h,} be an ordered subeset of {I,---,n—1}. Set A,=0 and bori=n, Let
TYmma t {— A" be the edge path Lhgs s Vnypyo>Such that 7, 5 .(as,) =v,, 0<i<lr+1.
Define 4,,, : I""'—— P(A™;v,,v;) such that

0n,al8) ()= ZaWsen€’ Miea(1 =€) n,a(t) (See, [6])

summing over the 2! ordered subsets A of {1,--,#—1}, where & is the /~th coordinate
of &
For an n-simplex ¢ in C,(X), define & to be the (n—1)-cube

1 Gme s peanp, 0)-249 0, ¥,

where p(o) is the induced map by ¢. We shall consider the pairing
<> AXF(Cu)—k

given by
<Jaronlentted>=[ 5. oo

From (B), we obtain

<J‘ww-wn Lealle 1> =IEJ“’""IE,I‘”'

and, for r<s

<J'w1...w" [cx[...,cr]>=0. ....................................... (G)
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Let X be a path connected differentiable space and let A be a differential graded
subalgebra of A*(X) such thet d A°= A[|dA%(X).

Theorem 3.7. If the following conditions hold;

(i) X is simply comnected as a topological space, and its integral singular homology
H,(X) is of finite type.

(ii) The canonical map from C.(X) into the normalized singular simplicial chain
complex of X is a chain equivalence,

(ili) H(A)=H*(X;k) via Cu(X),
then H(A)Y=H(B).

Proof. The pairing <,> : A’ xF(C4)—k is that of a cochain complex and a chain

complex, Hence the pairing gives rise to a cochain map
A’—— B=Hom,(F(Ca), k)

which, by (G), preserves the filtration. Consequently there is an induced map of spectral

sequences
E,(A’)*"""E,(B)

Using Lemma 3.5 and (F), we verify that, on the E,-level, the map can be composed

as follows :

Ep (AN=H*{@ A =(QH* (AN =(QH* (X k) =EP* (B).

Hence H(A)=H(BY=H*(QX k). ///

4. Loop Space Homology

Let M be a differentiable space. Recall that £[[X]] is the formal power series
algebra in the noncommutative indeterminates X,,---, X.. A fomal power series connec-
tion on a differentiable space M is an element of A*(M)[[X]] of the type

w= Ewixi+ ij”XiX;-i-'"«l— 2:(0“. . i,X;x. . Xg,+"'
where the coefficients are forms of positive degree on M. The curvature of w is the

element # =dw-— Jwdw of A*(M)[[X]].

Definition 4.1. The fransport of a formal power series connection w is the element

- 103 -



» Gwon-Soo Jeoug
T=1 +Iw+J.w3+... +Iw'+ ......

of A(P(M)) [[X]].
Write the transport T in the form of

T=14+30Ti X+ 30T X X s ereee

verify that

T;zjw;. Tuzj(wuﬂ-w‘w:),

Tin= I(wm R T I T N T PRI

In general,

T;l. e g = ij“x' oo itz Wizge o v ing @idge»

summing over all partitions

1= <Aoo LA, 15Uy,

of the ordered set {1,--,r}.
If @a: U—P(M) is a plot, define

To=14+Z2(T)eXi+ Z2(Ti)a X X 4 oeeeer

If @ is a compact plot with dim U=n, define

T(a):<T’a>:=aon+2:<Tua>Xi+Z:<7'(ha>X{XJ+ """ .

where <T,a>> =L T =J‘Jw‘-.

1t follows from B and its extension to A*(P(M)) {[X]] that if a' : U'— P(M) is
another compact plot such that the product plot axa’ is well—deﬁned, then

T(axa)=T(a) T(a’).

Also, we can see that if a, S are plots of P(M) such that af is defined, then

Tup=TodTs and T, AT, 1 =1,

Lemma 4.2. Let o= fdx‘)i---Adx’ where f,xt, -, xS AN (M),
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Let @ : U—s P(M;xo,%,) be aplot, Then for any A*(U)-valued functions g and % off,
[(g4dew(a, &4 hat=— [(gacdw)(a,a)4 hat
~ [ (¢ 40" th+g 40 ayat,
where w4, =dtAw (a,&)+o", &isa coordinate of U, dgf-—-Z-gg;—dE‘ and é,:agé_@t_)
Proof. For simplicity, we write f,x!,--,x* instead of fod,, x'ed,, -, 2%ed,. Put

w=dx* Ao Adex?®,
= dep' Ao A dex Ao A dox?

ras .
where dex* is the notation of ommition of dex*, Then since ¢.* (dx') =dex' +x'dt and

w(a,d@)=—Z2(—~1) 2 fu,,

o' = fu,

we have

(dw)y,=(def + Fdt) A (dext +2'dt) A - A(dex’ +57d1)

=dtA (fu+32(—1)* 2de(f)) +def Au

and hence (dw)(a,8)= fu+3I3(—1D* Bde(f1).
Now

(-1 Ay = — Iode A Ade 8 A Adex” = ~u
and

dew(a,d)=fu—Z2(~1)*2*dE(fu;)
= fu+ fu—(dw)(a, &) =" —(do)(a, &).

An integration by parts gives
j :gAc;Mhdt= (g Aw” AR}~ j :(g;Aw”Ah +gAw” AR)dt
= — J:(éAw'Ah+gAw’AIi)dt {owing to dex*==0 when £=:0,1)

Hence
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J:g/idaw(a,d)/! kdt=— j ;gA(dw)(a,d)A hdt

._J':(g:Aw'A h+gAw” AR)dt. [/

Put

wla,d)=3_0,(a,d) X;+ I ow (@, &) X . X j4ereeeeee for any plot a,
For 0<t<1

(Iw'.w,),,zﬁw‘(a' aYdt (@, @)dEeeressersernsiinnnien gte,
and

Tar=1+ (f0uXet Ea([ @urt@w))ee XX tooseees
Since 7% I;w‘(a,d)dtw,(a,d)dtz(I:w‘(a,d)dt)/t w;(a,d), we get

dTot/dt =T, (@, &) X+ Tlwisa, 6 +(fodud 0(a,6)1X.X,

+ 2 winla, d)+ (J.wi),:A wia,d) +(J'(w“- +wiw;)qt
Awy(a, @YX X ;X g+ reeees
= T.,'A w(a’ d). ......................................................... (H)

Also since TAT '=1,d(Tyt) Ydt=—wla,a)d (T,)"L,
By making use of Proposition 3.2 and its extension to A*(FP(M)) [[X]], one may
verify that

dT:—Jx+(—wa+j]w1)+ ......

+ [y xw e = b3 0AT+ T TA? 0, (D)

i+i=r-
where w'=wAwAd--- Ao (i-times). Recall that every element of k[[X ] can be written as
a:do'*'za;X;-i— ------ +z:a'.r.. l'rXil.'.Xir+ ............... (J)

Let & be the augmentation ideal of 2[[X]], which consists of all elements a such that
@o=0. the s-th power 7’ of F consists of all @ such that a;...;,=0 for r<ls. A
derivation @ of k[[X]] is a linear endomorphism of k[[X]] satisfying of the following
conditions ([6]):
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(a) If » and v are homogeneous elements of A[[X]], then

O(ur)=(du)v+(—1)%"* u(dv).

(b) For 1<i<<m, aX,T°
(¢) For any a<k{[X]] as given in (]J),

Oa=23a;,0X 4 +30a0 .0 i 0( X X ) e .

Every derivation of 2[[X]] can be extended to a derivation of A*(M) [[X]] in the
obvious sense,

Theorem 4.3. Let & be a curvature of a formal power series connection @ on M.
If dw-+H =0, then

dT=0T—pg wAT+ JTAP? 0.

Proof, Since

ar=z:(jwi)axi+z: (J.(w,-;ﬁ»wiw,)X.-X;-i- -----

d0=32w0X; + 32w 0( XX ;) +emeeer
(P0)o=T0i,0X) X+ TeswuXs 0 X))+ Tows@X X, Xyrete.,

(1) becomes dT=0T—pF wAT+JTApr 0. [///

From now on, we assume that M is a differentiable space with Ho(M)=Z and
Hy(M;k) of finite type. Let 1,2,,+-,2, be a basis of H.(M;k) with 2.H, (M ;k).
For simplicity assume that = is finite. The corresponding indeterminates X,,---, X. are
such that deg X,=p,—1.

A formal homology comnection on M is a pair (w,d) consisting of a formal power
series connection w and a derivation @ of A[[X]] satisfying the condition dw-+X =0
such that

(a) wy,+,w. are closed forms dual to 2, ---,3,;
(b) deg wip. .., =prt-+p—r+1, r21.
sincce T(axa’)=T(a)T(a’) for any compact plot such that axe«’ is well-defined, it

gives rise to a multiplication preserving map
0 : Col Que(M))— k[ X]]

given by c~—<T,c>=T(c), where Cu(Q.,(M)) is the normalized cubical chain
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complex of M, If (w,0) is a formal homology connection on M, then 39=( follows
the fact that the map # has a dense ‘image in k[[X]] and the fact that 99< T,c>=
<T,00c>=0, c=Ca(Q.,(M)).

Let (w,?) be a formal homology connection on M. Make £[[ X ] graded by assigning
deg X:=p;—1, 1<i<m. We have

deg wgl...i,=1+deg Xil"‘Xi,-

where w;,..., is the coefficient of X, ---X;, in formal power series connection w. The
condition dw-+# =0 forces the derivation @ to be a graded map of degree 1.

Equip 2[[X]] with an descending filtration by powers of the augmentation ideal 7.
Then (k[[X]7,0) is a filtered chain complex, whose spectral sequence {C7,8"},»s i8 such

that C =97/7°%, s>1, Cd=k[[ X))/ T =k, and Ci=0 for s<C0. since aX,=F ?(note that
X =3_¢i, X, X+ - where ¢t are determiend ‘by cup products [ Jw,Aw,]= 3 ¢! [w:]

and [w;] is the cohomology class of the closed form w; ), we have
Cl= T N=R'T /T =R ' He (M k), s2>1.

A formal power series connection will rewritten as
wxw1+w2+---
where wy=Yw,X,, ws=Lw,;X.X,- etc, The curvature is

LY SEIRE N
where

X, =dw,~ 22 Jowdw,.;.
isisr

For a formal power series connection w, if each X, is of degree >0, then T'(a) is
a finite sum. Hence the free algebra k[ X7, as a subalgebra of 2[[X7], is stable under
2 and is therefore also a filtered chain complex, Therefore if deg X;>>0,

0 : Cu(Qe,(M))——k[[X]] may be replaced by
Cul§4, (M))—R[X],

For any ideal $(two sided) of 2[[X7]], denote by 9, the subspace of ¢ consisting of

those elements which are homogeneous of degree r, We say that ¢ is a komogeneous
ideal if 9 is the totality of elements of type w#p-+--+#, -+, u,&9,, A formal power
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series connection w is said to be locally flat modulo a homogeneous ideal 9 of [[X]],
if for the curvature #, each X,=A*(M)®4,.

If p=ni+-+9,+- and {={;+-+ -+ are two formal power series in Xy Xa
with coefficients in A*(M) such that {,—7,&A*(M)®F., we shall write n=¢ mod 9,

Theorem 4.4. Let M be a differentiable space such that the exterior algebra A*(MD)
is generated by A°(M) and dA°(M) and let a formal power series connection w is

locally flat modulo a homogeneous ideal ¢ of [[ X ], then there is a ring homomorphism

0 : He(Quo(M))—— k[[X]]/9
2] r— T(2)+08,

In particular, if @ is such that each of w;,w,,,-- is of degree >>1, then there is a ring

homomorphism
0 Ho(Qyy(M))— k[ X1/

where 9, is the intersection of all homogeneous ideals of 4[[X7]] such that w is locally
flat modulo § and &,=8,(V&[X".

Proof. Write d¢T.c=uAT.. Then since dg(dT,:/dt)::%(deT.r),

Ae(dTat/dt) =uAT e+ uAT i w(a,a) (by H)
On the other hand

AeldTo/dt) =de( TotAw(a, d))
=udATuAw(a, d) + ] Tt Adew{a, &)

so that
u= J TutAdew(a,d) A T:L.
When £=0, Tst=1 and d¢T,¢=0. This makes #(0)=0 and
U= I:J Tud dew(a,a) AT dt
which, according to Lemma 4.2, is equal to
-| :J T,eA(dw) (a, &) AT=1dt
-I:] TatdLJ (w(a, d)) Aw" —0" Aw(a, &) JAT  {dt
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where " is given by
wy =dtdw(a,d)+ o’
Observe that J(w(a,d))=—(/w){a,d) and
(Jodw)(a,a)=(Jw)(a,da)A " +0"Awla, @),

Hence (dTxT),=— j :] Toedt (a, &) ATzt

Since #=0 mod 9, we have ¥ (a,d)=0 mod & so that (d7),=0 mod 9, Hence, for

every smooth singular simplex ¢ of Q. (M),
6(80)=0 mod &,
Therefore there is a homomorphism
0 : Hu(Qu (M) k[[X]]/9
If w,,w;; is of degree >>1, then this homomorphism may be replaced by

Hau(Quy(M))— k[ X1/ S 0. ///
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