POWERS GROUPS AND CROSSED PRODUCT C*-ALGEBRAS

SANG OG KIM

Let G be a discrete group, $l^2(G)$ the Hilbert space of square summable functions of G, and $f_g \in l^2(G)$ the function of G which takes the value one at $g \in G$ and zero elsewhere. Then $\{f_g \mid g \in G\}$ is an orthonormal basis of $l^2(G)$. The left regular representation U of G on $l^2(G)$ is given by $U_g(f_h) = f_{gh}$, $g, h \in G$, and the reduced group C^{*}-algebra of G, $C_r^*(G)$, is the C^{*}-subalgebra of $B(l^2(G))$ generated by $\{U_g \mid g \in G\}$. It is well-known that the set of finite linear combinations of $\{U_g \mid g \in G\}$ is a dense *-subalgebra of $C_r^*(G)$ and there exists a faithful (normalized) trace τ on $C_r^*(G)$ characterized by $\tau(U_g) = 0$ if $g \neq e$, and $\tau(U_g) = 1$ if g = e. A character χ , a group homomorphism from G to the unit circle, induces a *-automorphism α_{χ} of $C_r^*(G)$ defined by $\alpha_{\chi}(U_g) = \chi(g)U_g$. Then we have a crossed product C^{*}-algebra $C_r^*(G)X_{\alpha_{\chi}}Z$.

DEFINITION [3]. A group G is a Powers group if the following holds. Given any nonempty finite subset $F \subset G \setminus \{e\}$ and any integer $n \ge 1$, there exist a partition $G = D \cup E$ and elements $g_1, \ldots, g_n \in G$ such that (1) $f D \cap D = \phi$ for any $f \in F$

(2) $g_i E \cap g_k E = \phi$ for $j, k \in \{1, \dots, n\}$ with $j \neq k$.

Free groups with n generators F_n , where $n \ge 2$, are Powers groups and the papers [1,4,5] describe several classes of Powers groups. We list some properties about the Powers group G. (For the proof, see [2].)

(a) Any conjugacy class in G other than the identity element is infinite.

- (b) G is not amenable.
- (c) Any subgroup of G of finite index is a Powers group.

Received August 29, 1990.

This work was supported by Hallym University grant, 1989.

(d) $C_r^*(G)$ is simple and has a unique trace.

In [6] H.-S. Yin proved many interesting properties about the crossed product C_r^* -algebra $C_r^*(G)X_{\alpha_{\chi}}Z$. One of them is if $\chi(G)$ is an infinite group and $C^*(\text{Ker }\chi)$ has a unique trace, then $C_r^*(G)X_{\alpha_{\chi}}Z$ has a unique trace. And he raised two conjectures, one is if G is a Powers group and $\chi(G)$ is infinite, then $C_r^*(G)X_{\alpha_{\chi}}Z$ has a unique trace and the other is if H is a normal subgroup of G containing the commutator subgroup of G then H is a Powers group. The first conjecture follows from the second one.

THEOREM 1. Let G be a Powers group and H a nontrivial normal subgroup of G. Then H is a Powers group.

Proof. Let F be a nonempty finite subset of $H \setminus \{e\}$ and an integer $n \geq 1$ be given. Since G is a Powers group, there exist a partition $G = D \cup E$ and elements $g_1, \ldots, g_n \in G$ such that $fD \cap D = \phi$ and $g_jE \cap g_kE = \phi$ for $j \neq k$. Let $D' = D \cap H$ and $E' = E \cap H$, if $n \geq 2$. If n = 1, take $D' = \{e\}$ and $E' = H \setminus \{e\}$. We claim that neither D' nor E' is empty. If we assume the contrary, we have either $H \subset D$ does not occur. Hence $H \subset E$. Taking f in the set F, we have $g_1^{-1}g_2fD \subset g_1^{-1}g_2E \subset D$. Since $g_2^{-1}g_1 \in g_2^{-1}g_1H \subset g_2^{-1}g_1E \subset D$ we then have $g_1^{-1}g_2fg_2^{-1}g_1 \in D$. This is a contradiction since $g_1^{-1}g_2fg_2^{-1}g_1 \in H$. This proves the claim. Now fix g_1 and consider the subsets $E, g_1^{-1}g_2E, \ldots, g_1^{-1}g_iE, \ldots, g_1^{-1}g_nE$ which are pairwise disjoint. Then $H = D' \cup E'$ and

(1) $fD' \cap D' \subset fD \cap D = \phi$ for any $f \in F$.

(2) Since $g_1^{-1}g_ifg_i^{-1}g_1E' \subset g_1^{-1}g_ifg_i^{-1}g_1E \subset g_1^{-1}g_iE$ for i = 2, ..., n, if we set $h_1 = e$ and $h_i = g_1^{-1}g_ifg_i^{-1}g_1$ for i = 2, ..., n, we have $h_iE' \cap h_jE' = \phi$ for $i, j \in \{1, ..., n\}$ with $i \neq j$. This completes the proof.

COROLLARY 2. If G is a Powers group, then G has no nontrivial amenable normal subgroup.

COROLLARY 3. If G is a Powers group and $\chi(G)$ is infinite then the crossed product C^{*}-algebra $C_r^*(G)X_{\alpha_v}Z$ is simple with a unique trace.

Proof. For the simplicity of $C_r^*(G)X_{\alpha_x}Z$, see [3].

References

- C.A. Akemann and T.Y. Lee, Some simple C*-algebras associated with free groups, Indiana Univ. Math. J. 29 (1980), 505-511.
- 2. Pierre de la Harpe, Reuced C^{*}-algebras of discrete groups which are simple with a unique trace, Lect. Notes Math. 1132, 230-253, Springer 1985.
- Pierre de la Harpe and G. Skandalis, Powers' property and simple C*-algebra, Math. Ann. 273 (1986), 241-250.
- W. Paschke and N. Salinas, C*-algebras associated with free products of groups, Pacific J. Math. 82 (1979), 211-211.
- 5. R.T. Powers, Simplicity of the C^{*}-algebra associated with the free group on two generators, Duke. Math. J. 42 (1975), 151-156.
- 6. H.-S. Yin, Classification of crossed product C^* -algebras associated with characters on free groups, preprint.

Department of Mathematics Hallym University Chuncheon 200–702, Korea