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LINEAR DISTANCE FUNCTIONS

SEUNGWOOK KIM

1. Introduction

As is well known a metric d on a set M generates a topology as follows:
To each £ E R+ and x E M the (closed) £-ball Ke(x) is defined as
K~(x) := {zlz E M, d(x,z) ~ c} and a subset T of M is called d-open,
if to each x E T there exists £ E R+ with Ke(x) ~ T. It is almost trivial
to prove that the set of d-open sets is a topology. Hereby we see that
the conditions of a metric are never used, but only the linear property
of the range R + U {O} is essential. In this aspect we consider a function
d : M x M ~ W (namely a distance function) where W is a partial
ordered set relative to the order ~ with the property that for every £, 6
of W there is one ()" in W such that ()" ~ £, 6. In this paper we consider a
special case where W is a chain with the smallest element. The function
d : M x M ~ W should not possese any other properties except that
K~(x) is a neighborhood of x itself. The main result of this paper is the
necessary and sufficient conditions for the generation of a topological
space by this function. In the last paragraph the range W is replaced by
R+ U {O} and the equivalence of both functions is clearly represented.

2. Preliminaries

Throughout this paper we denote W as a partial ordered set relative
to an order ~ having the following conditions.

(1) W has the smallest element O.
(2) For every £,6 E W\{O} there is ()" E W\{O} such that ()" ~ £, 6.

DEFINITION 2.1. (a) Let M be a set. A function d: M x M ~ W is
called a distance function.
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(b) For every x E M and € E W\{O} the set K:(x) := {zlz E
M, d(x, z) ~ £} is called £-ball of x relative to d.

(c) A subset T of M is called d-open, if to each x E T there exists
£ E W\ {O} such that K e ( x) ~ T.

THEOREM AND DEFINITION 2.2. (a) Let M beasetandd: MxM--+
W a distance function. Then the set 'Id := {TIT ~ M, T d - open} is a
topology on M and is said to be generated by d.

(b) A topological space (M, 'I) is called generated by a distance func
tion d, if there is a distance function d : M x M --+ W such that 'I = 'Id'

DEFINITION 2.3. Let M be a set. Two distance functions d,d' : M x
M -4 W are called equivalent, if'Id = 'Id,.

DEFINITION 2.4. Let M be a set and d : M x M --+ W a distance
function. If for all x E M and € E W\ {O}K e(x) is a neighborhood of x,
we say d is topological.

General Note: For a set M of sets and an arbitrary x we set M(x) :=

{XIX E M,x EX}.

We introduce in the following a very useful and relatively simple lemma
by which most theorems are proved throughout the paper.

THEOREM 2.5. (Criterion for a topological space generated by a topo
logical distance function): Let (M, 'I) be a topological space, (W,~) a
partial ordered set and d : M x M --+ W a topological distance function.
Then 'I = 'Id if and only if for all x E M the following holds.

(1) To each £ E W\{O} there exists U E 'I(x) with U ~ Ke(x).
(2) To each U E 'I(x) there exists € E W\{O} with Ke(x) ~ U.

Proof. "---+": This is trivial by the definition of topological distance
function.

" +-- ": Suppose the assumptions (1) and (2) are satisfied. We show
first 'I = 'Id. "~": Let T E 'I and x E T. By (2) there exists one
e E W\{O} such that Ke(x) ~ T. " ;2 ": Let T E 'Id and x E T. By
definition of 'Id there exists one e E W\{O} with Ke(x) ~ T. By (1)
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there exists one U E T(x) with U ~ Ke(x), hence U ~ T. With (1) it
follows that d is topological.

3. Linear Distance Functions

DEFINITION 3.1. Let M be a set and d : M x M -+ W a distance
function. If d is topological and W is a chain with the smallest element
0, then we say that d is linear.

THEOREM 3.2. Let (M, T) be a topological space generated by a lin
ear distance function d. Then every point of M has a chain as a neigh
borhood basis.

Proof. Since d is topological, for every x E M the set {Ke ( X ) le E
W\{O}} is obviously a chain relative to ~ and neighborhood basis of x.

This is of course a necessary condition of a topological space generated
by a linear distance function. But, as we shall see in 3.11, this is not
sufficient for the generation of topological spaces by a linear distance
function. Accordingly, we require a new concept such that the sufficient
condition of those spaces are established.

DEFINITION 3.3. Let (M, T) be a topological space. (a) Let x, y E M.
y is said to be seperated from x, if there exists V E T( x) such that y ~ V.

(b) A point x E M is said to be approximate, if the set T (x) does not
have the smallest element.

(c) A function f : M -+ M is called an x-isolation, if the following
conditions are satisfied.

(1) Every point seperated from x is associated to a point seperated
from f(x).

(2) f is continuous at x.

THEOREM 3.4. Let (M, T) be a topological space and d : M x M -+

W a linear distance function such that T = Td • Then for every two
approximate points x, y E M there exists an x-isolation function f
M -+ M with f(x) = y.

Proof. Let x, y be two approximate points. Define a function f
M -+ M as follows.
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(1) IT z E M is not seperated from x, we put fez) = y.
(2) IT z E M is seperated from x, then we define fez) successively as

follows.

Choose U E T(x) such that z i. U;

Choose e E W\{O} with Ke(x) ~ U;

Choose V E T(y) with V ~ Ke(y);

Choose V' E T(y) with V' c V;

Choose fez) E V\V'.

By construction of f f(x) = y, for every z E M which is seperated from
x, fez) is seperated from y. We now have to prove that f is continuous
at x. Let V E T(y). There exists one ~ E W\{O} with K 6(y) ~ V and
U E T(x) with U ~ K 6(x). We show feU) ~ V. Let z E U. IT z is not
seperated from x, then fez) = y E V.

Hence let z be seperated from x. Then by construction of f there
exists for zone c E W\{O}, u' E T(x) with z i. U', Ke(x) ~ U'
such that fez) E Ke(y). We show here c ~~. Suppose ~ < e. Then
z E U ~ K6(x) ~ Ke(x) ~ U', i.e., z E U'. It is contrary to z i. U'.
Therefore c ~ ~ and consequently fez) E Ke(y) ~ K6(y) ~ V.

PROPOSITION 3.5. Let (M, T) be a topological space. Let S be a
chain as a neighborhood basis of a point x of M. Then B := {S/ S E S},
where T is interior set ofT, is an open neighborhood basis of x and also
a chain.

The following Lemma and Definition 3.6 is a useful tool for the proof
of the main theorem.

LEMMA AND DEFINITION 3.6. Let M be a chain of sets. Let M :=

{USIS ~ M}. Then M is a chain with </> E M, M ~ M.
In a topological space (M, T), and x E M we obtain the following:
(a) If M is a subchain of T, then M is also a subchain of T.
(b) If M is a subchain on T(x), then M\{</>} is a subchain ofT(x).

THEOREM 3.7. Let (M, T) be a topological space with the following
properties.
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(1) Every x E M has a chain as a neighborhood basis of x.
(2) For every two approximates x, y E M there exists an x-isolation

function I : M ---7 M with I(x) = y.

Then (M, T) will be generated by a linear distance function.

Proof. We consider the following two cases.
Case 1. An approximate point in M dose not exist. We define a linear

{
a, if y E nT(x )

function d: M x M ---7 {I, a}, (x, y) ~ .
1, otherwIse.

It is quite simple to see that T = Td and d is just a quasimetric which
is trivially linear. (See [2]).

Case 2. There exists an approximate point e E M. In the following
we let e be chosen fixed. By the property (1) and 3.2 every x E M
has an open neighborhood basis which is a chain. Hence for every x
we choose such a neighborhood basis B x. By 3.6 (b) B x\{</>} ~ T(x)
and is a subchain of T(x). For every approximate x E M we choose a
x-isolation function Ix with Ix(x) = e and define 'Px : T(x) U {</>} ---7 Be,
U ~ U{VIV E Be, Ix(U) Cl: V}.

For every non-approximate x E M we let 'Px : T (x) U {</>} ---7 Be,

{
</> , if U = </>

V ~ . Then for all x E M the following holds:
UBe , otherwise

(i) 'Px reserves the inclusion and </>'Px = </>.
(ii) For all U E T(x) V'Px =I </>, hence V<px E B e\{</>} ~ T(e).

For non-approximate x E M the assertions (i), (ii) are trivial.
Now let x E M be approximate. For (i) let U, V' E T(x) U {</>} with

U' ~ U. Then Ix(U') ~ Ix(U), hence {VIV E Be, Ix(U') Cl: V} ~

{VI V E Be,lx(U) Cl: V}. With this U'<Px ~ U'Px. For (ii) let U E T(x).
Since x is approximate, there exists one U' E T(x) with U' C U. Hence
there exists z E U\U' whence z is seperated from x and also Ix (z)
seperated from Ix( x) = e. In other words, there exists V E Be with
Ix( z) rt. V. Hence Ix(U) Cl. V. With this V ~ U<px, i.e. U<Px =I </>.

Now let for all x, yE M K(x, y) := U{VIV E B x , y rt. V} E B x . Then
the following holds for all x, y EM:

(iii) K (x , y) = </> if and only if y is not seperated from x.
(iv) y rt. K(x, y).
(v) If y E U, U ~ B x then K(x, y) ~ U.
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Since (iii) and (iv) are obvious, it remains to prove only (v).
Let x, y E M and U ~ B x with y E U. Assume K(x, y) %U. Since

K(x,y), U E B x and Bx; is a chain, we have U ~ K(x,y). Hence
y E K(x, y) which is contrary to (iv).

Let us define a function d : M x M ~ Be, (x, y) ~ K(x, Y)'Px. We
claim that d is linear and T = Ta.. By 3.6 (b) Be is a chain.

It is enough for T = Td to show the conditions (1), (2) of 2.5. for (1):
Let x E M and c E Be \ {</> }. If x is not approximate, then there exists
the smallest element U of T (x). Let z E U. Then z is not seperated
from x, hence by (iii) d(x, z) = K(x, z)'Px = cP'Px; = cP ~ c i.e. z E Ke(x).

Therefore U ~ K e ( x). If x is approximate, there exists for cone
U E Bx with Ix(U) ~ c, since Ix is continuous at x and c E T(e). Now
let z E U. If z is not seperated from x then by (iii) d(x, z) = K(x, z)'Px =
cP'Px = cP ~ c. Hence let z be seperated from x. By (v) K(x, z) ~ U.
With (i) d(x,z) = K(x,z)<.px ~ U'Px. We show next U'Px ~ c.

Let V E Be with Ix(U) Cl:. V. Assume V %c. Since c, V E Be and
Be chain, c ~ V, hence Ix(U) ~ c ~ V. It is contrary to Ix(U) %V.
Thus V ~ c, i.e., U<.px ~ c and with this d(x,z) ~ c. For (2): Let x E M
and V E T(x). There exists then one U E B x with U ~ V. By (ii)
U'Px E Be \ {</>}. Since e is approximate, ther is c E Be \ {cP} with c C
U'Px. We show Ke(x) ~ U. Let z E Ke(x). If z ~ U, then U ~ K(x,z)
by definition of K(x,z), hence U'Px ~ K(x,z)<.px = d(x,z) ~ c. It is
contrary to c C U'Px. It follows then z E U, i.e., Ke(x) ~ U. With
U ~ V Ke(x) ~ V.

With 3.2, 3.4 and 3.7 we have obtained in the following the main
theorem of this paragraph.

THEOREM 3.8. A topological space is generated by a linear distance
function if and only if the following conditions are satisfied.

(1) Every x E M has a chain as a neighborhood basis.
(2) To every two approximate x, y E M there exists an x-isolation

function I : M ~ M with I(x) = y.

Next we give a counterexample of a topological space which is not
generated by a linear distance function.
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DEFINITION 3.9. A partial ordered set (B, $.) is called upper finite
lattice if the following conditions are satisfied.

(1) B has the largest element 1
(2) Every two elements of B has an intimum relative to ::=;.
(3) For every x E B [x,l] := {zlz E B, x $. z} is finite.

THEOREM 3.10. Let (B,::=;) be an upper finite lattice. Then the fol-
lowing holds.

(a) Every non-empty subset T of B has a supremum.
(b) Every chain in B relative to $. is at most countable.

Proof. (a): Let T be a non-empty subset of B. The set S:= n[x, 1]
xET

is not empty because 1 E S. By 3.9 (3) S is finite.
Also by 3.9 (2) there exists the smallest element s of S which is obvi

ously the supremum of T.
(b): Let K be a non-empty chain in B relative to $.. We consider

a function K -+ N, x 1-+ I[x,I]1 and prove its injection. Let x, y E K
with I[x,l]1 = l[y,I]1. Without loss of generality we put x $. y. Then
[y, 1] ~ [x, 1], i.e. [x,l] = [y, 1]. Therefore x = y.

THEOREM 3.11. Let (B,::=;) be an upper finite lattice which itself is
uncountable. For all x E M we denote [ ,x] := {zlz E B, z $. x}.

Let T := {TIT ~ B, there exists one b E B such that [ ,b] ~ T} U {t/>}.
Then the following holds.

(a) (B, T) is a topological space, in particular {I} f/. T.
(b) (B, T) will not be generated by a linear distance function.

Proof. (a) It is obviously enough to show: For all S, T E T, SnT ET.
Let S, T E T with S, T f. 4>. There exists then x, y E B with [ ,x] ~ S,
[ ,y] ~ T. Choosing s := inf{x, y}, [ ,s] ~ [ ,x] n [ ,y] ~ S n T.

(b) Suppose there is a linear distance function d with T = Td. By 3.2
the largest element 1 of B has a chain A as a neighborhood basis. For
all U E A U\{I} f. 4> by (a). Now let S:= {sup(U\{I})IU E A}. Since
A is a chain relative to~, S is a chain relative to $..

Hence by 3.10 (b) S itself is at most countable. Next it will be proved
that to each bE B there is s E S with s < b. Let bE B. IT b = 1 then
the assertion is trivial. Let hence b =f 1. Then {I} U [ ,b] E T(I). Since
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A is a neighborhood basis of 1, there is U E A with U ~ {I} U [ ,b].
Hence U\{I} ~ [ ,b] and therefore s := sup(U\{I}) ::; b. Because of
the property which we have just proven, U{[s, Ills E 5} = B. In other
words B is a union of at most countable finite sets, i.e., is itself countable,
which is contrary to the assumption.

EXAMPLE 3.12. The set B of cofinite subsets of R with ~ as a partial
order is an upper finite lattice. By 3.11 we see that the linear distance
function is not weak enough for the generation of every arbitrary topo
logical space.

4. Real Functions

DEFINITION 4.1. Let M be a set. A linear distance function d
M x M -4 R+ U {O} is said to be real.

The next simple and well known theorem is useful to see the main
theorem.

THEOREM 4.2. Let (M, T) be a topological space and x E M. Hx has
a countable neighborhood basis, then there exists a descending sequence
(Vn ) of open neighborhoods of x relative to ~ such that VI := M, so
that {Vnln E N} is a neighborhood basis of x.

THEOREM 4.3. A topological space will be generated by a real dis
tance function if and only if every point has countable neighborhood
basis.

Proof. Let (M, T) be a topological space.
" +-- ": Suppose every point x E M has a countable neighborhood

basis. According to 4.2 every x E M has a descending sequence (Vn )

of open sets with VI = M, so that {Vnlx E N} is a neighborhood basis
of x. We choose for every x E M such a sequence (Vn(x)) and define
d : M x M -4 R+ U {O}, (x, y) I-t inf{~ lyE Vn(x)}. We now claim
that d is real and T = 'Id. Before we prove it using 2.5, we show first:
For all mEN and x E M K.J..(x) = Vm(x).

m

Let mEN and x EM. The following statements are equivalent.
z E K.!.(x);d(x,z)::; ~; inf{~ln E N,z E Vn(x)}::; ~; there is no EN

m
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with ~o :::; ~' Z E Vno(x); there is no EN with no ~ rn, Z E Vno(x);z E
Vm ( x) (since (Vn ( x)) is a descending chain.).

Now for (1) of 2.5. Let x E M and c E R+. There is one rn E N
with ~ :::; c. Then Vm(x) = K.!..(x) ~ Ke(x). For (2): Let n E N.
Choose c := ~' Hence Ke(x) = "'K~(x) = Vn(x). Therefore d is real

n

with T = Td•

" ~ ": Let d be real with T = 'Id, Since d is topological, for all
x E M the set{K~(x)lnE N} is the countable neighborhood basis of x.

n

We construct here a topological space with which the equivalence of
two functions can be clarified.

DEFINITION 4.4. Under an ordinal number system of the type aleph
1 we understand a pair (0, [) where °is a set and [ a relation on °with
the following properties. - -

(1) 1is a well order.
(2) There exists the smallest element s and the largest element u in

n.
(3) For all x E O\{u} [s,x]:= {zlz E n, slzlx} is countable.
(4) n itself is uncountable.

For all x E O\{u} we denote x' := min{zlz E 0, xlz}

THEOREM 4.5. Let (0, [) be an ordinal number system of the type
aleph 1. Let T:= {[x,u]lx -E n\{u}} u {<p}. Then T is a topology on n
and (0, T) will be generated by a linear distance function.

Proof. Since (n, [) is a well ordered set, obviously (T, 2) is also a well
ordered set, hence It is a topology on n.

Using 3.8, we show that (0, T) is generated by a linear distance func
tion. Since T itself is a chain, every b E °has a chain as a neighborhood
basis, namely T(b). Hence the condition (a) of 3.8 is satisfied. Obvi
ously, for every x E n\{u} [x, u] is the smallest open neighborhood of x.
Thus every point of 0\{u} is not approximate and u is the only approx
imate point of n. Since for u, u we can choose the identity function as
a u-isolation function, the condition of (b) is trivially satisfied.
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THEOREM 4.6. The topological space of 4.5 will not be generated by
a real distance function.

Proof. Every point x E Q\{u} is seperated from u, because x' I
u,[x',u] E T(u) and x f}. [x',u]. Hence nT(u) = {u}. Assume that
(Q, T) can be generated by a real distance function.

Then u has by 3.2 a countable neighborhood basis A and nA = {u}.
For every element V E A Q\V is countable, because V contains one open
set [x, u] and from this Q\V £; n\[x, u] £; [8, x] where [8, x] with x =f u is
countable. Hence Q\{u} = n\(nA) = UVEA(n\V) is countable, which
is contrary.

From 4.5 and 4.6 we conclude that the linear and the real distance
functions are not equivalent. In other words the class of the topological
spaces generated by a linear distance function does properly contain a
class of those generated by a real distance function.
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