RIEMANN-STIELTJES INTEGRAL OF FUNCTIONS OF $\kappa-$ BOUNDED VARIATION

Sung Ki Kim and Jaihan Yoon

Let $\left\{I_{i}\right\}$ be a collection of nonoverlapping subintervals of $[a, b]$ which covers $[a, b]$. A function is of bounded variation on $[a, b]$ if $V(f)=$ $\sup \sum\left|f\left(I_{i}\right)\right|<\infty$ where $f\left(I_{i}\right)=\left|f\left(x_{i-1}\right)-f\left(x_{i}\right)\right|, I_{i}=\left[x_{i-1}, x_{i}\right]$. Cyphert [1] generalized this idea by considering other functions κ on $[a, b]$. The introduction of the function κ can be viewed as a rescaling of lengths of subintervals of $[a, b]$ such that the length of $[a, b]$ is 1 if $\kappa(1)=1$. In the sequel, we require that κ-function have the following properties on $[0,1]$:
(1) κ is continuous with $\kappa(0)=0$ and $\kappa(1)=1$,
(2) κ is concave and strictly increasing, and
(3) $\lim _{x \rightarrow 0^{+}} \frac{\kappa(x)}{x}=\infty$.

A function f is said to be of κ-bounded variation on $[a, b]$ if there exists a positiove constant C such that for every collection $\left\{I_{i}\right\}$ of noneverlapping subintervals of $[a, b], \sum \left\lvert\, f\left(I_{i}\right) \leq C \sum \kappa\left(\frac{\left|I_{n}\right|}{b-a}\right)\right.$, where $\left|I_{n}\right|$ is the length of the interval I_{n}. The total κ-variation of f over $[a, b]$ is defined by $\kappa V(f)=\sup \frac{\sum\left|f\left(I_{i}\right)\right|}{\sum \kappa\left(\frac{I_{i}}{-i-a}\right)}$, where the supremum is taken over all $\left\{I_{i}\right\}$ of nonoverlapping subintervals of $[a, b]$ which cover $[a, b]$. Since κ is subadditive, every function f of bounded variation is of κ-bounded variation and $\kappa V(f) \leq V(f)$. Also f has at most a countable number of points of simple discontinuity [1]. Although functions of κ-bounded variation are not necessarily of bounded variation, they do remain bounded.

Let $\kappa B V$ be the set of functions of κ-bounded variation on the closed interval $[a, b]$ and define for each f in $\kappa B V$

$$
\|f\|_{\kappa}=\kappa V(f)+|f(a)| .
$$

Received May 7, 1990.

Then $\|\bullet\|_{\kappa}$ is a norm on $\kappa B V$ and $\kappa B V$ is a Banach space under this norm. Schramm [3] shows the existence of Riemann-Stieltjes integral of functions of Φ-bounded variation. We will show the existence of the Riemann-Stieltjes integral of functions of κ-bounded variation.

For each n, put

$$
\kappa V(n, f)=\sup \frac{\sum_{i}^{n}\left|f\left(I_{i}\right)\right|}{\sum_{i=1}^{n} \kappa\left(\frac{I_{i} \mid}{b-a}\right)}
$$

over all collections $\left\{I_{i}\right\}$ consisting of nonoverlapping n intervals of $[a, b]$ such that $[a, b]=\cup_{i=1}^{n} I_{i}$. Then

$$
\kappa V(f)=\sup _{n} \kappa V(n, f) .
$$

Let $\left\{I_{i}\right\}_{i=1}^{\infty}$ be a sequence of nonoverlapping intervals of $[a, b]$ which covers $[a, b]$. We call $\left\{I_{i}^{\prime}\right\}_{i=1}^{\infty}$ the decreasing rearrangerent of $\left\{I_{i}\right\}_{i=1}^{\infty}$ with respect to f if $\left|f\left(I_{i+1}^{\prime}\right)\right| \leq\left|f\left(I_{i}^{\prime}\right)\right|$ for all i.

For the simplicity of notation, we will express $\kappa\left(\left|I_{i}\right|\right)=\kappa\left(\frac{\left|I_{i}\right|}{b-a}\right)$.
Define $I_{\kappa}(f)=\sup _{n} \frac{\sum_{i=1}^{n}\left|f\left(I_{i}^{\prime}\right)\right|}{\sum_{i=1}^{n} \kappa\left(\left|I_{i}^{\prime}\right|\right)}$. It is clear that if $\left\{I_{i}^{\prime \prime}\right\}$ is a rearrangenent of $\left\{I_{i}\right\}$, then

$$
\sum_{1}^{n}\left|f\left(I_{i}^{\prime \prime}\right)\right| \leq I_{\kappa}(f) \sum_{i=1}^{n} \kappa\left(\left|I_{i}^{\prime}\right|\right), \text { for all } n .
$$

In the sequel, $\left\{I_{i}^{\prime}\right\}$ and $\left\{J_{i}^{\prime}\right\}$ denote the decreasing rearrangement of $\left\{I_{i}\right\}$ and $\left\{J_{i}\right\}$ with respect to f and g, respectively and k_{i} are κ-functions.

Lemma 1. Let $I=\left\{I_{i}\right\}$ and $J=\left\{J_{i}\right\}$ be sequences as above and $f \in \kappa_{1} B V, g \in \kappa_{2} B V$. Then for each n, there is $k \leq n$ such that

$$
\left|f\left(I_{k}\right) g\left(J_{k}\right)\right| \leq \frac{\sum_{i=1}^{n} \kappa_{1}\left(\left|I_{i}^{\prime}\right|\right) \sum \kappa_{2}\left(\left|J_{i}^{\prime}\right|\right)}{n^{2}} I_{\kappa_{1}}(f) J_{\kappa_{2}}(g)
$$

Proof. There is k such that $\left|f\left(I_{k}\right) g\left(J_{k}\right)\right|$ is not larger then the geometric mean of the numbers $\left|f\left(I_{1}\right) g\left(J_{1}\right)\right|, \ldots,\left|f\left(I_{n}\right) g\left(J_{n}\right)\right|$. Thus we have

$$
\begin{aligned}
\left|f\left(I_{k}\right) g\left(J_{k}\right)\right| & \leq\left(\frac{1}{n} \sum_{i=1}^{n}\left|f\left(I_{i}\right)\right|\right)\left(\frac{1}{n} \sum_{i=1}^{n}\left|g\left(J_{i}\right)\right|\right) \\
& \leq \frac{\sum \kappa_{1}\left(\left|I_{i}^{\prime}\right|\right) \sum \kappa_{2}\left(\left|J_{i}^{\prime}\right|\right)}{n^{2}} I_{\kappa_{1}}(f) J_{\kappa_{2}}(g) .
\end{aligned}
$$

Lemma 2. Let I and J be sequences as above and $f \in \kappa_{1} B V, g \in$ $\kappa_{2} B V$. Then

$$
\sum_{k=1}^{n}\left|f\left(I_{k}\right) g\left(J_{k}\right)\right| \leq \sum_{k=1}^{n}\left(\frac{\sum_{i=1}^{k} \kappa_{1}\left(\left|I_{i}^{\prime}\right|\right) \sum \kappa_{2}\left(\left|J_{i}^{\prime}\right|\right)}{k^{2}}\right) I_{\kappa_{1}}(f) J_{\kappa_{2}}(g) .
$$

Proof. Assume that $\left|f\left(I_{k}\right) g\left(J_{k}\right)\right|$ are arranged in decreasing order, then

$$
\left|f\left(I_{k}\right) g\left(J_{k}\right)\right| \leq \frac{\sum^{k} \kappa_{1}\left(\left|I_{i}^{\prime}\right|\right) \sum^{k} \kappa_{2}\left(\left|J_{i}^{\prime}\right|\right)}{k^{2}} I_{\kappa_{1}}(f) J_{\kappa_{2}}(g)
$$

Thus, the conclusion follows.
Note that if $\sum_{k=1}^{\infty} \frac{\sum_{i=1}^{k} \kappa_{1}\left(\left|I_{i}^{\prime}\right|\right) \sum_{i=1}^{k} \kappa_{2}\left(\left|J_{i}^{\prime}\right|\right)}{k^{2}}=M<\infty$, then we will have

$$
\sum_{k=1}^{\infty}\left|f\left(I_{k}^{\prime}\right) g\left(J_{k}^{\prime}\right)\right| \leq M I_{\kappa_{1}}(f) J_{\kappa_{2}}(g)
$$

By a partition T on the finite sequence $I=\left\{I_{1}, \ldots, I_{n}\right\}$, we shall mean a sequence $T I=\left\{J_{1}, \ldots, J_{r}\right\}, r \leq n$ where each J_{i} are the union of some consecuvtive intervals I_{i}^{\prime}.

Lemma 3. If $f \in \kappa_{1} B V, g \in \kappa_{2} B V$, then

$$
\begin{aligned}
& \sum_{k=1}^{n} \sum_{i=1}^{k}\left|f\left(I_{i}\right) \| g\left(I_{k}\right)\right| \\
& \quad \leq\left(1+\sum_{k=1}^{n-1}\left(\frac{\sum_{i=1}^{k} \kappa_{1}\left(\left|I_{i}^{\prime}\right|\right) \sum_{i=1}^{k} \kappa_{2}\left(\left|J_{i}^{\prime}\right|\right)}{k^{2}}\right)\right) \sup T I_{\kappa_{1}}(f) Q J_{\kappa_{2}}(g)
\end{aligned}
$$

where the supremums are taken over all partitions T and Q.
Proof. For a fixed $k \leq n$, let T_{k} be the operation defined by

$$
\begin{aligned}
T_{k} I & =\left\{I_{1}, \ldots, I_{k-1}, I_{k} \cup I_{k+1}, I_{k+2}, \ldots, I_{n}\right\} \\
& =\left\{I_{1}^{\prime}, I_{2}^{\prime}, \ldots, I_{n-1}^{\prime}\right\} \\
& =I^{\prime} .
\end{aligned}
$$

Observe that

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(\left|f\left(I_{1}\right)\right|+\cdots+\left|f\left(I_{i}\right)\right|\right)\left|g\left(J_{i}\right)\right| \\
\leq & \sum_{i=1}^{n-1}\left(\left|f\left(I_{1}^{\prime}\right)\right|+\cdots+\left|f\left(I_{i}^{\prime}\right)\right|\right)\left|g\left(J_{i}^{\prime}\right)\right|-\left|f\left(I_{k+1}\right)\right|\left|g\left(J_{k}\right)\right| \\
\leq & \sum_{k=1}^{n-1} \sum_{i=1}^{k}\left|f\left(I_{i}^{\prime}\right) g\left(J_{i}^{\prime}\right)\right|+\left|f\left(I_{k+1}\right) g\left(J_{k}\right)\right|
\end{aligned}
$$

By Lemma 1, we may choose k in such a way that

$$
\begin{aligned}
\left|f\left(I_{k+1}\right) g\left(J_{k}\right)\right| & \leq \frac{1}{(n-1)^{2}} \sum_{2}^{n}\left|f\left(I_{i}\right)\right| \sum_{1}^{n-1}\left|g\left(J_{i}\right)\right| \\
& \leq I_{\kappa_{1}}(f) K_{\kappa_{2}}(g) \frac{\sum \kappa_{1}\left(\left|I_{i}^{\prime}\right|\right) \sum \kappa_{2}\left(\left|J_{i}^{\prime}\right|\right)}{(n-1)^{2}}
\end{aligned}
$$

Following the same procedure we see that

$$
\begin{aligned}
& \sum_{k=1}^{n-1} \sum_{i=1}^{k}\left|f\left(I_{i}^{\prime}\right) g\left(J_{i}^{\prime}\right)\right| \\
& \quad \leq \sum_{k=1}^{n-2} \sum_{i=1}^{k} \left\lvert\, f\left(I_{i}^{\prime \prime}\right) g\left(J_{i}^{\prime \prime}\right)+I_{\kappa_{1}}^{\prime}(f) J_{\kappa_{2}}^{\prime}(g) \frac{\sum_{i=1}^{n-2} \kappa_{1}\left(I_{i}^{\prime \prime}\right) \sum_{i=1}^{n-2} \kappa_{2}\left(J_{i}^{\prime \prime}\right)}{(n-2)^{2}}\right.
\end{aligned}
$$

Where $I^{\prime \prime}=\left\{I_{1}^{\prime \prime}, \ldots, I_{n-2}^{\prime \prime}\right\}, J^{\prime \prime}=\left\{J_{1}^{\prime \prime}, \ldots, J_{n-2}^{\prime \prime}\right\}$ are sequence of length $n-2$ obtained from I and J by $T_{j} \circ T_{k}$. Continuing this procers, we obtain the desired inequality.

Lemma 4. Let $\lim \frac{\sum_{i=1}^{n} \kappa_{1}\left(\left|I_{i}\right|\right)}{\sum_{i=1}^{n} \kappa\left(\left|I_{i}\right|\right)}=\infty$. Given $\varepsilon>0$ and $A>0$, there is an $\eta>0$ such that $I_{\kappa_{1}}(f) \leq \varepsilon$ for all $\left\{I_{i}\right\}$ such that $I_{\kappa}(f) \leq A$ and $\left|f\left(I_{i}\right)\right|<\eta$ for all i.

Proof. Let m be so large that

$$
\frac{\sum^{n} \kappa_{1}\left(\left|I_{i}\right|\right)}{\sum \kappa\left(\left|I_{i}\right|\right)}<\frac{\varepsilon}{2 A} \text { if } n \geq m
$$

Choose a positive

$$
\eta<\frac{\varepsilon}{2 m} .
$$

If $I_{\kappa}(f) \leq A,\left|f\left(I_{i}\right)\right|<\eta$ for all i, and $\left\{I_{i}^{\prime}\right\}$ is the decreasing rearrangement of $\left\{I_{i}\right\}$, then we have for $n \geq m$,

$$
\begin{aligned}
\sum_{i=1}^{n}\left|f\left(I_{i}^{\prime}\right)\right| & =\sum_{i=1}^{m-1}\left|f\left(I_{i}^{\prime}\right)\right|+\sum_{i=m}^{n}\left|f\left(I_{i}^{\prime}\right)\right| \\
& \leq \frac{m \varepsilon}{2 m}+\frac{\varepsilon A \sum_{i=1}^{n} \kappa_{1}\left(\left|I_{i}^{\prime}\right|\right)}{2 A}
\end{aligned}
$$

If $n<m$, then

$$
\sum_{i=1}^{n}\left|f\left(I_{i}^{\prime}\right)\right| \leq \frac{n \varepsilon}{2 m} \leq \frac{\sum_{i=1}^{n} \kappa_{1}\left(\left|I_{i}^{\prime}\right|\right)}{2}
$$

Therefore $I_{\kappa_{1}}(f) \leq \varepsilon$.
We now prove the main result of this paper.
Theorem 5. If $f \in \kappa_{1} B V, g \in \kappa_{2} B V, \sum_{n=1}^{\infty}\left(\frac{\sum_{i=1}^{n} \kappa_{1}\left(\left|I_{i}\right|\right) \sum_{i=1}^{n} \kappa_{2}\left(\left|J_{i}\right|\right)}{n^{2}}\right)$ $<\infty$ and f, g have no common discontinuity, then the Riemann-stieltjes integral $\int_{a}^{b} f d g$ exists.

Proof. f has only simple discontinuities at t_{1}, t_{2}, \ldots. May assume f is right continuous at a and left continuous at b. Let $d_{i}=\max \left\{\left|f\left(t_{i}+0\right)-f\left(t_{i}\right)\right|,\left|f\left(t_{i}-0\right)-f\left(t_{i}\right)\right|,\left|f\left(t_{i}+0\right)-f\left(t_{i}-0\right)\right|\right\}$.

Given $\varepsilon>0$, choose $\eta<\varepsilon$ as in Lemma 4 and $A=2 \kappa_{1} V(f)$. Since

$$
\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} \kappa_{1}\left(\left|I_{i}\right|\right)}{n}=0, \lim \frac{\sum_{i=1}^{n}\left|f\left(I_{i}\right)\right|}{n}=0
$$

Thus $d_{i} \rightarrow 0$ as $i \rightarrow \infty$ and hence there is N such that $d_{i}<\frac{\eta}{4}$ for $i>N$. There is $\kappa_{\alpha}(x)=x^{\alpha}(0<\alpha<1)$ such that $\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} \kappa_{\alpha}\left(\left|J_{\kappa}\right|\right)}{\sum_{i=1}^{n} \kappa_{2}\left(\left|J_{\kappa}\right|\right)}=\infty$.

Then we apply again Lemma 4 again, choosing η_{1} such that $H_{\kappa_{\alpha}}(g)<$ ε / N for any sequence $H=\left\{H_{i}\right\}_{i=1}^{\infty}$ with $H_{\kappa_{2}}(g) \leq \kappa_{2} V(g)$ and $\left|f\left(H_{i}\right)\right|<$ η_{1} for all i. Let $\delta>0$ be less than the minimum distance between two of the set $\left\{a, t_{1}, t_{2}, \ldots, t_{N}, b\right\}$ such that
i) $|f(x)-f(y)|<\frac{\eta}{2}$ whenever $|x-y|<\delta$ and $[x, y]$ does not contain any of the $t_{i}, i=1,2, \ldots, N$.
ii) $|g(x)-g(y)|<\min \left\{\varepsilon / N, \eta_{1}\right\}$ whenever $[x, y] \subseteq\left[t_{i}-\delta, t_{i}+\delta\right]$ for some $i=1,2, \ldots, N$.
Let $P_{1}=\left\{\left[x_{k-1}^{\prime}, x_{k}^{\prime}\right]\right\}_{k=1}^{n_{1}}$ and $P_{2}=\left\{\left[x_{k-1}^{2}, x_{k}^{2}\right]\right\}_{k=1}^{n_{2}}$ be two partitions of $[a, b]$ with sets of intermediate points $Q_{1}=\left\{\xi_{k}^{1}\right\}$ and $Q_{2}=\left\{\xi_{k}^{2}\right\}$ respectively, with mesh less than $\frac{\delta}{2}$. May assume all end points are different from $t_{i}, i=1,2, \ldots, N$. Define step functions f_{1}, and f_{2} by

$$
f_{i}(x)= \begin{cases}\left\{f\left(\xi_{1}^{i}\right),\right. & x=a \\ f\left(\xi_{k}^{i}\right), & \xi_{k}^{i} \in\left(x_{k-1}^{i}, x_{k}^{i}\right]\end{cases}
$$

for $i=1,2$. Let $P=\left\{\left[x_{k-1}, x_{k}\right]\right\}_{k=1}^{n}$ be the common refinement of P_{1} and P_{2}. Then we have the Riemann-Stieltjes sum of f with respect to g corresponding to P_{i} and $Q_{i}, i=1,2$,

$$
\begin{aligned}
S\left(f, g ; P_{i}, Q_{i}\right) & =\sum_{i=1}^{n_{i}} f\left(\xi_{k}^{i}\right)\left(g\left(x_{k}^{i}\right)-g\left(x_{k-1}^{i}\right)\right) \\
& =\sum_{i=1}^{n_{i}} f_{i}\left(x_{k}^{i}\right)\left(g\left(x_{k}^{i}\right)-g\left(x_{k-1}^{i}\right)\right) \\
& =\sum_{k=1}^{n} f_{i}\left(x_{k}\right)\left(g\left(x_{k}\right)-g\left(x_{k-1}\right)\right),
\end{aligned}
$$

so that
$S\left(f, g ; P_{1}, Q_{1}\right)-S\left(f, g ; P_{2}, Q_{2}\right)=\sum_{k=1}^{n}\left(f_{1}\left(x_{k}\right)-f_{2}\left(x_{k}\right)\right)\left(g\left(x_{k}\right)-g\left(x_{k-1}\right)\right)$.
Let σ be the subcollections of P which contain some $t_{i}, i=1,2, \ldots, N$
and let σ^{\prime} be the subcollections of P which do not contain any t_{i}. Then

$$
\begin{aligned}
& \quad\left|S\left(f, g ; P_{1}, Q_{1}\right)-S\left(f, g ; P_{2}, Q_{2}\right)\right| \\
& \leq\left|\sum_{I_{k} \in \sigma}\left(f_{1}\left(x_{k}\right)-f_{2}\left(x_{k}\right)\right)\left(g\left(x_{k}\right)-g\left(x_{k-1}\right)\right)\right| \\
& \quad+\left|\sum_{I_{k} \in \sigma}\left(f_{1}\left(x_{k}\right)-f_{2}\left(x_{k}\right)\right)\left(g\left(x_{k}\right)-g\left(x_{k-1}\right)\right)\right| \\
& \quad \text { where } \quad I_{k}=\left[x_{k-1}, x_{k}\right] \\
& = \\
& I+I I .
\end{aligned}
$$

From ii) we have that

$$
I \leq 2 \sup |f(x)| \cdot \frac{N \varepsilon}{N}=2 \sup |f(x)| \varepsilon
$$

Denote by $\left[v_{1}, u_{1}\right],\left[v_{2}, u_{2}\right], \ldots,\left[v_{s}, u_{s}\right]$ the intervals in σ^{\prime}, ordered from left to right. To estimate II, we observe that $v_{1}=a, u_{s}=b$, and $v_{i} \neq u_{i-1}$ if and only if v_{i} and u_{i-1} are respectively the right and left end point of an interval in σ. Let $f_{3}=f_{1}-f_{2}$, and $u_{0}=a$. Then

$$
\begin{aligned}
& \mid \sum_{I_{k} \in \sigma^{\prime}}\left(f_{1}\left(x_{k}\right)-f_{2}\left(x_{k}\right)\left(g\left(x_{k}\right)-g\left(x_{k-1}\right)\right) \mid\right. \\
= & \left|\sum_{1}^{s}\left(f_{1}\left(u_{i}\right)-f_{2}\left(u_{i}\right)\right)\left(g\left(u_{i}\right)-g\left(v_{i}\right)\right)\right| \\
\leq & \left|\sum_{1}^{s} f_{3}\left(u_{i}\right)\left(g\left(u_{i}\right)-g\left(u_{i-1}\right)\right)\right|+\left|\sum_{1}^{s} f_{3}\left(u_{i}\right)\left(g\left(v_{i}\right)-g\left(u_{i-1}\right)\right)\right| \\
\leq & \left|\sum_{1}^{s} f_{3}\left(u_{i}\right)\left(g\left(u_{i}\right)-g\left(u_{i-1}\right)\right)\right|+2 \sup |f(x)| \sum_{I_{k} \in \sigma}\left|g\left(I_{k}\right)\right| \\
\leq & \left|\sum_{1}^{s} f_{3}\left(u_{i}\right)\left(g\left(u_{i}\right)-g\left(u_{i-1}\right)\right)\right|+2 \sup |f(x)| \frac{N \varepsilon}{N}
\end{aligned}
$$

Let us estimate $I I I=\left|\sum_{1}^{s} f_{3}\left(u_{i}\right)\left(g\left(u_{i}\right)-g\left(u_{i-1}\right)\right)\right|$. Put $H_{j}=\left[u_{j-1}, u_{j}\right]$.

$$
\begin{aligned}
I I I & =\left|\sum_{i=1}^{s}\left(f_{3}(a)+\sum_{j=1}^{i} f_{3}\left(H_{j}\right)\right)\right| g\left(u_{i}\right)-g\left(u_{i-1}\right) \mid \\
& \leq\left|f_{3}(a)\right||g(b)-g(a)|+\sum_{i=1}^{s} \sum_{j=1}^{i}\left|f_{3}\left(H_{j}\right)\right|\left|g\left(H_{i}\right)\right| .
\end{aligned}
$$

By Lemma 3,

$$
\begin{aligned}
& \sum_{i=1}^{s}\left(\sum_{j=1}^{i}\left|f_{3}\left(H_{j}\right)\right|\right)\left|g\left(H_{i}\right)\right| \\
& \leq\left(1+\sum_{i=1}^{n-1}\left(\frac{\sum_{j=1}^{i} \kappa_{1}\left(\left|H_{i}^{\prime}\right|\right) \sum_{j=1}^{i} \kappa_{2}\left(\left|H_{j}^{\prime}\right|\right)}{i^{2}}\right)\right) \sup _{T} T H_{\kappa_{1}}\left(f_{3}\right) \kappa_{2} V(g) .
\end{aligned}
$$

But $f_{3}(a)=f\left(\xi_{1}\right)-f\left(\xi_{1}^{\prime}\right)$ and therefore, by i), $\left|f_{2}(a)\right|<\frac{\eta}{2}<\varepsilon$. Each interval of $T H$ is of the form $\left[u_{j_{-1}}, u_{j_{l}}\right]$ for some subsequence $j_{0}<\cdots<$ j_{t} of $\{1, \ldots, s\}$. Then $T H_{\kappa_{1}}\left(f_{3}\right) \leq \kappa_{1} V\left(f_{3}\right) \leq \kappa_{1} V\left(f_{1}\right)+\kappa_{1} V\left(f_{2}\right) \leq$ $2 \kappa_{1} V(f)$. Also $\left|f_{3}\left(H_{j_{l}}\right)\right|=\left|f_{3}\left(u_{j l}\right)-f_{3}\left(u_{j l-1}\right)\right| \leq\left|f_{3}\left(u_{j l}\right)\right|+\left|f_{3}\left(u_{j l-1}\right)\right|<$ $\eta / 2+\eta / 2$ by i), since both $f_{3}\left(u_{j l}\right)$ and $f_{3}\left(u_{j l-1}\right)$ are differences of values of f at ξ_{i}^{1} and ξ_{i}^{2} where $\left|\xi_{i}^{1}-\xi_{i}^{2}\right|<\delta$ and $\left[\xi_{i}^{1}, \xi_{i}^{2}\right] \not \supset t_{k}, k=1, \ldots, N$. Hence by the Lemma $4, \sup _{T} T H_{\kappa_{1}}\left(f_{3}\right)<\varepsilon$ and thus

$$
I I \leq \varepsilon\left[|g(b)-g(a)|+\kappa_{2} V(g)\left(1+\sum_{i=1}^{\infty}\left(\frac{\sum^{i} \kappa_{1}\left(\left|H_{j}^{\prime}\right|\right) \sum^{i} \kappa_{2}\left(\left|H_{j}^{\prime}\right|\right)}{i^{2}}\right)\right)\right]
$$

We have proved that for any $\varepsilon>0$, there are partitions $P_{i}, Q_{i}(i=1,2)$ such that $\left|S\left(f, g ; P_{1}, Q_{1}\right)-S\left(f, g ; P_{2}, Q_{2}\right)\right|<\varepsilon$. Thus $\int_{a}^{b} f d g$ exists.

References

1. D.S. Cyphert, Generalized functions of bounded variation and their application to the theory of harmonic functions, Dissertation in Math., Vanderbilt Univ., Tenessee, 1982.
2. I. Pedro, Functions of generalized bounded variation and Fourier series, Dissertation in Math., Syracuse Univ., New York, 1986.
3. M.J. Schramm, Functions of $\phi-b o u n d e d$ variation and Riemann-Stieltjes integration, Trans. Amer. Math. Soc. 287 (1985), 49-63.

Department of Mathematics
Seoul National University
Seoul 151-742, Korea

