RIEMANN-STIELTJES INTEGRAL OF FUNCTIONS OF κ -BOUNDED VARIATION

SUNG KI KIM AND JAIHAN YOON

Let $\{I_i\}$ be a collection of nonoverlapping subintervals of [a, b] which covers [a, b]. A function is of bounded variation on [a, b] if V(f) = $\sup \sum |f(I_i)| < \infty$ where $f(I_i) = |f(x_{i-1}) - f(x_i)|$, $I_i = [x_{i-1}, x_i]$. Cyphert [1] generalized this idea by considering other functions κ on [a, b]. The introduction of the function κ can be viewed as a rescaling of lengths of subintervals of [a, b] such that the length of [a, b] is 1 if $\kappa(1) = 1$. In the sequel, we require that κ -function have the following properties on [0, 1]:

(1) κ is continuous with $\kappa(0) = 0$ and $\kappa(1) = 1$,

- (2) κ is concave and strictly increasing, and
- (3) $\lim_{x\to 0^+}\frac{\kappa(x)}{x}=\infty.$

A function f is said to be of κ -bounded variation on [a, b] if there exists a positiove constant C such that for every collection $\{I_i\}$ of noneverlapping subintervals of [a, b], $\sum |f(I_i)| \leq C \sum \kappa(\frac{|I_n|}{b-a})$, where $|I_n|$ is the length of the interval I_n . The total κ -variation of f over [a, b] is defined by $\kappa V(f) = \sup \frac{\sum |f(I_i)|}{\sum \kappa(\frac{|I_i|}{b-a})}$, where the supremum is taken over all $\{I_i\}$ of nonoverlapping subintervals of [a, b] which cover [a, b]. Since κ is subadditive, every function f of bounded variation is of κ -bounded variation and $\kappa V(f) \leq V(f)$. Also f has at most a countable number of points of simple discontinuity [1]. Although functions of κ -bounded variation are not necessarily of bounded variation, they do remain bounded.

Let κBV be the set of functions of κ -bounded variation on the closed interval [a, b] and define for each f in κBV

$$||f||_{\kappa} = \kappa V(f) + |f(a)|.$$

Received May 7, 1990.

Then $\| \bullet \|_{\kappa}$ is a norm on κBV and κBV is a Banach space under this norm. Schramm [3] shows the existence of Riemann-Stieltjes integral of functions of Φ -bounded variation. We will show the existence of the Riemann-Stieltjes integral of functions of κ -bounded variation.

For each n, put

$$\kappa V(n, f) = \sup \frac{\sum_{i=1}^{n} |f(I_i)|}{\sum_{i=1}^{n} \kappa(\frac{|I_i|}{b-a})}$$

over all collections $\{I_i\}$ consisting of nonoverlapping *n* intervals of [a, b] such that $[a, b] = \bigcup_{i=1}^{n} I_i$. Then

$$\kappa V(f) = \sup_{n} \kappa V(n, f).$$

Let $\{I_i\}_{i=1}^{\infty}$ be a sequence of nonoverlapping intervals of [a, b] which covers [a, b]. We call $\{I'_i\}_{i=1}^{\infty}$ the decreasing rearrangement of $\{I_i\}_{i=1}^{\infty}$ with respect to f if $|f(I'_{i+1})| \leq |f(I'_i)|$ for all i.

For the simplicity of notation, we will express $\kappa(|I_i|) = \kappa(\frac{|I_i|}{b-a})$.

Define $I_{\kappa}(f) = \sup_{n} \frac{\sum_{i=1}^{n} |f(I'_{i})|}{\sum_{i=1}^{n} \kappa(|I'_{i}|)}$. It is clear that if $\{I''_{i}\}$ is a rearrangement of $\{I_{i}\}$, then

$$\sum_{1}^{n} |f(I_i'')| \le I_{\kappa}(f) \sum_{i=1}^{n} \kappa(|I_i'|), \text{ for all } n.$$

In the sequel, $\{I'_i\}$ and $\{J'_i\}$ denote the decreasing rearrangement of $\{I_i\}$ and $\{J_i\}$ with respect to f and g, respectively and k_i are κ -functions.

LEMMA 1. Let $I = \{I_i\}$ and $J = \{J_i\}$ be sequences as above and $f \in \kappa_1 BV$, $g \in \kappa_2 BV$. Then for each n, there is $k \leq n$ such that

$$|f(I_k)g(J_k)| \leq \frac{\sum_{i=1}^n \kappa_1(|I'_i|) \sum \kappa_2(|J'_i|)}{n^2} I_{\kappa_1}(f) J_{\kappa_2}(g).$$

Proof. There is k such that $|f(I_k)g(J_k)|$ is not larger than the geometric mean of the numbers $|f(I_1)g(J_1)|, \ldots, |f(I_n)g(J_n)|$. Thus we have

$$|f(I_k)g(J_k)| \le \left(\frac{1}{n}\sum_{i=1}^n |f(I_i)|\right)\left(\frac{1}{n}\sum_{i=1}^n |g(J_i)|\right) \\\le \frac{\sum \kappa_1(|I_i'|)\sum \kappa_2(|J_i'|)}{n^2} I_{\kappa_1}(f) J_{\kappa_2}(g)$$

66

LEMMA 2. Let I and J be sequences as above and $f \in \kappa_1 BV$, $g \in \kappa_2 BV$. Then

$$\sum_{k=1}^{n} |f(I_k)g(J_k)| \le \sum_{k=1}^{n} \left(\frac{\sum_{i=1}^{k} \kappa_1(|I_i'|) \sum \kappa_2(|J_i'|)}{k^2}\right) I_{\kappa_1}(f) J_{\kappa_2}(g)$$

Proof. Assume that $|f(I_k)g(J_k)|$ are arranged in decreasing order, then

$$|f(I_k)g(J_k)| \leq \frac{\sum^k \kappa_1(|I'_i|) \sum^k \kappa_2(|J'_i|)}{k^2} I_{\kappa_1}(f) J_{\kappa_2}(g).$$

Thus, the conclusion follows.

Note that if
$$\sum_{k=1}^{\infty} \frac{\sum_{i=1}^{k} \kappa_1(|I'_i|) \sum_{i=1}^{k} \kappa_2(|J'_i|)}{k^2} = M < \infty$$
, then we will

have

$$\sum_{k=1}^{\infty} |f(I_k')g(J_k')| \leq M I_{\kappa_1}(f) J_{\kappa_2}(g).$$

By a partition T on the finite sequence $I = \{I_1, \ldots, I_n\}$, we shall mean a sequence $TI = \{J_1, \ldots, J_r\}, r \leq n$ where each J_i are the union of some consecuvtive intervals I'_i .

LEMMA 3. If $f \in \kappa_1 BV$, $g \in \kappa_2 BV$, then

$$\begin{split} \sum_{k=1}^{n} \sum_{i=1}^{k} |f(I_i)| |g(I_k)| \\ &\leq (1 + \sum_{k=1}^{n-1} \left(\frac{\sum_{i=1}^{k} \kappa_1(|I'_i|) \sum_{i=1}^{k} \kappa_2(|J'_i|)}{k^2} \right)) \sup TI_{\kappa_1}(f) QJ_{\kappa_2}(g) \end{split}$$

where the supremums are taken over all partitions T and Q.

Proof. For a fixed $k \leq n$, let T_k be the operation defined by

$$T_k I = \{I_1, \dots, I_{k-1}, I_k \cup I_{k+1}, I_{k+2}, \dots, I_n\}$$

= $\{I'_1, I'_2, \dots, I'_{n-1}\}$
= I' .

Observe that

$$\sum_{i=1}^{n} (|f(I_1)| + \dots + |f(I_i)|)|g(J_i)|$$

$$\leq \sum_{i=1}^{n-1} (|f(I_1')| + \dots + |f(I_i')|)|g(J_i')| - |f(I_{k+1})||g(J_k)|$$

$$\leq \sum_{k=1}^{n-1} \sum_{i=1}^{k} |f(I_i')g(J_i')| + |f(I_{k+1})g(J_k)|$$

By Lemma 1, we may choose k in such a way that

$$|f(I_{k+1})g(J_k)| \le \frac{1}{(n-1)^2} \sum_{2}^{n} |f(I_i)| \sum_{1}^{n-1} |g(J_i)|$$
$$\le I_{\kappa_1}(f) K_{\kappa_2}(g) \frac{\sum_{i} \kappa_1(|I_i'|) \sum_{i} \kappa_2(|J_i'|)}{(n-1)^2}$$

Following the same procedure we see that

$$\sum_{k=1}^{n-1} \sum_{i=1}^{k} |f(I'_i)g(J'_i)|$$

$$\leq \sum_{k=1}^{n-2} \sum_{i=1}^{k} |f(I''_i)g(J''_i) + I'_{\kappa_1}(f)J'_{\kappa_2}(g) \frac{\sum_{i=1}^{n-2} \kappa_1(I''_i) \sum_{i=1}^{n-2} \kappa_2(J''_i)}{(n-2)^2}$$

Where $I'' = \{I''_1, \ldots, I''_{n-2}\}, J'' = \{J''_1, \ldots, J''_{n-2}\}$ are sequence of length n-2 obtained from I and J by $T_j \circ T_k$. Continuing this process, we obtain the desired inequality.

LEMMA 4. Let $\lim \frac{\sum_{i=1}^{n} \kappa_1(|I_i|)}{\sum_{i=1}^{n} \kappa(|I_i|)} = \infty$. Given $\varepsilon > 0$ and A > 0, there is an $\eta > 0$ such that $I_{\kappa_1}(f) \leq \varepsilon$ for all $\{I_i\}$ such that $I_{\kappa}(f) \leq A$ and $|f(I_i)| < \eta$ for all i.

Proof. Let m be so large that

$$rac{\sum^n \kappa_1(|I_i|)}{\sum \kappa(|I_i|)} < rac{arepsilon}{2A} ext{ if } n \geq m.$$

68

Choose a positive

$$\eta < \frac{\varepsilon}{2m}.$$

If $I_{\kappa}(f) \leq A$, $|f(I_i)| < \eta$ for all *i*, and $\{I'_i\}$ is the decreasing rearrangement of $\{I_i\}$, then we have for $n \geq m$,

$$\sum_{i=1}^{n} |f(I'_i)| = \sum_{i=1}^{m-1} |f(I'_i)| + \sum_{i=m}^{n} |f(I'_i)|$$
$$\leq \frac{m\varepsilon}{2m} + \frac{\varepsilon A \sum_{i=1}^{n} \kappa_1(|I'_i|)}{2A}$$

If n < m, then

$$\sum_{i=1}^{n} |f(I'_i)| \le \frac{n\varepsilon}{2m} \le \frac{\sum_{i=1}^{n} \kappa_1(|I'_i|)}{2}$$

Therefore $I_{\kappa_1}(f) \leq \varepsilon$.

We now prove the main result of this paper.

THEOREM 5. If $f \in \kappa_1 BV$, $g \in \kappa_2 BV$, $\sum_{n=1}^{\infty} \left(\frac{\sum_{i=1}^n \kappa_1(|I_i|) \sum_{i=1}^n \kappa_2(|J_i|)}{n^2} \right)$ < ∞ and f, g have no common discontinuity, then the Riemann-stieltjes integral $\int_a^b f dg$ exists.

Proof. f has only simple discontinuities at t_1, t_2, \ldots . May assume f is right continuous at a and left continuous at b. Let

$$d_i = \max\{|f(t_i+0) - f(t_i)|, |f(t_i-0) - f(t_i)|, |f(t_i+0) - f(t_i-0)|\}.$$

Given $\varepsilon > 0$, choose $\eta < \varepsilon$ as in Lemma 4 and $A = 2\kappa_1 V(f)$. Since

$$\lim_{n \to \infty} \frac{\sum_{i=1}^{n} \kappa_1(|I_i|)}{n} = 0, \lim \frac{\sum_{i=1}^{n} |f(I_i)|}{n} = 0.$$

Thus $d_i \to 0$ as $i \to \infty$ and hence there is N such that $d_i < \frac{\eta}{4}$ for i > N. There is $\kappa_{\alpha}(x) = x^{\alpha}$ $(0 < \alpha < 1)$ such that $\lim_{n \to \infty} \frac{\sum_{i=1}^{n} \kappa_{\alpha}(|J_{\kappa}|)}{\sum_{i=1}^{n} \kappa_{2}(|J_{\kappa}|)} = \infty$. Then we apply again Lemma 4 again, choosing η_1 such that $H_{\kappa_{\alpha}}(g) < \varepsilon/N$ for any sequence $H = \{H_i\}_{i=1}^{\infty}$ with $H_{\kappa_2}(g) \le \kappa_2 V(g)$ and $|f(H_i)| < \eta_1$ for all *i*. Let $\delta > 0$ be less than the minimum distance between two of the set $\{a, t_1, t_2, \ldots, t_N, b\}$ such that

- i) $|f(x) f(y)| < \frac{\eta}{2}$ whenever $|x y| < \delta$ and [x, y] does not contain any of the $t_i, i = 1, 2, ..., N$.
 - ii) $|g(x) g(y)| < \min\{\varepsilon/N, \eta_1\}$ whenever $[x, y] \subseteq [t_i \delta, t_i + \delta]$ for some i = 1, 2, ..., N.

Let $P_1 = \{[x'_{k-1}, x'_k]\}_{k=1}^{n_1}$ and $P_2 = \{[x^2_{k-1}, x^2_k]\}_{k=1}^{n_2}$ be two partitions of [a, b] with sets of intermediate points $Q_1 = \{\xi^1_k\}$ and $Q_2 = \{\xi^2_k\}$ respectively, with mesh less than $\frac{\delta}{2}$. May assume all end points are different from t_i , i = 1, 2, ..., N. Define step functions f_1 , and f_2 by

$$f_i(x) = \begin{cases} \{f(\xi_1^i), & x = a \\ f(\xi_k^i), & \xi_k^i \in (x_{k-1}^i, x_k^i] \end{cases}$$

for i = 1, 2. Let $P = \{[x_{k-1}, x_k]\}_{k=1}^n$ be the common refinement of P_1 and P_2 . Then we have the Riemann-Stieltjes sum of f with respect to g corresponding to P_i and Q_i , i = 1, 2,

$$S(f,g;P_i,Q_i) = \sum_{i=1}^{n_i} f(\xi_k^i)(g(x_k^i) - g(x_{k-1}^i))$$

= $\sum_{i=1}^{n_i} f_i(x_k^i)(g(x_k^i) - g(x_{k-1}^i))$
= $\sum_{k=1}^n f_i(x_k)(g(x_k) - g(x_{k-1})),$

so that

$$S(f,g;P_1,Q_1) - S(f,g;P_2,Q_2) = \sum_{k=1}^n (f_1(x_k) - f_2(x_k))(g(x_k) - g(x_{k-1})).$$

Let σ be the subcollections of P which contain some t_i , i = 1, 2, ..., N

and let σ' be the subcollections of P which do not contain any t_i . Then

$$\begin{aligned} |S(f,g;P_1,Q_1) - S(f,g;P_2,Q_2)| \\ \leq &|\sum_{I_k \in \sigma} (f_1(x_k) - f_2(x_k))(g(x_k) - g(x_{k-1}))| \\ &+ |\sum_{I_k \in \sigma} (f_1(x_k) - f_2(x_k))(g(x_k) - g(x_{k-1}))| \\ &\text{where} \quad I_k = [x_{k-1}, x_k] \\ = &I + II. \end{aligned}$$

From ii) we have that

$$I \leq 2 \sup |f(x)| \cdot rac{N arepsilon}{N} = 2 \sup |f(x)| arepsilon.$$

Denote by $[v_1, u_1], [v_2, u_2], \ldots, [v_s, u_s]$ the intervals in σ' , ordered from left to right. To estimate II, we observe that $v_1 = a$, $u_s = b$, and $v_i \neq u_{i-1}$ if and only if v_i and u_{i-1} are respectively the right and left end point of an interval in σ . Let $f_3 = f_1 - f_2$, and $u_0 = a$. Then

$$\begin{split} &|\sum_{I_{k}\in\sigma'} (f_{1}(x_{k}) - f_{2}(x_{k})(g(x_{k}) - g(x_{k-1}))| \\ &= |\sum_{1}^{s} (f_{1}(u_{i}) - f_{2}(u_{i}))(g(u_{i}) - g(v_{i}))| \\ &\leq |\sum_{1}^{s} f_{3}(u_{i})(g(u_{i}) - g(u_{i-1}))| + |\sum_{1}^{s} f_{3}(u_{i})(g(v_{i}) - g(u_{i-1}))| \\ &\leq |\sum_{1}^{s} f_{3}(u_{i})(g(u_{i}) - g(u_{i-1}))| + 2\sup|f(x)|\sum_{I_{k}\in\sigma} |g(I_{k})| \\ &\leq |\sum_{1}^{s} f_{3}(u_{i})(g(u_{i}) - g(u_{i-1}))| + 2\sup|f(x)|\frac{N\varepsilon}{N} \end{split}$$

Let us estimate $III = |\sum_{i=1}^{s} f_3(u_i)(g(u_i) - g(u_{i-1}))|$. Put $H_j = [u_{j-1}, u_j]$.

$$III = |\sum_{i=1}^{s} (f_3(a) + \sum_{j=1}^{i} f_3(H_j))|g(u_i) - g(u_{i-1})|$$

$$\leq |f_3(a)||g(b) - g(a)| + \sum_{i=1}^{s} \sum_{j=1}^{i} |f_3(H_j)||g(H_i)|.$$

By Lemma 3,

$$\sum_{i=1}^{s} (\sum_{j=1}^{i} |f_{3}(H_{j})|)|g(H_{i})|$$

$$\leq (1 + \sum_{i=1}^{n-1} \left(\frac{\sum_{j=1}^{i} \kappa_{1}(|H_{i}'|) \sum_{j=1}^{i} \kappa_{2}(|H_{j}'|)}{i^{2}} \right)) \sup_{T} TH_{\kappa_{1}}(f_{3}) \kappa_{2} V(g).$$

But $f_3(a) = f(\xi_1) - f(\xi'_1)$ and therefore, by i), $|f_2(a)| < \frac{\eta}{2} < \varepsilon$. Each interval of TH is of the form $[u_{j_{l-1}}, u_{j_l}]$ for some subsequence $j_0 < \cdots < j_t$ of $\{1, \ldots, s\}$. Then $TH_{\kappa_1}(f_3) \leq \kappa_1 V(f_3) \leq \kappa_1 V(f_1) + \kappa_1 V(f_2) \leq 2\kappa_1 V(f)$. Also $|f_3(H_{j_l})| = |f_3(u_{jl}) - f_3(u_{jl-1})| \leq |f_3(u_{jl})| + |f_3(u_{jl-1})| < \eta/2 + \eta/2$ by i), since both $f_3(u_{jl})$ and $f_3(u_{jl-1})$ are differences of values of f at ξ_i^1 and ξ_i^2 where $|\xi_i^1 - \xi_i^2| < \delta$ and $|\xi_i^1, \xi_i^2| \neq t_k, k = 1, \ldots, N$. Hence by the Lemma 4, sup $TH_{\kappa_1}(f_3) < \varepsilon$ and thus

$$II \leq \varepsilon \left[|g(b) - g(a)| + \kappa_2 V(g) \left(1 + \sum_{i=1}^{\infty} \left(\frac{\sum^i \kappa_1(|H'_j|) \sum^i \kappa_2(|H'_j|)}{i^2} \right) \right) \right]$$

We have proved that for any $\varepsilon > 0$, there are partitions P_i , Q_i (i = 1, 2) such that $|S(f, g; P_1, Q_1) - S(f, g; P_2, Q_2)| < \varepsilon$. Thus $\int_a^b f dg$ exists.

References

1. D.S. Cyphert, Generalized functions of bounded variation and their application to the theory of harmonic functions, Dissertation in Math., Vanderbilt Univ., Tenessee, 1982.

- 2. I. Pedro, Functions of generalized bounded variation and Fourier series, Dissertation in Math., Syracuse Univ., New York, 1986.
- 3. M.J. Schramm, Functions of ϕ -bounded variation and Riemann-Stieltjes integration, Trans. Amer. Math. Soc. 287 (1985), 49-63.

Department of Mathematics Seoul National University Seoul 151-742, Korea