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RIEMANN-STIELTJES INTEGRAL OF FUNCTIONS
OF «~~BOUNDED VARIATION

SuNG K1 KiM AND JAIHAN YOON

Let {I;} be a collection of nonoverlapping subintervals of [a, b] which
covers [a,b]. A function is of bounded variation on [a,b] if V(f) =
sup 3_ |f(Li)] < oo where f(L) = |f(zi-1) — f(zi)l, Li = [zi—1, 2]
Cyphert [1] generalized this idea by considering other functions x on
[a,b]. The introduction of the function x can be viewed as a rescaling
of lengths of subintervals of [a,b] such that the length of [a,b] is 1 if
k(1) = 1. In the sequel, we require that x-function have the following
properties on [0, 1]:

(1) & is continuous with £(0) = 0 and «(1) =1,

(2) & 1s concave and strictly increasing, and

3) im ") o

r—0t T

A function f is said to be of k-bounded variation on [a,b] if there
exists a positiove constant C such that for every collection {I;} of non-
everlapping subintervals of [a,b], 3 |f(L;) < CY n(%{—f}[), where |I,,] is
the length of the interval I,,. The total x—variation of f over [a,}] is

defined by £V (f) = sup 3 l{i_lil) , where the supremum is taken over all
K —a

{I;} of nonoverlapping subintervals of [a,b] which cover [a,b]. Since &
is subadditive, every function f of bounded variation is of k-bounded
variation and kV(f) < V(f). Also f has at most a countable number of
points of simple discontinuity [1]. Although functions of k~bounded vari-
ation are not necessarily of bounded variation, they do remain bounded.

Let kK BV be the set of functions of k-bounded variation on the closed
interval [a, b] and define for each f in kBV

Iflle = £V(f) + f(a)l-
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Then || o ||« 1s a norm on KBV and BV is a Banach space under this
norm. Schramm [3] shows the existence of Riemann-Stieltjes integral
of functions of ®-bounded variation. We will show the existence of the
Riemann-Stieltjes integral of functions of k~bounded variation.

For each n, put

SR
S > oy

over all collections {I;} consisting of nonoverlapping n intervals of [a, b]
such that [a,b] = U, I;. Then

kV(f) = 81r1zp kV(n, f).

Let {I;}32, be a sequence of nonoverlapping intervals of [a,b] which
covers [a,b]. We call {I}}32, the decreasing rearrangerent of {I;}52,
with respect to f if | f(I], ;)| < |f(I})] for all :.

For the simplicity of notatxon we will express &(|I;]) = w(32 a)

Define I.(f) = sup, Z D;(|I'7)I It is clear that if {I}'} is a rear-

rangenent of {I;}, then

Z | (I < Iu( f)Zn(;I'D, for all .

i=1

In the sequel, {I}} and {J]} denote the decreasing rearrangement of
{I;} and {J;} with respect to f and g, respectively and k; are s-functions.

LEMMA 1. Let I = {I;} and J = {J;} be sequences as above and
f € kiBV, g € ke BV. Then for each n, there is k < n such that

Fte() < Zemr WD R WD (g, ¢o)

Proof. There is k such that | f(Ix)g( Jk)| is not larger then the geomet-
ric mean of the numbers |f(I;)g(J/1)|,-- ., |f(Iz)9(Jr)|- Thus we have

|f(Le)g(Je)| < (= ZIfI)I)( Zlg(J)l)

z"-l

< 2alis I, (7,000
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LEMMA 2. Let I and J be sequences as above and f € k1BV, g €
ko BV . Then

Z FIa(T)] < Z( =1 SCAPICANNRYRE!

Proof. Assume that |f(Iix)g(Jx)| are arranged in decreasing order,
then

k , k(1!
Ioean) < WD E w55 ()

Thus, the conclusion follows.

Note that if Z Zz—-l KI(II’D Zz— '92("]/,)

2 = M < oo, then we will

have

Y FIIO] € MIc, ()T, (9)-

k=1

By a partition T on the finite sequence I = {I;,..., I, }, we shall mean
asequence TI = {J;,...,Jr}, r < n where each J; are the union of some
consecuvtive intervals I;.

LEMMA 3. If f € k1 BV, g € ko BV, then

n k
DD I

k=1 =1

<1 “é:( m(u’lg,_l muw)))supTIM(f)Q Tea)

where the supremums are taken over all partitions T and Q.

Proof. For a fixed k < n, let T} be the operation defined by

TkI = {I],-..,Ik_.l, Ik UIk+1,Ik+2’._,’In}

={n,0,...,I,_;}
=TI
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Observe that

S USE) 4+ + Tl

< S+ + DDl = FTen) ()

n-—-1 k

<D DD+ 1 (Tr1)g(T6)]

k=1 =1

By Lemma 1, we may choose k in such a way that

|f(Ix+1)9(Jk)| < o _1 N SN lg ()]
< le(f)an(g)Z’cl(II”)E@(IJH)

(n—1)2
Following the same procedure we see that
n—1 k
YD eI
k=1 i=1
n—-2 k
" , i III K JII
< 30 S0 + 1 (1)l B U S D)
k=1 i=1
Where I" = {I}', ..., I}]_,}, J" = {J{,...,J}_,} are sequence of length

n — 2 obtained from I and J by Tj o Ti. Continuing this procers, we
obtain the desired inequality.

LEMMA 4. Let lim Z m((ly{l)) o0o. Given € > 0 and A > 0, there
f==1

is an 1 > 0 such that I, (f) < € for all {I;} such that I.(f) < A and
|f(L)] < n for all 1.

Proof. Let m be so large that

" (L) _
> k(|41 2A

ifn>m.
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Choose a positive
€
n < é—n—’;
If I.(f) < A, |f(I)] < nfor all 1, and {I}} is the decreasing rearrange-
ment of {I;}, then we have for n > m,

S U= Y AT+ Y 1A

me AT m(|I))
& 1=1 ]
— 2m + 2A

If n < m, then

e < T < Siey aa(T)
Dol < 5 < S

Therefore I (f) < e.

We now prove the main result of this paper.

= Iy i » J;
THEOREM 5. If f € k1 BV, g € ko BV, Z (Z;=1 &1(|7:]) Zs=1 w2(] |))

n2
n=1

< oo and f, g have no common discontinuity, then the Riemann-stieltjes
integral fab fdg exists.

Proof. f has only simple discontinuities at £;,¢5,... . May assume f
is right continuous at a and left continuous at b. Let

di = max{|f(t: +0) — f(t:)], [f(t: —0) — f(t:)], |f(2: +0) — f(t: = 0)[}.

Given € > 0, choose 1 < € as in Lemma 4 and A = 2«,V(f). Since

im Zi:l ZI(II'D — 0,hm Zi:l If(Il)I =0.
n

n—oo

Thus d; — 0 as 1 — oo and hence there is NV such that d; < % forz > N.

There is £q4(z) = 2% (0 < a < 1) such that lim z:;lzl Ka(|Jx|) = co.
n—oo 3 iy k2(]Jk)



70 Sung Ki Kim and Jaihan Yoon

Then we apply again Lemma 4 again, choosing n; such that Hi (g) <
e/N for any sequence H = {H;}2, with H,,(g) < k2V(g) and |f(H;)| <
ny for all 2. Let é > 0 be less than the minimum distance between two
of the set {a,t,,%2,...,tNn, b} such that
1) |f(z)— f(y)| < % whenever |z —y| < § and [z, y] does not contain
any of the ¢t;, : =1,2,..., N.
ii) |g(z) — g(y)| < min{e/N,n } whenever [z,y] C [t; — 6,¢; + 6] for
some?=1,2,..., N.
Let P, = {[z}_,,z}]};L, and P, = {[zi_,,22]}}2, be two partitions
of [a,b] with sets of intermediate points Q; = {£1} and Q. = {£7}

respectively, with mesh less than %. May assume all end points are

different from ¢;, ¢ = 1,2,..., N. Define step functions f1, and f2 by

{f&), <=a

fulz) = { f6), € e(ahy el

for ¢+ = 1,2. Let P = {[zx—1,zx|}}-,; be the common refinement of P,
and P,. Then we have the Riemann-Stieltjes sum of f with respect to
g corresponding to P; and Q;, ¢ = 1,2,

S(F9 P Qi) = g;f(fi)(g(wi) ~ g(ei)
- Z Fia)o(zh) — 9(ehor))
= ; fi(ze)(g(zk) — 9(zk-1)),
so that
S(f,9:P1,Q1)~S(f,9;: P2,Q2) = g(fl(xk)-fz(xk))(g(wk)—g(wk—l))-

Let o be the subcollections of P which contain some t;, i =1,2,..., N
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and let o' be the subcollections of P which do not contain any t;. Then

IS(f,gaPlan) - S(f7g’P2,Q2)|
<I Y (faler) = fao(ze)9(zk) = 9(ze—))

IkEG‘

+1 3 (filze) = folze))(g(zk) — 9(z1-1))

IkEU
where Iy = [zg-1, Tk
=I+11I.

From ii) we have that

I <2mp|f(@)]- 3 = 2sup | (2)le

Denote by [v1,u1], [v2,uz],.. ., [vs,us] the intervals in o', ordered from
left to right. To estimate II, we observe that vy = a, u, = b, and
v; # ui—; if and only if v; and u;_; are respectively the right and left
end point of an interval in . Let f3 = fi — f2, and ug = a. Then

| S (Fze) = fa(zk)(g(ze) — g(ze-1))]

I, €0’
= > " (fr(u) = fa(ui))(g(us) — g(vs))]
<IY - falua)(g(us) = glui=)) + 1D Fa(uid(g(vi) — gui-1))|
1 1
<I'Y . fa(ua)(g(us) — g(ui-1))| + 2sup [f(2)] Y lo(Te)|

Iy €o

<IY Fa(ui)(g(us) — g(ui-1))| + 2sup If(x)lj_j'vi
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Let us estimate IT1 = |} "] fa(ui)(g(u:)—g(ui-1))|- Put H; = [uj—1,u;].
ITI = | Z(fs(a) + Zfs(Hj))lg(“i) — g(ui-1)|

< 1fs(@)llg(®) —g(a)l + Y Y Ifs(Hj)l lg(H:)l.

i=1 j=1
By Lemma 3,
2O fs(H)lg(Hy)l
n-l i-___l K1 H: i-__l Ko H'-
<(1+ Z (Z’“ ( |)i22,_ ( JI)))SI%PTHN,(f:%)KzV(g).

But f3(a) = f(&1) — f(£1) and therefore, by i), |f2(a)| < % < €. Each
interval of TH is of the form [u;,_,,u;,] for some subsequence jo < --- <
Jeof {1,...,8}. Then TH. (fs) < s1V(fz) £ &1V(f1) + k1 V(f2) <
206, V(£). Also |fo(Hy, )| = |fa(usn)— fo(ujtn)] < |fa(usn) i+ fs(unin)] <
n/2+n/2 by 1), since both f3(u;1) and fs(uji—1) are differences of values
of f at € and € where |¢} — ££| < 6 and [€,62] F tx, £ = 1,..., .
Hence by the Lemma 4, supTH,, (f3) < € and thus
T

had ko (|H! K H:|)

1< |lg(h) - o(@) + maV ()1 + Y (Z {2 i, ))]
i=1

We have proved that for any € > 0, there are partitions P;, @Q; (: = 1,2)

such that |S(f, g; P1,@1) — S(f, 9; P2, Q2)| < &. Thus [, fdg exists.
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