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STEIN NEIGHBORHOOD BASES
FOR PRODUCT SETS IN c n *

KWANG Ho SRON

1. Introduction

The complex analytic properties of bounded pseudoconvex domains
with smooth boundaries in c n can differ very much from those of strictly
pseudoconvex domains. The existence of pseudoconvex neighborhoods
was shown by K. Diederich-J. E. Fornaess [5] under the assumption that
E = M I UM2 U·· ·UMk is the union of submanifolds with anondegeneracy
condition. If E contains a complex submanifold, this nondegeneracy
condition is not fulfilled, and in fact a Stein neighborhood system need
not exist in general, as was shown by K. Diederich-J. E. Fornaess [4]. And
K. Diederich-J. E. Fornaess [4] proved that if n cc C 2 is a pseudoconvex
domain with C 3-boundary and such that the set M of degeneracy of
the Levi form is exactly the disc M = {(z, w); Izl ~ 1, w = O} then
n has a Stein neighborhood basis. In case that the boundary of the
domain n cc C n is smooth real analytic, n has a Stein neighborhood
basis by K. Diederich-J. E. Fornaess [6]. Also, E. Bedford-J. E. Fomaess
[1] obtained assorted fundamental results and investigated pseudoconvex
neighborhood systems. Y. T. Siu [21] showed that every Stein subvariety
admits a Stein neighborhood. Recently H. Kazama [11] proved that
cm X Rn has no Stein neighborhood bases in cm X c n for all rn, n~ 1.

Let ~ = {z E C; Izl < I} be the unit open disc in the complex plane C,
~ its closure and T its boundary. In the preceding paper [19], the author
has shown that there are no Stein neighborhood bases of the product
sets ~ X ~ and ~ x T in C 2 , and more generally that the product set
RI x R2 of Reinhardt Stein domains RI C cm and R2 CC c n containing
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the origins has no Stein neighborhood bases in em x en. Also in [20],
the ahthor proved that the product set P x (a, b) of an open polydisc P
and an open interval (a, b) has no Stein neighborhood bases in em x e.
H. Kazama [11] and L. C. Piccinini [17, 18] investigated the Cauchy­
Riemann equations depending real analytically on a parameter. The
author [19, 20] obtained similar results for the product sets ~ X T, ~ x R
and P x (a,b).

In this paper we investigate properties of a Stein domain which is an
open neighborhood of the product set ~ x R in e 2 and investigate Stein
neighborhood bases of the product set n x (a, b) of a hyperbolic complex
~anifoldn and an open interval (a, b).

2. Pseudoconvex domains and the Levi problem

E. E. Levi [12] showed that the boundary of a domain of holomorphy
is not arbitrary. The boundary satisfies a condition of convexity called
pseudoconvex. The pseudoconvexity of a domain is a local property of
the boundary. A domain Qc en is said to have a Ci boundary (j ~ 1)
if there is a Ci function <P : U -t R on a neighborhood U of n such
that n = {z; 4>(z) < D} and grad 4>(z) =1= 0 on the boundary bn of Q. A
domain of holomorphy is a domain on which there exists a holomorphic
function which cannot be extended to a large domain.

DEFINITION 2.1. A domain n in en is said to be C -pseudoconvex if,
for any z E bn, there is a neighborhood U of z in en such that un n is
a domain of holomorphy.

DEFINITION 2.2. A real valued function <.p(z) ofclass C 2 is said to sat­
isfy the Levi-Krzoska's condition at a point zO if for any pair of complex
numbers Wl, W2, ... ,Wn of which at least one is not zero, satisfying

we have
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The above Hermitian form t (a~2:U)(z 0) Wj Wk is called the Levi
j,k=l ) k

form of <I> at zo.

DEFINITION 2.3. A domain n in en with C 2 boundary is said to be
(L- )pseudoconvex ifit has a defining function <I> such that the Levi form
of <I> at zo is positive semi-definite for all zo E bn and W E en satisfying

n 8<I>
I)8~hzo)wJ = o.
j=l ""J

There are many definitions of pseudoconvexity. For a domain in en,
the definitions of pseudoconvexity are all equivalent (see [7, 10]). The
original Levi's problem is to prove the converse that every domain with
smooth pseudoconvex boundary is a domain of holomorphy. For special
domains, the Levi's problem was solved by H. Behnke [2]. For general
domains, the problem was first solved by K. Oka [15, 16]. In the case
of general dimension n, the problem was solved at the same time inde­
pendently by H. J. Bremermann [3] and F. Norguet [14] but for schlicht
domains.

LEMMA 2.4([20]). Let n cc C 2 be a domain with C 2 boundary and
suppose that <I> : C 2

--t R is of C 2 on the open neighborhood U of the
boundary bn in C 2 . Then n is pseudoconvex if and only if

0 oq. oq.
a; aw

L(<I»(zo,wO) := -
oq. 02q. 02q.

~oaz ozaz owoz
oq. 02q. a2q.
ow ozow awow (zO,wO)

for all (::;0, w u ) E b0..

Let L( <I» be the differential form of Lemma 2.4. By x, y, U, v, we denote
the real coordinates such that z = x +yCIy and w = U +yCIv. We set
<I>(z,w) = <I>(rexp(yCI8), u + yCIv) for a nonzero complex number
~ _ 11 . _ 0 2 0 2 _ 0 2 a2
-- - x + v -ly and the LaplacIans 6 z - o'2

X
+ o'2 y and 6 w - a'2 u + a'2 v

in the space R 2 .
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LEMMA 2.5. Let U(u) be a positive C 2 function with U(u) ~ exp(_u2 )

in - 00 < u < 00. Then there exists a sequence {un} of real numbers
satisfying U'(u n ) --+ 0 as n --+ 00.

Proof. Assume that, for any sequence {un}, U'(u n ) does not converge
to 0 even if n --+ 00. We suppose that there is a positive number c
satisfying

n---+oo

By the mean value theorem, for any positive integer m, there exists a
number Urn E (m, m + 1) such that

IU'(urn)1 = IU(m) - U(m + 1)1
~ exp( _m2) + exp(-(m + 1)2)

~ 2 exp( _m2
).

For m --+ 00, we have exp( _m2 ) --+ O. Therefore, we have c: ~ O. This is
a contradiction.

LEMMA 2.6. Let U(u) be a positive C 2 function with U(u) ~ exp(-u2 )

for -00 < u < 00. Then the following statement does not hold:
There exists a real number a such that U"(u) ~ 0 for all u in [a, 00).

Proof. Assume that there were a real number a satisfying U" (u) < 0
for a ~ u < 00. By Lemma 2.5, there exists a sequence {un} in R
satisfying

U'(u n ) --+ 0 as n --+ 00.

The tangent line of U(u) at a point (un,U(u n)) is

Since U" (u) ~ 0 for a ~ u < 00 from the assumption, we have

U(u + h) ~ U(u) = U(u n) + U'(un)(u - un)

for non zero h with a ~ u + h < 00. When n --+ 00, by Lemma 2.5, we
have U(u) --+ O. Thus we have U(u + h) ~ 0 for a ~ u + h < 00. This is
a contradiction.
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LEMMA 2.7. Let U(u) beapositiveC2 function with U(u) ~ exp(-u2
)

for -00 < u < 00. Then we have either

(i) there exists a real number a such that U"(u) ~ 0 for all u in
[a, 00), or

(ii) there exists a sequence {ak} of real numbers such that U"(u) ~ 0
for all u in [a2k-2,a2k-I] and U"(u) ~ 0 for all u in [a2k-l,a2k].

Proof. By Lemma 2.5 and 2.6, we have the lemma.
Let f( r, u) be a real valued C2 function in [0, 1) x (-00,00) and

4>(rexp(v=IO), u + v=Iv) = v - f(r,u) in ~ xC.

LEMMA 2.8. Let R(r) and U(u) be positive C 2 functions, respectively,
satisfying the inequalities

R(r) ~ exp((log r)-l)

and
U(u) S; exp(-u2

)

for 0 S; r < 1, -00 < u < 00 and let 4>(r,u,v) = v - R(r)U(u). If a
domain

n = {r exp(v'=IO),u + v=Iv) E C 2 ;4>(r,u,v) < 0,

o~ r < 1, -00 < u < oo}

is pseudoconvex and if there exists a real number a such that U" (u) ~ 0
for all u in [a,oo), then the Laplacian ~zR(r) ~ 0 in {r exp(yCIO) E

C; 0 S; r < I}.

Proof. By Lemma 2.5 and 2.7, we have a sequence {Un} of real num­
bers satisfying

Since the domain n is pseudoconvex, for x = r cos 0, y = r sin 0 and
4> = v - R(r)U(u), we have
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L(ep) = 1~ {( ~~)Z + (~: )Z)b.zep + (( ~:)Z + (~: )Z)b.wep

8ep 8ep 8z<t> 8ep 8ep 8z<t> 8<t> 8<t> 8z<t>
- 2( 8x 8u 8x8u + 8x 8u 8y8v + 8x 8v 8x8v

8<t> 8<t> 82 <t> 8<t> 8<t> 82 <t> 8<t> 8<t> 8z<t>
- 8x 8v 8y8u + 8y 8u 8y8u - 8y 8u 8x8v

8ep 8<t> 82 <t> 8<t> 8<t> 8z<p

+ 8y 8v 8y8v + ay 8v 8x8u)}

= 2-{28(R(r)U(u)) 8(R(r)U(u» 82(R(r)U(u»
16 8r 8u 8r8u

_ «8(R(r)U(u)))Z + 1)(8Z(R(r)U(u» + ~ 8(R(r)U(u»)
& &Z r &

_ ( (R( r)U (u )) )z 8z(R( r )U (u )) }
8r 8uz

= 1~ {2R(r)R
,z

(r)U(u)U'z (u)

- (RZ(r)U'z(u) + l)(R"(r) + ~R'(r»U(u)
r

- R(r)R,z(r)Uz(u)U"(u)} ~ 0

for any 0 ::::; r < 1 and -00 < u < 00. For the pseudoconvex domain n
and the sequence {un}, we have

R(r)R,z(r)Uz(Un)U"(Un) + (RZ(r)U'Z(u n) + l)U(un)D.zR(r)

::::;2R(r )R,z(r )U(un)U'Z(un)

for any 0 ::::; r < 1. Hence we have

b. R(r) < 2R(r)R'Z(r)U'2(un)
z - R2(r)U'2(un) + 1

R(r )R'Z(r)U(un)U"(un)
R2(r)U'2(un)+ 1

for any 0::::; r < 1. Since the function U(un) is positive and U"(u n)::::; 0
for any 0 ::::; r < 1 and n ~ 1, and R(r) > 0, we have

b.zR(r)::::; 2R(r)R'2(r)U'Z(Un).
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Since U'( un) ---+ a as n ---+ 00, we have

for any a ::; r < 1.

51

LEMMA 2.9([20]). There is no positive C 2 function R(r) with R(r) :s;
exp((logr)-I) satisfying ~zR(r)::;a in {r exp(yCTO) E c;a:s; r < 1}.

THEOREM 2.10. Let U(u) be a positive C 2 function with U(u) :s;
exp( _u2 ) for -00 < u < 00. If there exists a real number a such that
Uti (u) :s; a for all u in [a, 00), then one cannot :find a positive C 2 function
R(r) with R(r)::; exp((log r)-I) such that

n = Hr exp( yCIO), u + yCIv) E c 2
; ep(r, u, v) < a}

is pseudoconvex, where ep = v - R(r)U(u) for a::; r < 1 and -00 < u <
00.

Proof. Suppose taht R(r) is a positive C 2 function with R(r) :s;
exp( (log r) -1) for a :s; r < 1, and satisfying the domain n is pseudo­
convex. By Lemma 2.8, we have ~zR(r) :s; a in {r exp( yCTO) E c; a :s;
r < I}. This contradicts the statement of Lemma 2.9.

3. Stein neighborhood bases
00

A complex manifold n is a monotone union of polydiscs if n = UPj

j=1

where PI C P2 C ... and where each Pj is biholomorphically equivalent
to a polydisc in en, dim n = n. It is known that a monotone union
of polydiscs need not be Stein. Here after, we exclusively suppose that
complex manifolds are connected and paracompact. If n is a complex
manifold with Kobayashi distance, then n is called a hyperbolic man­
ifold. J. E. Fornaess-E. L. Stout [8] proved that if M is a monotone
union of polydiscs in a taut complex manifold then M is biholomorphi­
cally equivalent to a polydisc, and proved that if the complex manifold
n is a monotone union of polydiscs and hyperbolic then n is biholo­
morphically equivalent to a polydisc. Let a and b be real numbers with
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-00 ~ a < b ~ 00 and B(n) be the set of all holomorphic functions on n.
K. H. Shon [20] proved that if pn is an open polydisc with multi-radius
(Tl' T2,··· ,Tn ) and center 0 in c n then there exists no Stein neighbor­
hood bases of the product set pn x (a, b) in C n x C.

LEMMA 3.1. Let n be a complex manifold with dim n = n and a
monotone union ofpolydiscs containing 0 in en. H n is hyperbolic, then
there exists no Stein neighborhood bases of the product set n x (a, b) in
C n xC.

00

Proof. If n is hyperbolic and n = UPj which Pj is biholomorphically
j=1

equivalent to a polydisc with center 0 in en, then n is biholomorphically
equivalent to a polydisc, by the result of [8]. Therefore, we may assume
that the mapping n ---7 pn is biholomorphically onto the open polydisc
pn in en. Thus, from the result of [20], the product set n x (a,b) has
no Stein neighborhood bases in C n xC.

Let U = {Ui; Ui CC pn, i E I} be a locally finite Stein open covering
of pn, z := (ZI,Z2, ... ,zn), Uij := Ui n Uj and Jij(z,t) be real valued
functions in Uij X (a, b) which are holomorphic in z E Uij for all i,j El.
Asystem {h }iEI is called a solution for the Cousin distribution {hj hjEI

for U depending real analytically on a parameter t E (a, b) if there is a
system of real analytic functions {Ji hE! on Ui x (a, b) such that Ji is
holomorphic in z E Ui and hj = Ji - fi on Uij x (a, b) for each i,j E I.
Let IfIpnxR be the sheaf of the product set pn x (a,b) of germs of real
analytic functions, let N be the open neighborhood of the set pn x (a, b)
in C n x e

N = ((z,w) E en x C;(ZI,Z2, ... ,Zn) E pn, a < Rew < b,

Ilm wl < exp(exp((log J.:~h-l»- 1, 1 ~ i < n},
r­t

and set C~,I)(N) be the set of Coo forms of type (0,1) on N. We

investigate the Cauchy-Riemann equation ~ = v on n x (a, b). The
main methods are based on the result of H. Kazama [11]. By Lemma 4
of [11], if D be a connected and simply connected open neighborhood of
~ x (a,b) in e x e and D(z) = {w E e;(z,w) E D} for z E ~ then
~ x UzELl D( z) is the envelope of holomorphy of D.



Stein Neighborhood Bases for Product Sets in en 53

LEMMA 3.2. Under the assumption of Lemma 3.1, there are an open
neighborhood G of n x (a, b) in c n x C and a a-closed f E C~1) (G)
such that for any open neighborhood H with n x (a, b) C H C G the
restriction flH is not a-exact on H.

Proof. By the assumption, we may assume that the open set n is
biholomorphically equivalent to the unit open polydisc pn(1). We sup­
pose that a + b = 0 and b > 1. We take an open neighborhood of
pn(1) X ( -b, b)

G = {(z, w) E C n x C; (z}, Z2,··· ,zn) E pn(1), IRe wl < b,

IImw\ < exp(exp((loglzil)-I)) -1, 1::; i::; n}

and, we put

m
G(m) = {w E C; IRewl < b, IImwl < exp(exp((log 1)-1)) -1}m+

for m = 1,2, . . .. Let gm(w) be a holomorphic function on G(m) which
is not holomorphically extendible at the boundary of G(m) and p be the
projection (z, w) --+ w from pn(1) x (-b, b) into (-b, b). If we let closed
sets F(m) in G

F(m) = ((z,w) E G;p(z,w) f/. G(m)}
m 1

U {(z, w) E G; IZi - m + l' ~ 2(m + 1)(m + 2)' 1::; i::; n}

and let an n-tuple [m:l] = (m:l , ... , m:l)' then we have

m
F(m)n([ ]xG(m))=0

m+l

for m = 1,2,···. Hence we have a Coo function <Pm : G --+ [0, 1] such
that

<Pm( z, w) = { ~
in a neighborhood of F( m) in G

in a neighborhood of [m:l] XG(m) in G
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for each m = 1,2,···. IT we put

00

'" m 1 m 1f (z ,w) = L.,.. (Zl - )- (zz - )- ...
m+ 1 m+ 1

m=l

m -1 -
(zn - ) gm(w)8</>m(z,w)

m+l
00

= "'(z- m )-lgm(w)8</>m(z,w),
L.,.. m+1
m=1

then f is a (0,1) type of class Coo in G. Since gm(w) is holomorphic on
G(m), we have 8f(z, w) = o. Assume that there a Coo function h on
any connected open neighborhood H of pn(1) X (-b, b) in G satisfying
flH = 8h. We set

(m(z) = (z - m )-1(1 - exp 27l"v=I(m + l)z).
m+1

Then

00

17(Z, w) : = L ((m(z)gm(w)</>m(z, w)
m+1

- (1 - exp 27l"v=I(m + l)z)h(z, w))

is a Coo function and

817(z, w) = (1 - exp 27l"v=I(m + l)z)·
00

(L(z- m )-lgm(w)8</>m(z,w)-8h(z,w))
m+1

m+1

= (1 - exp 27l"v=I(m + l)z)(f(z, w) - 8h(z, w)) = 0

in (z,w) E H, that is, 17(Z,W) E 8(H). Since we have

lim (m(z) = (-27l"v=T(m + l)exp 27l"v=T(m + l)z)1 =[-!ll..-]
z-+[ ",,+.tl z ",,+1

= -27l"v=I(m + 1)
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we have
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77([ m ], w) = -27l"v=I(m + l)gm(w).
m+l

IT we take a connected and simply connected open neighborhood H
of pn(1) x (-b,b) in en x e with H c H, then the product set

pn(l) x U H(z) is the envelope ofholomorphy of H where H(z) =
zEpn(l)

{w;(z,w) E H},andhencewehaveafunction1j E 8(pn(1)x U H(z))
zEpn(l)

such that 1jIH = 77· Since the difference U H(z) - G(m) =1= 4> for large
zEpn(1)

m and 1j([ m~l], w) is holomorphic in w E U H( z) for m = 1,2,· .. ,
zEpn(l)

this contradicts the assumption.

LEMMA 3.3. Under the assumption of Lemma 3.2, ifU = {Ui; Ui cc
n, i E I} is a locally finite Stein open covering of n, then there exists
a Cousin distribution {hj }i,jEI for U depending real analytically on the
parameter t E (a, b) which has no solution.

Proof. Since n is hyperbolic, the covering U is hyperbolic. We prove
the theorem for U = {Ui; Ui CC pn(1), i E I} and t E (-b, b). For
the norm Izl = maxl~v~n Izvl on cn, we put 8i = sup{lzl; z E Ud for
Ui CC pn(1) and

Gi = ((z,w) E C n x C;z E Ui, IRewl < b,

IImwl < exp(exp((log 8i)-1)) -I}.

Then the set G i is a Stein open subset of G of Lemma 3.2. Hence we have
a Coo function (i on Gi such that 8(i = f for 8-closed f E C~,l)(G) and

each i. We put (ij = (j - (i on Gi n Gj and fij = (ijluij x(-b,b)' Then
{hj }i,jEI is the Cousin distribution for U depending real analytically on
the parameter t E (-b, b). Assume that there were a solution {fdiEI
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for the Cousin distribution {!ij hjEI. Since h(z, t) is real analytic on
Ui x (-b, b) and holomorphic in z E Ui, there is a holomorphic function
hi(z,w) in an open neighborhood Hi of Ui x (-b,b) in pn(l) x (-b, b)
such that hdu; x( -b,b) = !i. There exists an open subset of H of G
satisfying

pn(l) x (-b,b) cH c (U Gi) n (U Hi)
iEI iEI

and (ij = hj-hi on HinHjnH. Therefore, we have ( := (i-hi E Goo(H)
and !IH = 8(. This contradicts the statement of Lemma 3.2.

THEOREM 3.4. Under the assumption of Lemma 3.3, there is a real
analytic function g( z, t) in n x (a, b) such that one cannot find a real

analytic function !(z,t) in n x (a,b) satisfying af~~,t) = g(z,t) in n x
(a, b).

Proof. Let {hj h,jEI be the Cousin distribution for U depending real
analytically on the parameter t E (-b, b) as in the proof of Lemma 3.3.
By H. Grauert [9] and B. Malgrange [13], we have

HI (pn(1) x( -b, b), 'Ppn(l) x( -b,b»

= HI({Ui x (-b,b)hEI, <PU;X(-b,b» = O.

Hence, we have a system {gi E HO(Ui X (-b, b), <PU;X(-b,b»)}iEI satisfying
!ij = gj - gi on Uij x (-b, b), and

ohj _ ogj Ogi _ 0
az-az-az-

on Uij x (-b, b). We can write 9 = ~ in pn(1) x (-b, b) for suitable
gi E HO(Ui X (-b, b), <PU; X(-b,b». Assume that there were a real analytic
function! in pn(1) x (-b, b) satisfying U = 9 for the real analytic

function g. Then we have W- *= 0 in Ui x (-b, b). IT we put
fi := gi - ! in Ui x (-b, b), then fi are holomorphic in z E Ui for all
i E I and h - h = gj - gi = hj. That is, {hhEl is a solution for the
Cousin distribution {hj hiEI. This is a contradiction.
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