STEIN NEIGHBORHOOD BASES FOR PRODUCT SETS IN Cⁿ *

KWANG HO SHON

1. Introduction

The complex analytic properties of bounded pseudoconvex domains with smooth boundaries in \mathbf{C}^n can differ very much from those of strictly pseudoconvex domains. The existence of pseudoconvex neighborhoods was shown by K. Diederich-J. E. Fornaess [5] under the assumption that $E = M_1 \cup M_2 \cup \cdots \cup M_k$ is the union of submanifolds with a nondegeneracy condition. If E contains a complex submanifold, this nondegeneracy condition is not fulfilled, and in fact a Stein neighborhood system need not exist in general, as was shown by K. Diederich-J. E. Fornaess [4]. And K. Diederich-J. E. Fornaess [4] proved that if $\Omega \subset \mathbb{C}^2$ is a pseudoconvex domain with C^3 -boundary and such that the set M of degeneracy of the Levi form is exactly the disc $M = \{(z, w); |z| \leq 1, w = 0\}$ then Ω has a Stein neighborhood basis. In case that the boundary of the domain $\Omega \subset \mathbb{C}^n$ is smooth real analytic, Ω has a Stein neighborhood basis by K. Diederich-J. E. Fornaess [6]. Also, E. Bedford-J. E. Fornaess [1] obtained assorted fundamental results and investigated pseudoconvex neighborhood systems. Y. T. Siu [21] showed that every Stein subvariety admits a Stein neighborhood. Recently H. Kazama [11] proved that $\mathbf{C}^m \times \mathbf{R}^n$ has no Stein neighborhood bases in $\mathbf{C}^m \times \mathbf{C}^n$ for all $m, n \ge 1$. Let $\Delta = \{z \in \mathbf{C}; |z| < 1\}$ be the unit open disc in the complex plane \mathbf{C} , $\overline{\Delta}$ its closure and T its boundary. In the preceding paper [19], the author has shown that there are no Stein neighborhood bases of the product sets $\Delta \times \overline{\Delta}$ and $\Delta \times T$ in \mathbb{C}^2 , and more generally that the product set $R_1 \times \overline{R_2}$ of Reinhardt Stein domains $R_1 \subset \mathbf{C}^m$ and $R_2 \subset \mathbf{C}^n$ containing

Received March 6, 1990.

^{*}This research was supported by Korea Science and Enginnering Foundation (1987-1988).

the origins has no Stein neighborhood bases in $\mathbb{C}^m \times \mathbb{C}^n$. Also in [20], the ahthor proved that the product set $P \times (a, b)$ of an open polydisc Pand an open interval (a, b) has no Stein neighborhood bases in $\mathbb{C}^m \times \mathbb{C}$. H. Kazama [11] and L. C. Piccinini [17, 18] investigated the Cauchy-Riemann equations depending real analytically on a parameter. The author [19, 20] obtained similar results for the product sets $\Delta \times T$, $\Delta \times \mathbb{R}$ and $P \times (a, b)$.

In this paper we investigate properties of a Stein domain which is an open neighborhood of the product set $\Delta \times \mathbf{R}$ in \mathbf{C}^2 and investigate Stein neighborhood bases of the product set $\Omega \times (a, b)$ of a hyperbolic complex manifold Ω and an open interval (a, b).

2. Pseudoconvex domains and the Levi problem

E. E. Levi [12] showed that the boundary of a domain of holomorphy is not arbitrary. The boundary satisfies a condition of convexity called pseudoconvex. The pseudoconvexity of a domain is a local property of the boundary. A domain $\Omega \subset \mathbb{C}^n$ is said to have a C^j boundary $(j \ge 1)$ if there is a C^j function $\Phi : U \to \mathbb{R}$ on a neighborhood U of Ω such that $\Omega = \{z; \Phi(z) < 0\}$ and grad $\Phi(z) \neq 0$ on the boundary $b\Omega$ of Ω . A domain of holomorphy is a domain on which there exists a holomorphic function which cannot be extended to a large domain.

DEFINITION 2.1. A domain Ω in \mathbb{C}^n is said to be C-pseudoconvex if, for any $z \in b\Omega$, there is a neighborhood U of z in \mathbb{C}^n such that $U \cap \Omega$ is a domain of holomorphy.

DEFINITION 2.2. A real valued function $\Phi(z)$ of class C^2 is said to satisfy the Levi-Krzoska's condition at a point z^0 if for any pair of complex numbers w_1, w_2, \dots, w_n of which at least one is not zero, satisfying

$$\sum_{j=1}^{n} (\frac{\partial \Phi}{\partial z_j})_{(z^0)} w_j = 0,$$

we have

$$\sum_{j,k=1}^{n} \left(\frac{\partial^2 \Phi}{\partial z_j \partial \overline{z}_k}\right)_{(z^0)} w_j \overline{w_k} > 0.$$

The above Hermitian form $\sum_{j,k=1}^{n} (\frac{\partial^2 \Phi}{\partial z_j \partial \overline{z_k}})_{(z^0)} w_j \overline{w_k}$ is called the Levi form of Φ at z^0 .

DEFINITION 2.3. A domain Ω in \mathbb{C}^n with C^2 boundary is said to be (L-)pseudoconvex if it has a defining function Φ such that the Levi form of Φ at z^0 is positive semi-definite for all $z^0 \in b\Omega$ and $w \in \mathbb{C}^n$ satisfying $\sum_{j=1}^{n} (\frac{\partial \Phi}{\partial z_j})_{(z^0)} w_j = 0.$

There are many definitions of pseudoconvexity. For a domain in \mathbb{C}^n , the definitions of pseudoconvexity are all equivalent (see [7, 10]). The original Levi's problem is to prove the converse that every domain with smooth pseudoconvex boundary is a domain of holomorphy. For special domains, the Levi's problem was solved by H. Behnke [2]. For general domains, the problem was first solved by K. Oka [15, 16]. In the case of general dimension n, the problem was solved at the same time independently by H. J. Bremermann [3] and F. Norguet [14] but for schlicht domains.

LEMMA 2.4([20]). Let $\Omega \subset \mathbb{C}^2$ be a domain with \mathbb{C}^2 boundary and suppose that $\Phi : \mathbb{C}^2 \to \mathbb{R}$ is of \mathbb{C}^2 on the open neighborhood U of the boundary $b\Omega$ in \mathbb{C}^2 . Then Ω is pseudoconvex if and only if

$$L(\Phi)_{(z^{0},w^{0})} := - \begin{vmatrix} 0 & \frac{\partial \Phi}{\partial z} & \frac{\partial \Phi}{\partial w} \\ \frac{\partial \Phi}{\partial z} & \frac{\partial^{2} \Phi}{\partial z \partial \overline{z}} & \frac{\partial^{2} \Phi}{\partial w \partial \overline{z}} \\ \frac{\partial \Phi}{\partial \overline{w}} & \frac{\partial^{2} \Phi}{\partial z \partial \overline{w}} & \frac{\partial^{2} \Phi}{\partial w \partial \overline{w}} \end{vmatrix} |_{(z^{0},w^{0})} \ge 0$$

for all $(z^0, w^0) \in b\Omega$.

Let $L(\Phi)$ be the differential form of Lemma 2.4. By x, y, u, v, we denote the real coordinates such that $z = x + \sqrt{-1}y$ and $w = u + \sqrt{-1}v$. We set $\Phi(z, w) = \Phi(r \exp(\sqrt{-1}\theta), u + \sqrt{-1}v)$ for a nonzero complex number $z = x + \sqrt{-1}y$ and the Laplacians $\Delta_z = \frac{\partial^2}{\partial^2 x} + \frac{\partial^2}{\partial^2 y}$ and $\Delta_w = \frac{\partial^2}{\partial^2 u} + \frac{\partial^2}{\partial^2 v}$ in the space \mathbf{R}^2 . LEMMA 2.5. Let U(u) be a positive C^2 function with $U(u) \leq \exp(-u^2)$ in $-\infty < u < \infty$. Then there exists a sequence $\{u_n\}$ of real numbers satisfying $U'(u_n) \to 0$ as $n \to \infty$.

Proof. Assume that, for any sequence $\{u_n\}$, $U'(u_n)$ does not converge to 0 even if $n \to \infty$. We suppose that there is a positive number ε satisfying

$$\lim_{n\to\infty}|U'(u_n)|=\varepsilon.$$

By the mean value theorem, for any positive integer m, there exists a number $u_m \in (m, m + 1)$ such that

$$\begin{aligned} |U'(u_m)| &= |U(m) - U(m+1)| \\ &\leq \exp(-m^2) + \exp(-(m+1)^2) \\ &\leq 2 \, \exp(-m^2). \end{aligned}$$

For $m \to \infty$, we have $\exp(-m^2) \to 0$. Therefore, we have $\varepsilon \leq 0$. This is a contradiction.

LEMMA 2.6. Let U(u) be a positive C^2 function with $U(u) \leq \exp(-u^2)$ for $-\infty < u < \infty$. Then the following statement does not hold:

There exists a real number a such that $U''(u) \leq 0$ for all u in $[a, \infty)$.

Proof. Assume that there were a real number a satisfying $U''(u) \leq 0$ for $a \leq u < \infty$. By Lemma 2.5, there exists a sequence $\{u_n\}$ in **R** satisfying

 $U'(u_n) \to 0 \text{ as } n \to \infty.$

The tangent line of U(u) at a point $(u_n, U(u_n))$ is

$$U(u) - U(u_n) = U'(u_n)(u - u_n).$$

Since $U''(u) \leq 0$ for $a \leq u < \infty$ from the assumption, we have

$$U(u+h) \leq U(u) = U(u_n) + U'(u_n)(u-u_n)$$

for non zero h with $a \le u + h < \infty$. When $n \to \infty$, by Lemma 2.5, we have $U(u) \to 0$. Thus we have $U(u+h) \le 0$ for $a \le u+h < \infty$. This is a contradiction.

LEMMA 2.7. Let U(u) be a positive C^2 function with $U(u) \leq \exp(-u^2)$ for $-\infty < u < \infty$. Then we have either

- (i) there exists a real number a such that $U''(u) \ge 0$ for all u in $[a,\infty)$, or
- (ii) there exists a sequence $\{a_k\}$ of real numbers such that $U''(u) \ge 0$ for all u in $[a_{2k-2}, a_{2k-1}]$ and $U''(u) \le 0$ for all u in $[a_{2k-1}, a_{2k}]$.

Proof. By Lemma 2.5 and 2.6, we have the lemma.

Let f(r, u) be a real valued C^2 function in $[0, 1) \times (-\infty, \infty)$ and $\Phi(r \exp(\sqrt{-1}\theta), u + \sqrt{-1}v) = v - f(r, u)$ in $\Delta \times \mathbb{C}$.

LEMMA 2.8. Let R(r) and U(u) be positive C^2 functions, respectively, satisfying the inequalities

$$R(r) \le \exp((\log r)^{-1})$$

and

$$U(u) \le \exp(-u^2)$$

for $0 \leq r < 1, -\infty < u < \infty$ and let $\Phi(r, u, v) = v - R(r)U(u)$. If a domain

$$egin{aligned} \Omega &= \{r\,\exp(\sqrt{-1} heta), u + \sqrt{-1}v) \in \mathbf{C}^2; \Phi(r,u,v) < 0, \ &0 \leq r < 1, \ -\infty < u < \infty \} \end{aligned}$$

is pseudoconvex and if there exists a real number a such that $U''(u) \ge 0$ for all u in $[a, \infty)$, then the Laplacian $\Delta_z R(r) \le 0$ in $\{r \exp(\sqrt{-1\theta}) \in \mathbb{C}; 0 \le r < 1\}$.

Proof. By Lemma 2.5 and 2.7, we have a sequence $\{u_n\}$ of real numbers satisfying

$$U''(u_n) \ge 0, \ U'(u_n) \to 0 \text{ as } n \to \infty.$$

Since the domain Ω is pseudoconvex, for $x = r \cos \theta$, $y = r \sin \theta$ and $\Phi = v - R(r)U(u)$, we have

$$\begin{split} L(\Phi) &= \frac{1}{16} \{ (\frac{\partial \Phi}{\partial u})^2 + (\frac{\partial \Phi}{\partial v})^2) \Delta_z \Phi + ((\frac{\partial \Phi}{\partial x})^2 + (\frac{\partial \Phi}{\partial y})^2) \Delta_w \Phi \\ &- 2(\frac{\partial \Phi}{\partial x} \frac{\partial \Phi}{\partial u} \frac{\partial^2 \Phi}{\partial x \partial u} + \frac{\partial \Phi}{\partial x} \frac{\partial \Phi}{\partial u} \frac{\partial^2 \Phi}{\partial y \partial v} + \frac{\partial \Phi}{\partial x} \frac{\partial \Phi}{\partial v} \frac{\partial^2 \Phi}{\partial x \partial v} \\ &- \frac{\partial \Phi}{\partial x} \frac{\partial \Phi}{\partial v} \frac{\partial^2 \Phi}{\partial y \partial u} + \frac{\partial \Phi}{\partial y} \frac{\partial \Phi}{\partial u} \frac{\partial^2 \Phi}{\partial y \partial u} - \frac{\partial \Phi}{\partial y} \frac{\partial \Phi}{\partial u} \frac{\partial^2 \Phi}{\partial x \partial v} \\ &+ \frac{\partial \Phi}{\partial y} \frac{\partial \Phi}{\partial v} \frac{\partial^2 \Phi}{\partial y \partial v} + \frac{\partial \Phi}{\partial y} \frac{\partial \Phi}{\partial v} \frac{\partial^2 \Phi}{\partial x \partial u}) \} \\ &= \frac{1}{16} \{ 2 \frac{\partial (R(r)U(u))}{\partial r} \frac{\partial (R(r)U(u))}{\partial u} \frac{\partial^2 (R(r)U(u))}{\partial r^2} + \frac{1}{r} \frac{\partial (R(r)U(u))}{\partial r}) \\ &- ((\frac{\partial (R(r)U(u))}{\partial r})^2 \frac{\partial^2 (R(r)U(u))}{\partial u^2} \} \\ &= \frac{1}{16} \{ 2R(r)R'^2(r)U(u)U'^2(u) \\ &- (R^2(r)U'^2(u) + 1)(R''(r) + \frac{1}{r}R'(r))U(u) \\ &- R(r)R'^2(r)U^2(u)U''(u) \} \ge 0 \end{split}$$

for any $0 \le r < 1$ and $-\infty < u < \infty$. For the pseudoconvex domain Ω and the sequence $\{u_n\}$, we have

$$R(r)R'^{2}(r)U^{2}(u_{n})U''(u_{n}) + (R^{2}(r)U'^{2}(u_{n}) + 1)U(u_{n})\Delta_{z}R(r)$$

$$\leq 2R(r)R'^{2}(r)U(u_{n})U'^{2}(u_{n})$$

for any $0 \le r < 1$. Hence we have

$$\Delta_z R(r) \le \frac{2R(r)R'^2(r)U'^2(u_n)}{R^2(r)U'^2(u_n) + 1} - \frac{R(r)R'^2(r)U(u_n)U''(u_n)}{R^2(r)U'^2(u_n) + 1}$$

for any $0 \le r < 1$. Since the function $U(u_n)$ is positive and $U''(u_n) \le 0$ for any $0 \le r < 1$ and $n \ge 1$, and R(r) > 0, we have

$$\Delta_z R(r) \leq 2R(r)R'^2(r)U'^2(u_n).$$

Since $U'(u_n) \to 0$ as $n \to \infty$, we have

$$\Delta_z R(r) \leq 0$$

for any $0 \leq r < 1$.

LEMMA 2.9([20]). There is no positive C^2 function R(r) with $R(r) \leq \exp((\log r)^{-1})$ satisfying $\Delta_z R(r) \leq 0$ in $\{r \exp(\sqrt{-1}\theta) \in \mathbb{C}; 0 \leq r < 1\}$.

THEOREM 2.10. Let U(u) be a positive C^2 function with $U(u) \leq \exp(-u^2)$ for $-\infty < u < \infty$. If there exists a real number a such that $U''(u) \leq 0$ for all u in $[a, \infty)$, then one cannot find a positive C^2 function R(r) with $R(r) \leq \exp((\log r)^{-1})$ such that

$$\Omega = \{(r \, \exp(\sqrt{-1}\theta), u + \sqrt{-1}v) \in \mathbf{C}^2; \Phi(r, u, v) < 0\}$$

is pseudoconvex, where $\Phi = v - R(r)U(u)$ for $0 \le r < 1$ and $-\infty < u < \infty$.

Proof. Suppose taht R(r) is a positive C^2 function with $R(r) \leq \exp((\log r)^{-1})$ for $0 \leq r < 1$, and satisfying the domain Ω is pseudoconvex. By Lemma 2.8, we have $\Delta_z R(r) \leq 0$ in $\{r \exp(\sqrt{-1}\theta) \in \mathbb{C}; 0 \leq r < 1\}$. This contradicts the statement of Lemma 2.9.

3. Stein neighborhood bases

A complex manifold Ω is a monotone union of polydiscs if $\Omega = \bigcup_{j=1}^{j} P_j$

where $P_1 \subset P_2 \subset \cdots$ and where each P_j is biholomorphically equivalent to a polydisc in \mathbb{C}^n , dim $\Omega = n$. It is known that a monotone union of polydiscs need not be Stein. Here after, we exclusively suppose that complex manifolds are connected and paracompact. If Ω is a complex manifold with Kobayashi distance, then Ω is called a hyperbolic manifold. J. E. Fornaess-E. L. Stout [8] proved that if M is a monotone union of polydiscs in a taut complex manifold then M is biholomorphically equivalent to a polydisc, and proved that if the complex manifold Ω is a monotone union of polydiscs and hyperbolic then Ω is biholomorphically equivalent to a polydisc. Let a and b be real numbers with $-\infty \leq a < b \leq \infty$ and $\theta(\Omega)$ be the set of all holomorphic functions on Ω . K. H. Shon [20] proved that if P^n is an open polydisc with multi-radius (r_1, r_2, \cdots, r_n) and center 0 in \mathbb{C}^n then there exists no Stein neighborhood bases of the product set $P^n \times (a, b)$ in $\mathbb{C}^n \times \mathbb{C}$.

LEMMA 3.1. Let Ω be a complex manifold with dim $\Omega = n$ and a monotone union of polydiscs containing 0 in \mathbb{C}^n . If Ω is hyperbolic, then there exists no Stein neighborhood bases of the product set $\Omega \times (a, b)$ in $\mathbb{C}^n \times \mathbb{C}$.

Proof. If Ω is hyperbolic and $\Omega = \bigcup_{j=1}^{\infty} P_j$ which P_j is biholomorphically

equivalent to a polydisc with center 0 in \mathbb{C}^n , then Ω is biholomorphically equivalent to a polydisc, by the result of [8]. Therefore, we may assume that the mapping $\Omega \to P^n$ is biholomorphically onto the open polydisc P^n in \mathbb{C}^n . Thus, from the result of [20], the product set $\Omega \times (a, b)$ has no Stein neighborhood bases in $\mathbb{C}^n \times \mathbb{C}$.

Let $\mathcal{U} = \{U_i; U_i \subset \mathbb{C}^n, i \in I\}$ be a locally finite Stein open covering of P^n , $z := (z_1, z_2, \ldots, z_n)$, $U_{ij} := U_i \cap U_j$ and $f_{ij}(z, t)$ be real valued functions in $U_{ij} \times (a, b)$ which are holomorphic in $z \in U_{ij}$ for all $i, j \in I$. Asystem $\{f_i\}_{i \in I}$ is called a solution for the Cousin distribution $\{f_{ij}\}_{i,j \in I}$ for \mathcal{U} depending real analytically on a parameter $t \in (a, b)$ if there is a system of real analytic functions $\{f_i\}_{i \in I}$ on $U_i \times (a, b)$ such that f_i is holomorphic in $z \in U_i$ and $f_{ij} = f_j - f_i$ on $U_{ij} \times (a, b)$ for each $i, j \in I$. Let $\varphi_{P^n \times R}$ be the sheaf of the product set $P^n \times (a, b)$ of germs of real analytic functions, let N be the open neighborhood of the set $P^n \times (a, b)$ in $\mathbb{C}^n \times \mathbb{C}$

$$N = \{(z, w) \in \mathbf{C}^n \times \mathbf{C}; (z_1, z_2, \dots, z_n) \in P^n, \ a < \operatorname{Re} w < b, \\ |\operatorname{Im} w| < \exp(\exp((\log \frac{|z_i|}{r_i})^{-1})) - 1, \ 1 \le i < n\},$$

and set $C_{(0,1)}^{\infty}(N)$ be the set of C^{∞} forms of type (0,1) on N. We investigate the Cauchy-Riemann equation $\frac{\partial \mu}{\partial z} = \nu$ on $\Omega \times (a, b)$. The main methods are based on the result of H. Kazama [11]. By Lemma 4 of [11], if D be a connected and simply connected open neighborhood of $\Delta \times (a, b)$ in $\mathbf{C} \times \mathbf{C}$ and $D(z) = \{w \in \mathbf{C}; (z, w) \in D\}$ for $z \in \Delta$ then $\Delta \times \bigcup_{z \in \Delta} D(z)$ is the envelope of holomorphy of D. LEMMA 3.2. Under the assumption of Lemma 3.1, there are an open neighborhood G of $\Omega \times (a, b)$ in $\mathbb{C}^n \times \mathbb{C}$ and a $\overline{\partial}$ -closed $f \in C^{\infty}_{(0,1)}(G)$ such that for any open neighborhood H with $\Omega \times (a, b) \subset H \subset G$ the restriction $f|_H$ is not $\overline{\partial}$ -exact on H.

Proof. By the assumption, we may assume that the open set Ω is biholomorphically equivalent to the unit open polydisc $P^n(1)$. We suppose that a + b = 0 and b > 1. We take an open neighborhood of $P^n(1) \times (-b, b)$

$$G = \{(z, w) \in \mathbf{C}^n \times \mathbf{C}; (z_1, z_2, \cdots, z_n) \in P^n(1), |\operatorname{Re} w| < b, |\operatorname{Im} w| < \exp(\exp((\log |z_i|)^{-1})) - 1, 1 \le i \le n\}$$

and, we put

$$G(m) = \{ w \in \mathbf{C}; |\operatorname{Re} w| < b, \ |\operatorname{Im} w| < \exp(\exp((\log \frac{m}{m+1})^{-1})) - 1 \}$$

for $m = 1, 2, \cdots$. Let $g_m(w)$ be a holomorphic function on G(m) which is not holomorphically extendible at the boundary of G(m) and p be the projection $(z, w) \to w$ from $P^n(1) \times (-b, b)$ into (-b, b). If we let closed sets F(m) in G

$$F(m) = \{(z, w) \in G; p(z, w) \notin G(m)\}$$
$$\cup \{(z, w) \in G; |z_i - \frac{m}{m+1}| \ge \frac{1}{2(m+1)(m+2)}, \ 1 \le i \le n\}$$

and let an *n*-tuple $\left[\frac{m}{m+1}\right] = \left(\frac{m}{m+1}, \cdots, \frac{m}{m+1}\right)$, then we have

$$F(m) \cap ([\frac{m}{m+1}] \times G(m)) = \emptyset$$

for $m = 1, 2, \cdots$. Hence we have a C^{∞} function $\phi_m : G \rightarrow [0, 1]$ such that

$$\phi_m(z,w) = \begin{cases} 0 & \text{in a neighborhood of } F(m) \text{ in } G \\ 1 & \text{in a neighborhood of } [\frac{m}{m+1}] \times G(m) \text{ in } G \end{cases}$$

for each $m = 1, 2, \cdots$. If we put

$$f(z,w) = \sum_{m=1}^{\infty} (z_1 - \frac{m}{m+1})^{-1} (z_2 - \frac{m}{m+1})^{-1} \cdots$$
$$(z_n - \frac{m}{m+1})^{-1} g_m(w) \overline{\partial} \phi_m(z,w)$$
$$= \sum_{m=1}^{\infty} (z - \frac{m}{m+1})^{-1} g_m(w) \overline{\partial} \phi_m(z,w),$$

then f is a (0, 1) type of class C^{∞} in G. Since $g_m(w)$ is holomorphic on G(m), we have $\overline{\partial}f(z, w) = 0$. Assume that there a C^{∞} function h on any connected open neighborhood H of $P^n(1) \times (-b, b)$ in G satisfying $f|_H = \overline{\partial}h$. We set

$$\zeta_m(z) = (z - \frac{m}{m+1})^{-1} (1 - \exp 2\pi \sqrt{-1}(m+1)z).$$

Then

$$\begin{split} \eta(z,w) &:= \sum_{m+1}^{\infty} (\zeta_m(z) g_m(w) \phi_m(z,w) \\ &- (1 - \exp \, 2\pi \sqrt{-1} (m+1) z) h(z,w)) \end{split}$$

is a C^{∞} function and

$$\overline{\partial}\eta(z,w) = (1 - \exp 2\pi\sqrt{-1}(m+1)z) \cdot \left(\sum_{m+1}^{\infty} (z - \frac{m}{m+1})^{-1}g_m(w)\overline{\partial}\phi_m(z,w) - \overline{\partial}h(z,w)\right)$$
$$= (1 - \exp 2\pi\sqrt{-1}(m+1)z)(f(z,w) - \overline{\partial}h(z,w)) = 0$$

in $(z,w) \in H$, that is, $\eta(z,w) \in \theta(H)$. Since we have

$$\lim_{z \to [\frac{m}{m+1}]} \zeta_m(z) = (-2\pi\sqrt{-1}(m+1)\exp\left(2\pi\sqrt{-1}(m+1)z\right)\Big|_{z=[\frac{m}{m+1}]}$$
$$= -2\pi\sqrt{-1}(m+1)$$

and

$$\phi_k([rac{m}{m+1}],w)=\left\{egin{array}{cc} 0 & ext{if} \ k
eq n\ 1 & ext{if} \ k=n, \end{array}
ight.$$

we have

$$\eta([\frac{m}{m+1}], w) = -2\pi\sqrt{-1}(m+1)g_m(w).$$

If we take a connected and simply connected open neighborhood \hat{H} of $P^n(1) \times (-b, b)$ in $\mathbb{C}^n \times \mathbb{C}$ with $\hat{H} \subset H$, then the product set $P^n(1) \times \bigcup_{z \in P^n(1)} \hat{H}(z)$ is the envelope of holomorphy of \hat{H} where $\hat{H}(z) =$ $\{w; (z, w) \in \hat{H}\}$, and hence we have a function $\tilde{\eta} \in \theta(P^n(1) \times \bigcup_{z \in P^n(1)} \hat{H}(z))$

such that $\tilde{\eta}|_{H} = \eta$. Since the difference $\bigcup_{z \in P^{n}(1)} \hat{H}(z) - G(m) \neq \phi$ for large m and $\tilde{\eta}([-m], w)$ is holomorphic in $w \in [-1, 1]$, $\hat{H}(z)$ for m = 1, 2, ...

 $m \text{ and } \tilde{\eta}([\frac{m}{m+1}], w) \text{ is holomorphic in } w \in \bigcup_{z \in P^n(1)} \hat{H}(z) \text{ for } m = 1, 2, \cdots,$

this contradicts the assumption.

LEMMA 3.3. Under the assumption of Lemma 3.2, if $\mathcal{U} = \{U_i; U_i \subset \Omega, i \in I\}$ is a locally finite Stein open covering of Ω , then there exists a Cousin distribution $\{f_{ij}\}_{i,j\in I}$ for \mathcal{U} depending real analytically on the parameter $t \in (a, b)$ which has no solution.

Proof. Since Ω is hyperbolic, the covering \mathcal{U} is hyperbolic. We prove the theorem for $\mathcal{U} = \{U_i; U_i \subset P^n(1), i \in I\}$ and $t \in (-b, b)$. For the norm $|z| = \max_{1 \leq \nu \leq n} |z_{\nu}|$ on \mathbb{C}^n , we put $\delta_i = \sup\{|z|; z \in U_i\}$ for $U_i \subset P^n(1)$ and

$$G_i = \{(z, w) \in \mathbf{C}^n \times \mathbf{C}; z \in U_i, |\operatorname{Re} w| < b, |\operatorname{Im} w| < \exp(\exp((\log \delta_i)^{-1})) - 1\}.$$

Then the set G_i is a Stein open subset of G of Lemma 3.2. Hence we have a C^{∞} function ζ_i on G_i such that $\overline{\partial}\zeta_i = f$ for $\overline{\partial}$ -closed $f \in C^{\infty}_{(0,1)}(G)$ and each i. We put $\zeta_{ij} = \zeta_j - \zeta_i$ on $G_i \cap G_j$ and $f_{ij} = \zeta_{ij}|_{U_{ij} \times (-b,b)}$. Then $\{f_{ij}\}_{i,j \in I}$ is the Cousin distribution for \mathcal{U} depending real analytically on the parameter $t \in (-b, b)$. Assume that there were a solution $\{f_i\}_{i \in I}$

Kwang Ho Shon

for the Cousin distribution $\{f_{ij}\}_{i,j\in I}$. Since $f_i(z,t)$ is real analytic on $U_i \times (-b, b)$ and holomorphic in $z \in U_i$, there is a holomorphic function $h_i(z,w)$ in an open neighborhood H_i of $U_i \times (-b,b)$ in $P^n(1) \times (-b,b)$ such that $h_i|_{U_i \times (-b,b)} = f_i$. There exists an open subset of H of G satisfying

$$P^n(1) \times (-b,b) \subset H \subset (\bigcup_{i \in I} G_i) \cap (\bigcup_{i \in I} H_i)$$

and $\zeta_{ij} = h_j - h_i$ on $H_i \cap H_j \cap H$. Therefore, we have $\zeta := \zeta_i - h_i \in C^{\infty}(H)$ and $f|_H = \overline{\partial} \zeta$. This contradicts the statement of Lemma 3.2.

THEOREM 3.4. Under the assumption of Lemma 3.3, there is a real analytic function g(z,t) in $\Omega \times (a,b)$ such that one cannot find a real analytic function f(z,t) in $\Omega \times (a,b)$ satisfying $\frac{\partial f(z,t)}{\partial z} = g(z,t)$ in $\Omega \times (a,b)$.

Proof. Let $\{f_{ij}\}_{i,j\in I}$ be the Cousin distribution for \mathcal{U} depending real analytically on the parameter $t \in (-b, b)$ as in the proof of Lemma 3.3. By H. Grauert [9] and B. Malgrange [13], we have

$$H^{1}(P^{n}(1)\times(-b,b),\varphi_{P^{n}(1)\times(-b,b)})$$

= $H^{1}(\{U_{i}\times(-b,b)\}_{i\in I},\varphi_{U_{i}\times(-b,b)}) = 0.$

Hence, we have a system $\{g_i \in H^0(U_i \times (-b, b), \varphi_{U_i \times (-b, b)})\}_{i \in I}$ satisfying $f_{ij} = g_j - g_i$ on $U_{ij} \times (-b, b)$, and

$$rac{\partial f_{ij}}{\partial \overline{z}} = rac{\partial g_j}{\partial \overline{z}} - rac{\partial g_i}{\partial \overline{z}} = 0$$

on $U_{ij} \times (-b, b)$. We can write $g = \frac{\partial g_i}{\partial \overline{z}}$ in $P^n(1) \times (-b, b)$ for suitable $g_i \in H^0(U_i \times (-b, b), \varphi_{U_i \times (-b, b)})$. Assume that there were a real analytic function f in $P^n(1) \times (-b, b)$ satisfying $\frac{\partial f}{\partial \overline{z}} = g$ for the real analytic function g. Then we have $\frac{\partial g_i}{\partial \overline{z}} - \frac{\partial f}{\partial \overline{z}} = 0$ in $U_i \times (-b, b)$. If we put $f_i := g_i - f$ in $U_i \times (-b, b)$, then f_i are holomorphic in $z \in U_i$ for all $i \in I$ and $f_j - f_i = g_j - g_i = f_{ij}$. That is, $\{f_i\}_{i \in I}$ is a solution for the Cousin distribution $\{f_{ij}\}_{i,j \in I}$. This is a contradiction.

1

References

- 1. E. Bedford and J. E. Fornaess, Domains with pseudoconvex neighborhood systems, Inventiones Math., bf 47 (1978), 1-27.
- 2. H. Behnke, Über analytische Funktionen mehrerer Veränderlicher, II: Natürliche Grenzen, Abh. Hamburg, 5 (1927), 290-312.
- H. J. Bremermann, Uber die Aquivalenz der pseudokonvexen Gebiete und der Holomorphiegebiete in Raume von n Komplexen Veränderlichen, Math. Ann., 128 (1954), 63-91.
- K. Diederich and J. E. Fornaess, Pseudoconvex domains: An example with nontrivial Nebenhülle, Math. Ann., 255 (1977), 275-292.
- 5. K. Diederich and J. E. Fornaess, Pseudoconvex domains: Existence of Stein neighborhoods, Duke Math. J., 44 (1977), 641-662.
- K. Diederich and J. E. Fornaess, Pseudoconvex domains with real analytic boundary, Ann. Math., 107(1978), 371-384.
- M. Field, Several complex variables and complex manifold I, London Math. Soc. Lec. Note Ser. 65, Cambridge Univ. Press, London, 1982.
- J. E. Fornaess and E. L. Stout, Polydiscs in complex manifolds, Math. Ann., 277 (1977), 145-153.
- H. Grauert, On Levi's problem and the imbedding of real analytic manifolds, Ann. Math., 68 (1958), 460-472.
- S. Hitotumatu, On some conjectures concerning pseudoconvex domains, J. Math. Soc. Japan, 6 (1954), 177-195.
- 11. H. Kazama, Note on Stein neighborhoods of $C^k \times \mathbf{R}^l$, Math. Rep. College of General Education, Kyushu Univ., 14 (1983), 47-55.
- 12. E. E. Levi, Studii sui punti singolari essenziali delle funzioni analitiche die due o piu variabili complesse, Annali di Mat. Pura ed Appl., 17 (1910), 61–87.
- B. Malgrange, Faisceaux sur des variétés analytiques réeles, Bull. Soc. Math. France, 85 (1957), 231-237.
- F. Norguet, Sur les domaines d'holomorphie des fonctions uniformes de plusieurs variables complexes (passage du local au global), Bull. Soc. Math. Frnace, 82 (1954), 137-159.
- K. Oka, Sur les fonctions analytiques de plusieurs variables, VI. Domaines pseudoconvexes, Tôhoku Math. J., 49 (1942), 15-52.
- K. Oka, Idem, IX. Domaines finis sans point critique interieur, Japaness J. Math., 23 (1953), 97-155.
- 17. L. C. Piccinini, Non surjectivity of $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ as an operator on the space of analytic functions on \mathbb{R}^3 , Lecture Notes of the Summer College on Global Analysis, Trieste, August 1972.
- L. C. Piccinini, Non surjectivity of the Cauchy-Riemann operator on the space of the analytic functions on Rⁿ. Generalization to the parabolic operators, Bollettino U. M. I. (4) 7 (1963), 12-28.

Kwang Ho Shon

- 19. K. H. Shon, Reinhardt sets without Stein neighborhood bases, Mem. Fac. Sci., Kyushu Univ., 40 (1986), 101–106.
- 20. K. H. Shon, Stein neighborhood bases for product sets of polydiscs and open intervals, Ibid., 41 (1987), 45-80.
- Y. T. Siu, Every Stein subvariety admits a Stein neighborhood, Inventiones Math., 38 (1976), 89-100.

Department of Mathematics Pusan National University Pusan 609–735, Korea