STEIN NEIGHBORHOOD BASES FOR PRODUCT SETS IN C ${ }^{\boldsymbol{n}}$ *

Kwang Ho Shon

1. Introduction

The complex analytic properties of bounded pseudoconvex domains with smooth boundaries in \mathbf{C}^{n} can differ very much from those of strictly pseudoconvex domains. The existence of pseudoconvex neighborhoods was shown by K. Diederich-J. E. Fornaess [5] under the assumption that $E=M_{1} \cup M_{2} \cup \cdots \cup M_{k}$ is the union of submanifolds with a nondegeneracy condition. If E contains a complex submanifold, this nondegeneracy condition is not fulfilled, and in fact a Stein neighborhood system need not exist in general, as was shown by K. Diederich-J. E. Fornaess [4]. And K. Diederich-J. E. Fornaess [4] proved that if $\Omega \subset \subset \mathbf{C}^{2}$ is a pseudoconvex domain with C^{3}-boundary and such that the set M of degeneracy of the Levi form is exactly the disc $M=\{(z, w) ;|z| \leq 1, w=0\}$ then Ω has a Stein neighborhood basis. In case that the boundary of the domain $\Omega \subset \subset \mathbf{C}^{n}$ is smooth real analytic, Ω has a Stein neighborhood basis by K. Diederich-J. E. Fornaess [6]. Also, E. Bedford-J. E. Fornaess [1] obtained assorted fundamental results and investigated pseudoconvex neighborhood systems. Y. T. Siu [21] showed that every Stein subvariety admits a Stein neighborhood. Recently H. Kazama [11] proved that $\mathbf{C}^{m} \times \mathbf{R}^{n}$ has no Stein neighborhood bases in $\mathbf{C}^{m} \times \mathbf{C}^{n}$ for all $m, n \geq 1$.
Let $\Delta=\{z \in \mathbf{C} ;|z|<1\}$ be the unit open disc in the complex plane \mathbf{C}, $\bar{\Delta}$ its closure and T its boundary. In the preceding paper [19], the author has shown that there are no Stein neighborhood bases of the product sets $\Delta \times \bar{\Delta}$ and $\Delta \times T$ in \mathbf{C}^{2}, and more generally that the product set $R_{1} \times \overline{R_{2}}$ of Reinhardt Stein domains $R_{1} \subset \mathbf{C}^{m}$ and $R_{2} \subset \subset \mathbf{C}^{n}$ containing

[^0]the origins has no Stein neighborhood bases in $\mathbf{C}^{m} \times \mathbf{C}^{\boldsymbol{n}}$. Also in [20], the ahthor proved that the product set $P \times(a, b)$ of an open polydisc P and an open interval (a, b) has no Stein neighborhood bases in $\mathbf{C}^{m} \times \mathbf{C}$. H. Kazama [11] and L. C. Piccinini [17, 18] investigated the CauchyRiemann equations depending real analytically on a parameter. The author $[19,20]$ obtained similar results for the product sets $\Delta \times T, \Delta \times \mathbf{R}$ and $P \times(a, b)$.

In this paper we investigate properties of a Stein domain which is an open neighborhood of the product set $\Delta \times \mathbf{R}$ in \mathbf{C}^{2} and investigate Stein neighborhood bases of the product set $\Omega \times(a, b)$ of a hyperbolic complex manifold Ω and an open interval (a, b).

2. Pseudoconvex domains and the Levi problem

E. E. Levi [12] showed that the boundary of a domain of holomorphy is not arbitrary. The boundary satisfies a condition of convexity called pseudoconvex. The pseudoconvexity of a domain is a local property of the boundary. A domain $\Omega \subset \mathbf{C}^{n}$ is said to have a C^{j} boundary $(j \geq 1)$ if there is a C^{j} function $\Phi: U \rightarrow \mathbf{R}$ on a neighborhood U of Ω such that $\Omega=\{z ; \Phi(z)<0\}$ and $\operatorname{grad} \Phi(z) \neq 0$ on the boundary $b \Omega$ of Ω. A domain of holomorphy is a domain on which there exists a holomorphic function which cannot be extended to a large domain.

Definition 2.1. A domain Ω in \mathbf{C}^{n} is said to be C-pseudoconvex if, for any $z \in b \Omega$, there is a neighborhood U of z in \mathbf{C}^{n} such that $U \cap \Omega$ is a domain of holomorphy.

Definition 2.2. A real valued function $\Phi(z)$ of class C^{2} is said to satisfy the Levi-Krzoska's condition at a point z^{0} if for any pair of complex numbers $w_{1}, w_{2}, \cdots, w_{n}$ of which at least one is not zero, satisfying

$$
\sum_{j=1}^{n}\left(\frac{\partial \Phi}{\partial z_{j}}\right)_{\left(z^{0}\right)} w_{j}=0
$$

we have

$$
\sum_{j, k=1}^{n}\left(\frac{\partial^{2} \Phi}{\partial z_{j} \partial \bar{z}_{k}}\right)_{\left(z^{0}\right)} w_{j} \overline{w_{k}}>0
$$

The above Hermitian form $\sum_{j, k=1}^{n}\left(\frac{\partial^{2} \Phi}{\partial z_{j} \partial \overline{z_{k}}}\right)_{\left(z^{0}\right)} w_{j} \overline{w_{k}}$ is called the Levi form of Φ at z^{0}.

Definition 2.3. A domain Ω in C^{n} with C^{2} boundary is said to be $(L-) p s e u d o c o n v e x$ if it has a defining function Φ such that the Levi form of Φ at z^{0} is positive semi-definite for all $z^{0} \in b \Omega$ and $w \in \mathbf{C}^{n}$ satisfying $\sum_{j=1}^{n}\left(\frac{\partial \Phi}{\partial z_{j}}\right)_{\left(z^{0}\right)} w_{j}=0$.

There are many definitions of pseudoconvexity. For a domain in \mathbf{C}^{n}, the definitions of pseudoconvexity are all equivalent (see [7, 10]). The original Levi's problem is to prove the converse that every domain with smooth pseudoconvex boundary is a domain of holomorphy. For special domains, the Levi's problem was solved by H. Behnke [2]. For general domains, the problem was first solved by K. Oka [15, 16]. In the case of general dimension n, the problem was solved at the same time independently by H. J. Bremermann [3] and F. Norguet [14] but for schlicht domains.

LEmma 2.4([20]). Let $\Omega \subset \subset \mathbf{C}^{2}$ be a domain with C^{2} boundary and suppose that $\Phi: \mathbf{C}^{2} \rightarrow \mathbf{R}$ is of C^{2} on the open neighborhood U of the boundary $b \Omega$ in \mathbf{C}^{2}. Then Ω is pseudoconvex if and only if

$$
L(\Phi)_{\left(z^{0}, w^{0}\right)}:=-\left|\begin{array}{lll}
0 & \frac{\partial \Phi}{\partial z} & \frac{\partial \Phi}{\partial w} \\
\frac{\partial \Phi}{\partial z} & \frac{\partial^{2} \Phi}{\partial z \partial \bar{z}} & \frac{\partial^{2} \Phi}{\partial w \partial \bar{z}} \\
\frac{\partial \Phi}{\partial \bar{w}} & \frac{\partial^{2} \Phi}{\partial z \partial \bar{w}} & \frac{\partial^{2} \Phi}{\partial w \partial \bar{w}}
\end{array}\right|_{\left(z^{0}, w^{0}\right)} \geq 0
$$

for all $\left(z^{0}, w^{0}\right) \in b \Omega$.
Let $L(\Phi)$ be the differential form of Lemma 2.4. By x, y, u, v, we denote the real coordinates such that $z=x+\sqrt{-1} y$ and $w=u+\sqrt{-1} v$. We set $\Phi(z, w)=\Phi(r \exp (\sqrt{-1} \theta), u+\sqrt{-1} v)$ for a nonzero complex number $z=x+\sqrt{-1} y$ and the Laplacians $\Delta_{z}=\frac{\partial^{2}}{\partial^{2} x}+\frac{\partial^{2}}{\partial^{2} y}$ and $\Delta_{w}=\frac{\partial^{2}}{\partial^{2} u}+\frac{\partial^{2}}{\partial^{2} v}$ in the space \mathbf{R}^{2}.

LEMMA 2.5. Let $U(u)$ be a positive C^{2} function with $U(u) \leq \exp \left(-u^{2}\right)$ in $-\infty<u<\infty$. Then there exists a sequence $\left\{u_{n}\right\}$ of real numbers satisfying $U^{\prime}\left(u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.

Proof. Assume that, for any sequence $\left\{u_{n}\right\}, U^{\prime}\left(u_{n}\right)$ does not converge to 0 even if $n \rightarrow \infty$. We suppose that there is a positive number ε satisfying

$$
\varliminf_{n \rightarrow \infty}\left|U^{\prime}\left(u_{n}\right)\right|=\varepsilon
$$

By the mean value theorem, for any positive integer m, there exists a number $u_{m} \in(m, m+1)$ such that

$$
\begin{aligned}
\left|U^{\prime}\left(u_{m}\right)\right| & =|U(m)-U(m+1)| \\
& \leq \exp \left(-m^{2}\right)+\exp \left(-(m+1)^{2}\right) \\
& \leq 2 \exp \left(-m^{2}\right)
\end{aligned}
$$

For $m \rightarrow \infty$, we have $\exp \left(-m^{2}\right) \rightarrow 0$. Therefore, we have $\varepsilon \leq 0$. This is a contradiction.

Lemma 2.6. Let $U(u)$ be a positive C^{2} function with $U(u) \leq \exp \left(-u^{2}\right)$ for $-\infty<u<\infty$. Then the following statement does not hold :

There exists a real number a such that $U^{\prime \prime}(u) \leq 0$ for all u in $[a, \infty)$.
Proof. Assume that there were a real number a satisfying $U^{\prime \prime}(u) \leq 0$ for $a \leq u<\infty$. By Lemma 2.5, there exists a sequence $\left\{u_{n}\right\}$ in \mathbf{R} satisfying

$$
U^{\prime}\left(u_{n}\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

The tangent line of $U(u)$ at a point $\left(u_{n}, U\left(u_{n}\right)\right)$ is

$$
U(u)-U\left(u_{n}\right)=U^{\prime}\left(u_{n}\right)\left(u-u_{n}\right)
$$

Since $U^{\prime \prime}(u) \leq 0$ for $a \leq u<\infty$ from the assumption, we have

$$
U(u+h) \leq U(u)=U\left(u_{n}\right)+U^{\prime}\left(u_{n}\right)\left(u-u_{n}\right)
$$

for non zero h with $a \leq u+h<\infty$. When $n \rightarrow \infty$, by Lemma 2.5, we have $U(u) \rightarrow 0$. Thus we have $U(u+h) \leq 0$ for $a \leq u+h<\infty$. This is a contradiction.

Lemma 2.7. Let $U(u)$ be a positive C^{2} function with $U(u) \leq \exp \left(-u^{2}\right)$ for $-\infty<u<\infty$. Then we have either
(i) there exists a real number a such that $U^{\prime \prime}(u) \geq 0$ for all u in $[a, \infty)$, or
(ii) there exists a sequence $\left\{a_{k}\right\}$ of real numbers such that $U^{\prime \prime}(u) \geq 0$ for all u in $\left[a_{2 k-2}, a_{2 k-1}\right]$ and $U^{\prime \prime}(u) \leq 0$ for all u in $\left[a_{2 k-1}, a_{2 k}\right]$.

Proof. By Lemma 2.5 and 2.6 , we have the lemma.
Let $f(r, u)$ be a real valued C^{2} function in $[0,1) \times(-\infty, \infty)$ and $\Phi(r \exp (\sqrt{-1} \theta), u+\sqrt{-1} v)=v-f(r, u)$ in $\Delta \times \mathbf{C}$.

Lemma 2.8. Let $R(r)$ and $U(u)$ be positive C^{2} functions, respectively, satisfying the inequalities

$$
R(r) \leq \exp \left((\log r)^{-1}\right)
$$

and

$$
U(u) \leq \exp \left(-u^{2}\right)
$$

for $0 \leq r<1,-\infty<u<\infty$ and let $\Phi(r, u, v)=v-R(r) U(u)$. If a domain

$$
\begin{aligned}
& \Omega=\{r \exp (\sqrt{-1} \theta), u+\sqrt{-1} v) \in \mathbf{C}^{2} ; \Phi(r, u, v)<0, \\
&0 \leq r<1,-\infty<u<\infty\}
\end{aligned}
$$

is pseudoconvex and if there exists a real number a such that $U^{\prime \prime}(u) \geq 0$ for all u in $[a, \infty)$, then the Laplacian $\Delta_{z} R(r) \leq 0$ in $\{r \exp (\sqrt{-1} \theta) \in$ $\mathbf{C} ; 0 \leq r<1\}$.

Proof. By Lemma 2.5 and 2.7, we have a sequence $\left\{u_{n}\right\}$ of real numbers satisfying

$$
U^{\prime \prime}\left(u_{n}\right) \geq 0, U^{\prime}\left(u_{n}\right) \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Since the domain Ω is pseudoconvex, for $x=r \cos \theta, y=r \sin \theta$ and $\Phi=v-R(r) U(u)$, we have

$$
\begin{aligned}
L(\Phi) & =\frac{1}{16}\left\{\left(\frac{\partial \Phi}{\partial u}\right)^{2}+\left(\frac{\partial \Phi}{\partial v}\right)^{2}\right) \Delta_{z} \Phi+\left(\left(\frac{\partial \Phi}{\partial x}\right)^{2}+\left(\frac{\partial \Phi}{\partial y}\right)^{2}\right) \Delta_{w} \Phi \\
& -2\left(\frac{\partial \Phi}{\partial x} \frac{\partial \Phi}{\partial u} \frac{\partial^{2} \Phi}{\partial x \partial u}+\frac{\partial \Phi}{\partial x} \frac{\partial \Phi}{\partial u} \frac{\partial^{2} \Phi}{\partial y \partial v}+\frac{\partial \Phi}{\partial x} \frac{\partial \Phi}{\partial v} \frac{\partial^{2} \Phi}{\partial x \partial v}\right. \\
& -\frac{\partial \Phi}{\partial x} \frac{\partial \Phi}{\partial v} \frac{\partial^{2} \Phi}{\partial y \partial u}+\frac{\partial \Phi}{\partial y} \frac{\partial \Phi}{\partial u} \frac{\partial^{2} \Phi}{\partial y \partial u}-\frac{\partial \Phi}{\partial y} \frac{\partial \Phi}{\partial u} \frac{\partial^{2} \Phi}{\partial x \partial v} \\
& \left.\left.+\frac{\partial \Phi}{\partial y} \frac{\partial \Phi}{\partial v} \frac{\partial^{2} \Phi}{\partial y \partial v}+\frac{\partial \Phi}{\partial y} \frac{\partial \Phi}{\partial v} \frac{\partial^{2} \Phi}{\partial x \partial u}\right)\right\} \\
& =\frac{1}{16}\left\{2 \frac{\partial(R(r) U(u))}{\partial r} \frac{\partial(R(r) U(u))}{\partial u} \frac{\partial^{2}(R(r) U(u))}{\partial r \partial u}\right. \\
& -\left(\left(\frac{\partial(R(r) U(u))}{\partial u}\right)^{2}+1\right)\left(\frac{\partial^{2}(R(r) U(u))}{\partial r^{2}}+\frac{1}{r} \frac{\partial(R(r) U(u))}{\partial r}\right) \\
& \left.-\left(\frac{(R(r) U(u))}{\partial r}\right)^{2} \frac{\partial^{2}(R(r) U(u))}{\partial u^{2}}\right\} \\
& =\frac{1}{16}\left\{2 R(r) R^{2}(r) U(u) U^{\prime 2}(u)\right. \\
& -\left(R^{2}(r) U^{\prime 2}(u)+1\right)\left(R^{\prime \prime}(r)+\frac{1}{r} R^{\prime}(r)\right) U(u) \\
& \left.-R(r) R^{\prime 2}(r) U^{2}(u) U^{\prime \prime}(u)\right\} \geq 0
\end{aligned}
$$

for any $0 \leq r<1$ and $-\infty<u<\infty$. For the pseudoconvex domain Ω and the sequence $\left\{u_{n}\right\}$, we have

$$
\begin{aligned}
& R(r) R^{\prime 2}(r) U^{2}\left(u_{n}\right) U^{\prime \prime}\left(u_{n}\right)+\left(R^{2}(r) U^{\prime 2}\left(u_{n}\right)+1\right) U\left(u_{n}\right) \Delta_{z} R(r) \\
\leq & 2 R(r) R^{\prime 2}(r) U\left(u_{n}\right) U^{\prime 2}\left(u_{n}\right)
\end{aligned}
$$

for any $0 \leq r<1$. Hence we have

$$
\begin{aligned}
\Delta_{z} R(r) & \leq \frac{2 R(r) R^{\prime 2}(r) U^{\prime 2}\left(u_{n}\right)}{R^{2}(r) U^{\prime 2}\left(u_{n}\right)+1} \\
& -\frac{R(r) R^{\prime 2}(r) U\left(u_{n}\right) U^{\prime \prime}\left(u_{n}\right)}{R^{2}(r) U^{\prime 2}\left(u_{n}\right)+1}
\end{aligned}
$$

for any $0 \leq r<1$. Since the function $U\left(u_{n}\right)$ is positive and $U^{\prime \prime}\left(u_{n}\right) \leq 0$ for any $0 \leq r<1$ and $n \geq 1$, and $R(r)>0$, we have

$$
\Delta_{z} R(r) \leq 2 R(r) R^{\prime 2}(r) U^{\prime 2}\left(u_{n}\right)
$$

Since $U^{\prime}\left(u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, we have

$$
\Delta_{z} R(r) \leq 0
$$

for any $0 \leq r<1$.
Lemma 2.9([20]). There is no positive C^{2} function $R(r)$ with $R(r) \leq$ $\exp \left((\log r)^{-1}\right)$ satisfying $\Delta_{z} R(r) \leq 0$ in $\{r \exp (\sqrt{-1} \theta) \in \mathbf{C} ; 0 \leq r<1\}$.

Theorem 2.10. Let $\dot{U(u)}$ be a positive C^{2} function with $U(u) \leq$ $\exp \left(-u^{2}\right)$ for $-\infty<u<\infty$. If there exists a real number a such that $U^{\prime \prime}(u) \leq 0$ for all u in $[a, \infty)$, then one cannot find a positive C^{2} function $R(r)$ with $R(r) \leq \exp \left((\log r)^{-1}\right)$ such that

$$
\Omega=\left\{(r \exp (\sqrt{-1} \theta), u+\sqrt{-1} v) \in \mathbf{C}^{2} ; \Phi(r, u, v)<0\right\}
$$

is pseudoconvex, where $\Phi=v-R(r) U(u)$ for $0 \leq r<1$ and $-\infty<u<$ ∞.

Proof. Suppose taht $R(r)$ is a positive C^{2} function with $R(r) \leq$ $\exp \left((\log r)^{-1}\right)$ for $0 \leq r<1$, and satisfying the domain Ω is pseudoconvex. By Lemma 2.8, we have $\Delta_{z} R(r) \leq 0$ in $\{r \exp (\sqrt{-1} \theta) \in \mathbf{C} ; 0 \leq$ $r<1\}$. This contradicts the statement of Lemma 2.9.

3. Stein neighborhood bases

A complex manifold Ω is a monotone union of polydiscs if $\Omega=\bigcup_{j=1}^{\infty} P_{j}$ where $P_{1} \subset P_{2} \subset \cdots$ and where each P_{j} is biholomorphically equivalent to a polydisc in $\mathbf{C}^{n}, \operatorname{dim} \Omega=n$. It is known that a monotone union of polydiscs need not be Stein. Here after, we exclusively suppose that complex manifolds are connected and paracompact. If Ω is a complex manifold with Kobayashi distance, then Ω is called a hyperbolic manifold. J. E. Fornaess-E. L. Stout [8] proved that if M is a monotone union of polydiscs in a taut complex manifold then M is biholomorphically equivalent to a polydisc, and proved that if the complex manifold Ω is a monotone union of polydiscs and hyperbolic then Ω is biholomorphically equivalent to a polydisc. Let a and b be real numbers with
$-\infty \leq a<b \leq \infty$ and $\theta(\Omega)$ be the set of all holomorphic functions on Ω. K. H. Shon [20] proved that if P^{n} is an open polydisc with multi-radius $\left(r_{1}, r_{2}, \cdots, r_{n}\right)$ and center 0 in \mathbf{C}^{n} then there exists no Stein neighborhood bases of the product set $P^{n} \times(a, b)$ in $\mathbf{C}^{n} \times \mathbf{C}$.

Lemma 3.1. Let Ω be a complex manifold with $\operatorname{dim} \Omega=n$ and a monotone union of polydiscs containing 0 in \mathbf{C}^{n}. If Ω is hyperbolic, then there exists no Stein neighborhood bases of the product set $\Omega \times(a, b)$ in $\mathbf{C}^{n} \times \mathbf{C}$.

Proof. If Ω is hyperbolic and $\Omega=\bigcup_{j=1}^{\infty} P_{j}$ which P_{j} is biholomorphically equivalent to a polydisc with center 0 in \mathbf{C}^{n}, then Ω is biholomorphically equivalent to a polydisc, by the result of [8]. Therefore, we may assume that the mapping $\Omega \rightarrow P^{n}$ is biholomorphically onto the open polydisc P^{n} in \mathbf{C}^{n}. Thus, from the result of [20], the product set $\Omega \times(a, b)$ has no Stein neighborhood bases in $\mathbf{C}^{n} \times \mathbf{C}$.

Let $\mathcal{U}=\left\{U_{i} ; U_{i} \subset \subset P^{n}, i \in I\right\}$ be a locally finite Stein open covering of $P^{n}, z:=\left(z_{1}, z_{2}, \ldots, z_{n}\right), U_{i j}:=U_{i} \cap U_{j}$ and $f_{i j}(z, t)$ be real valued functions in $U_{i j} \times(a, b)$ which are holomorphic in $z \in U_{i j}$ for all $i, j \in I$. Asystem $\left\{f_{i}\right\}_{i \in I}$ is called a solution for the Cousin distribution $\left\{f_{i j}\right\}_{i, j \in I}$ for \mathcal{U} depending real analytically on a parameter $t \in(a, b)$ if there is a system of real analytic functions $\left\{f_{i}\right\}_{i \in I}$ on $U_{i} \times(a, b)$ such that f_{i} is holomorphic in $z \in U_{i}$ and $f_{i j}=f_{j}-f_{i}$ on $U_{i j} \times(a, b)$ for each $i, j \in I$. Let $\varphi_{P^{n} \times R}$ be the sheaf of the product set $P^{n} \times(a, b)$ of germs of real analytic functions, let N be the open neighborhood of the set $P^{n} \times(a, b)$ in $\mathbf{C}^{n} \times \mathbf{C}$

$$
\begin{gathered}
N=\left\{(z, w) \in \mathbf{C}^{n} \times \mathbf{C} ;\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in P^{n}, a<\operatorname{Re} w<b,\right. \\
\left.|\operatorname{Im} w|<\exp \left(\exp \left(\left(\log \frac{\left|z_{i}\right|}{r_{i}}\right)^{-1}\right)\right)-1,1 \leq i<n\right\},
\end{gathered}
$$

and set $C_{(0,1)}^{\infty}(N)$ be the set of C^{∞} forms of type $(0,1)$ on N. We investigate the Cauchy-Riemann equation $\frac{\partial \mu}{\partial z}=\nu$ on $\Omega \times(a, b)$. The main methods are based on the result of H. Kazama [11]. By Lemma 4 of [11], if D be a connected and simply connected open neighborhood of $\Delta \times(a, b)$ in $\mathbf{C} \times \mathbf{C}$ and $D(z)=\{w \in \mathbf{C} ;(z, w) \in D\}$ for $z \in \Delta$ then $\Delta \times \bigcup_{z \in \Delta} D(z)$ is the envelope of holomorphy of D.

Lemma 3.2. Under the assumption of Lemma 3.1, there are an open neighborhood G of $\Omega \times(a, b)$ in $\mathbf{C}^{n} \times \mathbf{C}$ and a $\bar{\partial}$-closed $f \in C_{(0,1)}^{\infty}(G)$ such that for any open neighborhood H with $\Omega \times(a, b) \subset H \subset G$ the restriction $\left.f\right|_{H}$ is not $\bar{\partial}$-exact on H.

Proof. By the assumption, we may assume that the open set Ω is biholomorphically equivalent to the unit open polydisc $P^{n}(1)$. We suppose that $a+b=0$ and $b>1$. We take an open neighborhood of $P^{n}(1) \times(-b, b)$

$$
\begin{array}{r}
G=\left\{(z, w) \in \mathbf{C}^{n} \times \mathbf{C} ;\left(z_{1}, z_{2}, \cdots, z_{n}\right) \in P^{n}(1),|\operatorname{Re} w|<b,\right. \\
\left.|\operatorname{Im} w|<\exp \left(\exp \left(\left(\log \left|z_{i}\right|\right)^{-1}\right)\right)-1,1 \leq i \leq n\right\}
\end{array}
$$

and, we put

$$
G(m)=\left\{w \in \mathbf{C} ;|\operatorname{Re} w|<b,|\operatorname{Im} w|<\exp \left(\exp \left(\left(\log \frac{m}{m+1}\right)^{-1}\right)\right)-1\right\}
$$

for $m=1,2, \cdots$. Let $g_{m}(w)$ be a holomorphic function on $G(m)$ which is not holomorphically extendible at the boundary of $G(m)$ and p be the projection $(z, w) \rightarrow w$ from $P^{n}(1) \times(-b, b)$ into $(-b, b)$. If we let closed sets $F(m)$ in G

$$
\begin{aligned}
F(m) & =\{(z, w) \in G ; p(z, w) \notin G(m)\} \\
& \cup\left\{(z, w) \in G ;\left|z_{i}-\frac{m}{m+1}\right| \geq \frac{1}{2(m+1)(m+2)}, 1 \leq i \leq n\right\}
\end{aligned}
$$

and let an n-tuple $\left[\frac{m}{m+1}\right]=\left(\frac{m}{m+1}, \cdots, \frac{m}{m+1}\right)$, then we have

$$
F(m) \cap\left(\left[\frac{m}{m+1}\right] \times G(m)\right)=\emptyset
$$

for $m=1,2, \cdots$. Hence we have a C^{∞} function $\phi_{m}: G \rightarrow[0,1]$ such that

$$
\phi_{m}(z, w)= \begin{cases}0 & \text { in a neighborhood of } F(m) \text { in } G \\ 1 & \text { in a neighborhood of }\left[\frac{m}{m+1}\right] \times G(m) \text { in } G\end{cases}
$$

for each $m=1,2, \cdots$. If we put

$$
\begin{aligned}
f(z, w)= & \sum_{m=1}^{\infty}\left(z_{1}-\frac{m}{m+1}\right)^{-1}\left(z_{2}-\frac{m}{m+1}\right)^{-1} \cdots \\
& \left(z_{n}-\frac{m}{m+1}\right)^{-1} g_{m}(w) \bar{\partial} \phi_{m}(z, w) \\
= & \sum_{m=1}^{\infty}\left(z-\frac{m}{m+1}\right)^{-1} g_{m}(w) \bar{\partial} \phi_{m}(z, w)
\end{aligned}
$$

then f is a $(0,1)$ type of class C^{∞} in G. Since $g_{m}(w)$ is holomorphic on $G(m)$, we have $\bar{\partial} f(z, w)=0$. Assume that there a C^{∞} function h on any connected open neighborhood H of $P^{n}(1) \times(-b, b)$ in G satisfying $\left.f\right|_{H}=\bar{\partial} h$. We set

$$
\zeta_{m}(z)=\left(z-\frac{m}{m+1}\right)^{-1}(1-\exp 2 \pi \sqrt{-1}(m+1) z)
$$

Then

$$
\begin{aligned}
\eta(z, w):= & \sum_{m+1}^{\infty}\left(\zeta_{m}(z) g_{m}(w) \phi_{m}(z, w)\right. \\
& -(1-\exp 2 \pi \sqrt{-1}(m+1) z) h(z, w))
\end{aligned}
$$

is a C^{∞} function and

$$
\begin{aligned}
\bar{\partial} \eta(z, w)= & (1-\exp 2 \pi \sqrt{-1}(m+1) z) . \\
& \left(\sum_{m+1}^{\infty}\left(z-\frac{m}{m+1}\right)^{-1} g_{m}(w) \bar{\partial} \phi_{m}(z, w)-\bar{\partial} h(z, w)\right) \\
= & (1-\exp 2 \pi \sqrt{-1}(m+1) z)(f(z, w)-\bar{\partial} h(z, w))=0
\end{aligned}
$$

in $(z, w) \in H$, that is, $\eta(z, w) \in \theta(H)$. Since we have

$$
\begin{aligned}
\lim _{z \rightarrow\left[\frac{m}{m+1}\right]} \zeta_{m}(z) & =\left.(-2 \pi \sqrt{-1}(m+1) \exp 2 \pi \sqrt{-1}(m+1) z)\right|_{z=\left[\frac{m}{m+1}\right]} \\
& =-2 \pi \sqrt{-1}(m+1)
\end{aligned}
$$

and

$$
\phi_{k}\left(\left[\frac{m}{m+1}\right], w\right)= \begin{cases}0 & \text { if } k \neq n \\ 1 & \text { if } k=n\end{cases}
$$

we have

$$
\eta\left(\left[\frac{m}{m+1}\right], w\right)=-2 \pi \sqrt{-1}(m+1) g_{m}(w)
$$

If we take a connected and simply connected open neighborhood \hat{H} of $P^{n}(1) \times(-b, b)$ in $\mathbf{C}^{n} \times \mathbf{C}$ with $\hat{H} \subset H$, then the product set $P^{n}(1) \times \bigcup_{z \in P^{n}(1)} \hat{H}(z)$ is the envelope of holomorphy of \hat{H} where $\hat{H}(z)=$ $\{w ;(z, w) \in \hat{H}\}$, and hence we have a function $\tilde{\eta} \in \theta\left(P^{n}(1) \times \bigcup_{z \in P^{n}(1)} \hat{H}(z)\right)$ such that $\left.\tilde{\eta}\right|_{H}=\eta$. Since the difference $\bigcup_{z \in P^{\boldsymbol{n}}(1)} \hat{H}(z)-G(m) \neq \phi$ for large m and $\tilde{\eta}\left(\left[\frac{m}{m+1}\right], w\right)$ is holomorphic in $w \in \bigcup_{z \in P^{n}(1)} \hat{H}(z)$ for $m=1,2, \cdots$, this contradicts the assumption.

Lemma 3.3. Under the assumption of Lemma 3.2, if $\mathcal{U}=\left\{U_{i} ; U_{i} \subset \subset\right.$ $\Omega, i \in I\}$ is a locally finite Stein open covering of Ω, then there exists a Cousin distribution $\left\{f_{i j}\right\}_{i, j \in I}$ for \mathcal{U} depending real analytically on the parameter $t \in(a, b)$ which has no solution.

Proof. Since Ω is hyperbolic, the covering \mathcal{U} is hyperbolic. We prove the theorem for $\mathcal{U}=\left\{U_{i} ; U_{i} \subset \subset P^{n}(1), i \in I\right\}$ and $t \in(-b, b)$. For the norm $|z|=\max _{1 \leq \nu \leq n}\left|z_{\nu}\right|$ on \mathbf{C}^{n}, we put $\delta_{i}=\sup \left\{|z| ; z \in U_{i}\right\}$ for $U_{i} \subset \subset P^{n}(1)$ and

$$
\begin{aligned}
G_{i}= & \left\{(z, w) \in \mathbf{C}^{n} \times \mathbf{C} ; z \in U_{i},|\operatorname{Re} w|<b\right. \\
& \left.|\operatorname{Im} w|<\exp \left(\exp \left(\left(\log \delta_{i}\right)^{-1}\right)\right)-1\right\}
\end{aligned}
$$

Then the set G_{i} is a Stein open subset of G of Lemma 3.2. Hence we have a C^{∞} function ζ_{i} on G_{i} such that $\bar{\partial} \zeta_{i}=f$ for $\bar{\partial}$-closed $f \in C_{(0,1)}^{\infty}(G)$ and each i. We put $\zeta_{i j}=\zeta_{j}-\zeta_{i}$ on $G_{i} \cap G_{j}$ and $f_{i j}=\left.\zeta_{i j}\right|_{U_{i j} \times(-b, b)}$. Then $\left\{f_{i j}\right\}_{i, j \in I}$ is the Cousin distribution for \mathcal{U} depending real analytically on the parameter $t \in(-b, b)$. Assume that there were a solution $\left\{f_{i}\right\}_{i \in I}$
for the Cousin distribution $\left\{f_{i j}\right\}_{i, j \in I}$. Since $f_{i}(z, t)$ is real analytic on $U_{i} \times(-b, b)$ and holomorphic in $z \in U_{i}$, there is a holomorphic function $h_{i}(z, w)$ in an open neighborhood H_{i} of $U_{i} \times(-b, b)$ in $P^{n}(1) \times(-b, b)$ such that $\left.h_{i}\right|_{U_{i} \times(-b, b)}=f_{i}$. There exists an open subset of H of G satisfying

$$
P^{n}(1) \times(-b, b) \subset H \subset\left(\bigcup_{i \in I} G_{i}\right) \cap\left(\bigcup_{i \in I} H_{i}\right)
$$

and $\zeta_{i j}=h_{j}-h_{i}$ on $H_{i} \cap H_{j} \cap H$. Therefore, we have $\zeta:=\zeta_{i}-h_{i} \in C^{\infty}(H)$ and $\left.f\right|_{H}=\bar{\partial} \zeta$. This contradicts the statement of Lemma 3.2.

Theorem 3.4. Under the assumption of Lemma 3.3, there is a real analytic function $g(z, t)$ in $\Omega \times(a, b)$ such that one cannot find a real analytic function $f(z, t)$ in $\Omega \times(a, b)$ satisfying $\frac{\partial f(z, t)}{\partial \bar{z}}=g(z, t)$ in $\Omega \times$ (a, b).

Proof. Let $\left\{f_{i j}\right\}_{i, j \in I}$ be the Cousin distribution for \mathcal{U} depending real analytically on the parameter $t \in(-b, b)$ as in the proof of Lemma 3.3. By H. Grauert [9] and B. Malgrange [13], we have

$$
\begin{aligned}
H^{1}\left(P^{n}(1) \times\right. & \left.(-b, b), \varphi_{P^{n}(1) \times(-b, b)}\right) \\
& =H^{1}\left(\left\{U_{i} \times(-b, b)\right\}_{i \in I}, \varphi_{U_{i} \times(-b, b)}\right)=0
\end{aligned}
$$

Hence, we have a system $\left\{g_{i} \in H^{0}\left(U_{i} \times(-b, b), \varphi_{U_{i} \times(-b, b)}\right)\right\}_{i \in I}$ satisfying $f_{i j}=g_{j}-g_{i}$ on $U_{i j} \times(-b, b)$, and

$$
\frac{\partial f_{i j}}{\partial \bar{z}}=\frac{\partial g_{j}}{\partial \bar{z}}-\frac{\partial g_{i}}{\partial \bar{z}}=0
$$

on $U_{i j} \times(-b, b)$. We can write $g=\frac{\partial g_{i}}{\partial z}$ in $P^{n}(1) \times(-b, b)$ for suitable $g_{i} \in H^{0}\left(U_{i} \times(-b, b), \varphi_{U_{i} \times(-b, b)}\right)$. Assume that there were a real analytic function f in $P^{n}(1) \times(-b, b)$ satisfying $\frac{\partial f}{\partial \bar{z}}=g$ for the real analytic function g. Then we have $\frac{\partial g_{i}}{\partial \bar{z}}-\frac{\partial f}{\partial \bar{z}}=0$ in $U_{i} \times(-b, b)$. If we put $f_{i}:=g_{i}-f$ in $U_{i} \times(-b, b)$, then f_{i} are holomorphic in $z \in U_{i}$ for all $i \in I$ and $f_{j}-f_{i}=g_{j}-g_{i}=f_{i j}$. That is, $\left\{f_{i}\right\}_{i \in I}$ is a solution for the Cousin distribution $\left\{f_{i j}\right\}_{i, j \in I}$. This is a contradiction.

References

1. E. Bedford and J. E. Fornaess, Domains with pseudoconvex neighborhood systems, Inventiones Math., bf 47 (1978), 1-27.
2. H. Behnke, Über analytische Funktionen mehrerer Veränderlicher, II: Natürliche Grenzen, Abh. Hamburg, 5 (1927), 290-312.
3. H. J. Bremermann, Über die Äquivalenz der pseudokonvexen Gebiete und der Holomorphiegebiete in Raume von n Komplexen Veränderlichen, Math. Ann., 128 (1954), 63-91.
4. K. Diederich and J. E. Fornaess, Pseudoconvex domains: An example with nontrivial Nebenhülle, Math. Ann., 255 (1977), 275-292.
5. K. Diederich and J. E. Fornaess, Pseudoconvex domains: Existence of Stein neighborhoods, Duke Math. J., 44 (1977), 641-662.
6. K. Diederich and J. E. Fornaess, Pseudoconvex domains with real analytic boundary, Ann. Math., 107(1978), 371-384.
7. M. Field, Several complex variables and complex manifold I, London Math. Soc. Lec. Note Ser. 65, Cambridge Univ. Press, London, 1982.
8. J. E. Fornaess and E. L. Stout, Polydıscs in complex manifolds, Math. Ann., 277 (1977), 145-153.
9. H. Grauert, On Levi's problem and the imbedding of real analytic manifolds, Ann. Math., 68 (1958), 460-472.
10. S. Hitotumatu, On some conjectures concerning pseudoconvex domains, J. Math. Soc. Japan, 6 (1954), 177-195.
11. H. Kazama, Note on Stein neighborhoods of $\mathbf{C}^{k} \times \mathbf{R}^{l}$, Math. Rep. College of General Education, Kyushu Univ., 14 (1983), 47-55.
12. E. E. Levi, Studii sui punti singolari essenziali delle funzioni analitiche die due o piu variabili complesse, Annali di Mat. Pura ed Appl., 17 (1910), 61-87.
13. B. Malgrange, Fazsceaux sur des variétés analytiques réeles, Bull. Soc. Math. France, 85 (1957), 231-237.
14. F. Norguet, Sur les domaines d'holomorphie des fonctions uniformes de plusieurs variables complexes (passage du local au global), Bull. Soc. Math. Frnace, 82 (1954), 137-159.
15. K. Oka, Sur les fonctions analytiques de plusieurs variables, VI. Domaines $\dot{p} s e u-$ doconvexes, Tôhoku Math. J., 49 (1942), 15-52.
16. K. Oka, Idem, IX. Domaines finis sans point critique interieur, Japaness J. Math., 23 (1953), 97-155.
17. L. C. Piccinini, Non surjectivity of $\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$ as an operator on the space of analytic functions on \mathbf{R}^{3}, Lecture Notes of the Summer College on Global Analysis, Trieste, August 1972.
18. L. C. Piccinini, Non surjectivity of the Cauchy-Riemann operator on the space of the analytic functions on \mathbf{R}^{n}. Generalization to the parabolic operators, Bollettino (1. M. I. (4) 7 (1963), 12-28.
19. K. H. Shon, Reinhardt sets without Stein neighborhood bases, Mem. Fac. Sci., Kyushu Univ., 40 (1986), 101-106.
20. K. H. Shon, Stein neighborhood bases for product sets of polydiscs and open intervals, Ibid., 41 (1987), 45-80.
21. Y. T. Siu, Every Stein subvariety admits a Stein neighborhood, Inventiones Math., 38 (1976), 89-100.

Department of Mathematics
Pusan National University
Pusan 609-735, Korea

[^0]: Received March 6, 1990.
 *This research was supported by Korea Science and Enginnering Foundation (19871988).

