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EXTREME POSITIVE OPERATORS ON THE ORDERED
SPACE OF 2 X 2 HERMITIAN MATRICES

BYUNG 800 MOON

1. Introduction

There have been various studies for characterizations of positive linear
operators on C*-algebras. Stormer[6] studied those preserving the order
identity with additional order properties such as of class 0 or of class l.
Chu and Jefferies [1] considered extreme positive linear maps between
JB-algebras which preserve the order identity.

Attempting to study the order characteristics of positive linear opera
tors, one evidently comes to study the extreme positive linear operators.
In this paper, we consider the finite dimensional case and further re
strict ourselves to the ordered space of 2 X 2 Hermitian matrices while
eliminating other order properties imposed on positive linear operators
except the extremality.

vVe prove in Theorem 5.1 that a positive linear operator T is extreme
if and only if it is unitarily equivalent to a linear map of the form Sz
described below. Thus, T is extreme if and only if T maps every extreme
point to either 0 or another extreme point.

Throughout this paper, E will always be used to denote the real or
dered space of all 2 X 2 Hermitian matrices with the positive cone con
sisting of all elements having nonnegative eigenvalues. An element of
E is positive if and only if both of its diagonal entries along with its
determinant are nonnegative.

If A is a 2 x 2 complex matrix, then A will be used to denote the
- -T

complex conjugate of A and A* for the transpose of A, i.e. A . We use
ei for the unit vector in C 2 with 1 in the ith component and zero for the
other.
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We denote Eii for eief, E l2 for eler+e2e[ and El2 for ieler -ie2e[.
The unit matrix Ell + E22 will be denoted by [ while [ will also be used
for the identity operator on E.

Recall that every element of E can be written as AXX* + p,yy* for
some A, p, E R and {x, y} orthonormal set of eigenveetors. H T is a
linear operator on E, then T is determined whenever T(xx*) is defined
for every x E C2. We say a linear operator T is positive, i.e. T > 0 if
T(P) 2:: 0 whenever P 2:: O. Note that T :2: 0 if and only if T(xx*) 2:: 0
for all x E C2.

DEFINITION 1.1.. A linear operator T on E is said to be strongly
positive if T(P) 2:: 0 for all P :2: 0 and wbenever T(P) :2: 0, tbere exists
Q 2:: 0 such tbat T(Q) = T(P).

DEFINITION 1.2.. A nonzero positive linear operator T is said to be
extreme or is said to generate an extreme ray if S = AT for some ..\ :2: 0
wbenever 0 :s; S :s; T.

EXAMPLE 1.3..

(a) Tbe identity operator [ on E is extreme.
(b) IfT(A) = A for all A E E, t~en T is extreme.
Cc) IfT( fLBll + dE'l'l.-±_bE12 -+- CE12 ) ::::: aEn + dE'}.'}. + bE];? for all a,

b, c, dE R, then T is not extreme.

Routine verifications of (a) and (b) are omitted. For (c), we take
1

S = "2[' then 0 :s; S:S; T while S =/= AT for any A 2:: O.

If Q is an arbitrary nonsingular 2 x 2 matrix, then we may define a
linear operator by SQ(A) = QAQ* for all A E E. It is clear that SQ
is one-to-one positive with SQ-l as its inverse. When U is a unitary
matrix, we write this operator by U itself instead of Su for simplicity.
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In case U = (~ e?6) for some () E Ill, then

9

SU(A)=UAU*=(~ e?8)(b~ci b~ci)(~

_ ( a . (b + ci)e-
i6

)
- (b - ci)el6 d .

We write this operator as 56 instead of Su or U. Note that S"i/ =
SU-1 = Su* for an arbitrary unitary matrix U and S;l = S-6.

If z is an arbitrary vector in C2 , then we define Sz(xx*) = (XiZiXjZj)

where (XiZiXjZj) denotes an element of E with (i,j) element XiZiXjZj'

If zT = (p, q) where p, q > 0, then Sz is a strongly positive one-to-one
linear operator.

THEOREM 1.4. Let T be a positive linear operator on E with range of
T having dimension 1. HT is extreme, then there exist unitary matrices
U and V such that U 0 T 0 V = S z for some z E C2

0

Proof. Note that T(E) is positively generated and hence T(E) =
{AP I ,\ E Ill} for some P ~ 0, where P is not positive definite since T
is extreme. Let U be a unitary matrix such that UPU* = Ell and let
Tl = U 0 T. Then T1(A) = ,\Ell for every A E E. We define a linear
functional on E such that j(A) = A whenever T1(A) = '\Ello Clearly,
j ~ 0 and j is extreme since T1 is extreme. Therefore, there exists z E C 2

such that j(A) = z* Az for all A E E. Let Zo = z/lIzll and let {zo, wo}
be an orthonormal set. If V = (zo, wo) and S = T1 0 V = U oTo V, then

S(xx*) = T1 ((Vx)(Vx)*) = j((Vx)(Vx)*)Eu
= z*(Vx)(Vx)*zEll = (z*Vx)(z*Vx)* Ell

= IIzII21xl12Ell = (XiWiXj1iJj), where W1 = IIzlI, W2 = O.

Therefore, S = Sw'

2. Positive Operators with Range of Dimension 2

In this section, we consider positive linear operators on E whose ranges
having dimension 2. We prove in Theorem 2.4 that in this case, the
operators cannot be extreme.
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LEMMA 2.1. If {x,y} is a linearly independent set in C2
, tben tbere

exists a nonsingular matrix Q such tbat SQ(xx*) = Ell, SQ(YY*) = E22 •

Proof. We take a unitary matrix U such that Uxx*U* = IIxll2Ell and

let Uyy*U* = P. If P = (~I pa), then PZ t=- 0 since P ~ 0 from
Pa PZ

yy* 2:: 0 and {xx*,yy*} is linearly independent. Note that PIPZ = IPalz

since zero is an eigenvalue of yy* and so is of P.

Let A = (~ ~), where A = 1/llx ll, J.L = -Apa/Pz, J.L = 11Viii·
1

Then by a routine computation, we see that AEllA* = II
x

ll 2 Ell, and

APA* = E 22 . Now, we define Q = AU to obtain the conclusion.

LEMMA 2.2. Let T be a positive linear operator on E witb dim(Ker T)
= 2. Tben tbere exist unitary matrices U and V such tbat for S =
UoToV, we have (KerS)O = Span{xx*,yy*}, SCE) = Span{zz*,ww*}
for some x, y, z, wE CZ

•

Proof. Let J = Ker T. Then J O is positively generated since J is a
full ideal [3; Thrn 1.7, Chapter Il]. Let JO= Span{Po,Qo} where Po,
Qo 2:: o. Replace Po by Po + Qo and let V Po V* = D; diagonal, where V
is a unitary matrix. Then V JOV* = Span{D, Q} where Q = VQoV*.

Let >'0 = max{A > 0 I >.Q S; D}. Note that >'0 ~ 1 and D - >'oQ is
extreme in E since otherwise D - AoQ is positive definite which would
imply cQ S; D - >'oQ for some c > O. Therefore, D - AoQ = yy* for
some y E C 2

. Similarly, we take /10 = max{J.L > 0 j J.Lyy* S DJ and
D - J.LoYY* = xx*. Then we have

V JOV* = Span{xx*,yy*} = (V JV*)o.

Now, let T(E) = Span {RI, R2 } where RI, R2 2:: 0 and apply a similar
argument as above to find a unitary matrix U such that U(T(E))U* =
Span {zz*, ww*}. We define S = U 0 To V*. It is routine to verify that
(Ker S)O = V J OV* = Span {xx*, yy*} and S(E) = Span {zz* , ww*}.

LEMMA 2.3. Let S be a positive linear operator on E. If SCE) =
Span {En, E22 } and (Ker S)O = Span {Ell, E z2 }, tben there exist aI,
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CK2, CK3, CK4 E ~ with CKi ~ 0, i = 1,2,3,4 such that S L:~=1 CKiTi
where Tl (xx*) = /Xl/2Ell' T2(xx*) = IXl/2E22, T3(xx*) = /X2/2Ell'
T4(xx*) = IX 21 2 En.

Proof. Let S(Ell ) = CK1Ell + CK2En, S(E22 ) = CK3Ell + CK4E22' Then
we must have CKi ~ 0, i = 1,2,3,4 since S ~ O. IT x E C2 then

S(xx*) = S(IXI12 Ell + IX212 E22 ) = 1:l1112S(En ) + IX212 S(E22 )

= jXI12(CKIEn + CK2~2) + IX2j2(CK3En + CK4E22)

= CK1T(XX*) + CK2T2(xx*) + CK3T3(XX*) + CK4T4(XX*),

THEOREM 2.4. IfT is a positive linear operator on E with dim(Ker T)
= 2, then T is not extreme.

Proof. By Lemma 2.2, there exist unitary matrices U, V such that
for T1 = U °T °V, we have (KerTI)° = Span {xx* ,yy*} and Tl (E) =
Span {zz*, ww*}. Now, by Lemma 2.1, there exist strongly positive one
to-one linear operators SI and S2 such that SI (Ell) = xx*, SI (En) =
yy*, S2(ZZ*) = Ell, S2(WW*) = E22 . We define S = S2oT10S1 = 520U°
To VoS1, then SCE) = Span {Ell, En} and (Ker S)O = Span {En, E22 }.
Apply Lemma 2.3 to conclude that S is not extreme and hence neither
is T.

3. Positive Operators with Range of Dimension 3

In this section, we consider positive linear operators on E whose ranges
are of dimension 3. We will prove that any such operator cannot be
extreme.

LEMMA 3.1. Let T be a positive linear operator on E with Ker TnK t
{O} where K is the positive cone of E. Then we have dim(KerT) ~ 3.

Proof. Let 0 t- P E Ker T n K. If P is positive definite, then we must
have T = 0 since Ker T is an order ideal. Thus, we assume P = xx*
for some x E C2 with x*x = 1. Let U be a unitary matrix so that
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U*xx*U = En and let S = ToU. Then SeEn) = o. Now, let S(~2) =
Q, S(E12 ) = RI, S(E12 ) = R2. Then from S ~ 0, we have

(
1 re

i8
)S -i8 2 > 0 for all r ~ 0 and 8 E IR.re r -

Therefore, r 2 Q + r cos 8Rl + r sin 8R2 ~ 0 for all r ~ 0 and 8 E R, from
which we obtain RI = R 2 = 0, i.e. E 12 , E12 E Ker S.

LEMMA 3.2. Let T be a positive linear operator on E with dim(KerT)
= 1. IfT(xx*) is positive dennite for every 0 =1= x E «:::2 unless T(xx*) =
0, then T is not extreme.

Proof. Let 0 =f A E KerT with A = AlXX* + A2YY* where {x,y} is
an orthonormal set of eigenvectors of A. Due to Lemma 3.1, we may
assume A2 = -1, Al = A > O. Let U = (x,y) and Tl = To U, then
Tl (E22 ) = T(yy*) = AT(xx*) = ATl(En ). Now, let Tl (E22 ) = P then
P is positive definite by assumption. Let V be a unitary matrix such
that V PV* = Dj diagonal with dl , d2 as. diagonal entries. If Q is the
diagonal matrix with ql = 1/Vif;., q2 = 1/..jiI; then SQ(D) = I.

Let S = SQ 0 V 0 T 0 U. Then SeEn) = I, S(E22 ) = AI and S(E12 ) =

(ac
l ~), S(E12 ) = (d::: iT d:~T), ai, bi, c, dE R. Then

T ( re~i8 r;~8)

= (1 + Ar2 + real cos 7} +a2. sin 8) er cos fl +dr sin Oeff )

er cos 8 + dr sin 8e-~T 1 + Ar2 + r(bl cos 8 + b2 sin 8)

is positive definite for all r ~ 0 and 8 ER. Now, if

f( r, 8) = (~ + Ar + al cos 8 + a2 sin 8) (~ + Ar + bl cos 8 + b2 sin 8)

and g(8) = le cos 8+d sin 8eiT 12 = C + cP + c
2

- J2 cos 28+cd cos 'T sin 28,
2 2

h(r,8) = f(r,8) -g(8) then h(r,8) > 0 for all r > 0, 8 E R. Let
m = min{h(r,9) I r ~ 0,8 E Ill} then m > 0 since we clearly have
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m = h(ro, 80 ) for some ro ~ 0, 80 E R. Let c > 0 such that 2ck < m
where k = max{g(8) 18 ER} and define

1 A 1 (a l (1 + c)c)
Sl(El1 ) = 21, SI (E22 ) = 21, Sl(E12 ) = 2 (1 + e)c bl '

~ _ 1 ( a2 (1 + e)de iT
)

Sl(E12 ) - 2 (1 + e)de-ir b
2

.

Then it is routine to check that 0 < SI ~ S with SI =f AS for all A > o.
Therefore, S is not extreme and neither is T.

LEMMA 3.3. Let T be a positive linear operator on E with T(Ell) =
aEl1 , T(E22 ) = f3E22 , a, f3 > O. H KerT =f {O}, then there exist
unitary matrices U, V such that S = U aTa V satisfies SeEn) = aEl1 ,

S(E22 ) = f3E22 , S(E12 ) = ,El2 , S(E12 ) = 0 for some, E R.

Proof.

(
al bl + Cli) ~ (a2Let T(E12 ) = b . d ' T(E12 ) = b .1 - Cl ~ 1 2 - C2~

where ai, bi , Ci, di ER, i = 1,2. Then from T ~ 0, we have

(
1 re

i9
)

T re-i9 r 2 =

(
a + r(al cos8 + a2 sin 8) r cos 8(bl + cli) + r sin8(b2 + C2i»)

rcos8(b1 - cli) + rsin8(b2 - C2i) f3r 2 + r(dl cos(J + d2 sin8)

is positive for all r ~ 0, 8 E R. Thus, we have

a + al cos 8 + a2 sin 8 ~ 0,
r

f3r + dl cos 8 + d2 sin 8 ~ 0

for all r ~ 0, 8 E R, from which we obtain al = a2 = dl = d2 = O. Now,

. (1 0)let bl + cli = te ZT
, U = 0 eir ,T1 = U 0 T. Then Tl(En ) = aEn ,

~ (0 e + fi)T(E22 ) = f3E22 , T1(E12 ) = tE12 and Tl (E12 ) = e _ ji 0 for

some e, j E IR. For A E E, if

A=( a. b+Ci)
b - C~ d

then T1(A) = ( aa . bt + ce +cfi) .
bt + ce - cb df3
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Hence if A E K!r Tl then a = d = 0, cf = 0, bt + ce = O. If c =I- 0 then
f = 0, i.e. Tl(E12L = eE12 . If!:- = 0 then bt = 0, i.e. b = 0 or t = O. If
b = 0 then A = CE12 , i.e. T l (E12 ) = 0 and we are done. When t = 0,

. (1 0)let ~+ fi = se lU and Ul = 0 eiu ,T2 = Ul 0 Tl then T2(EI2 ) = 0,

T2(El2 ) = SE12 ·
Therefore, in any case, we have an operator 50 of the form V 0 T

where V is a unitary:?atrix such that 50(En ) = aEn, SO(E22 ) = f3E22 ,
5o(E12 ) = tE12 , 5 o(E12 ) = sE12 with t, s E R- . ~

Now, let 5::(sEI2 - :'EI2 ) = 0 and s - ti = peAt, then with () = A - 2'
5 0 (sE12 - tE12 ) = pE12 . Let U = 5_0 = 51-- A and let 5 = V 0 T 0 U
then 5 satisfies the desired property.

LEMMA 3.4. Let T be a positive linear operator on E with T(Ell ) =

aEn, T(E22 ) = f3E22 , T(El2 ) = ,E12 , T(El2 ) -,0 where a, f3 > 0,
, ER. Then T is not extreme.

Proof. From T ~ 0, we have for all r ~ 0, () E R

Hence, we have af3 ~ ,2. Now, define 5(En ) = ~Ell' 5(E22 ) = ~E22'

S(E12 ) = iE12' S(E12 ) =' iEl2' Then it is routine to verify that

o~ 5 ~ T while 5 =I- AT for any A ~ O.

LEMMA 3.5. Let T be a linear operator on E with T(Ell ) = En,
T(xx*) = yy* where {x, et}, {y, et} are linearly independent sets. H
dim(Ker T) = 1, then T is not extreme.

Proof. By Lemma 2.1, we find a strongly positive one-to-one linear
operator 5R such that 5R(Ell ) = Ell, 5R(XX*) = E 22 . Let Q = R-l

then 5Q(En ) = Ell, 5Q (E22 ) = xx*. Similarly, we find 51 such that
Sl(En ) = Ell, SI (yy*) = E 22 . Let 5 = 51 oTo5Q, then S(Ell) = En,
S(E22 ) = E22 and 5 ~ O. Now, we apply Lemma 3.4 and Lemma 3.3 to
conclude that S is not extreme. Therefore T is not extreme.
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LEMMA 3.6. Let T be a positive linear operator on E with T(Ell ) =
Ell, T(E22 ) = P where P is positive definite. Then there exists a
nonsingular A such that 5 = SA 0 T satisfies S( Ell) = Ell, S( E22 ) is
diagonal.

Proof. Let P = (;~ ~:) and let A = (~ i), q = -~:. Note

that P2 i= °since P is positive definite. We find that AEllA* = Ell,

APA * = (~ :2) where d = PI - QP3'

LEMMA 3.7. Let 1(1',0) = dz(1+dlr2+krsin(B+a))-£2sin2(B+,8)
where k, d1 , d2 > °and let m = min{1(r,B) I r ~ O,B ER}. Ifm = °
with f(O,e o) = °for some eo E Rand f(r,e) i= °for l' i= 0, then
4d1 - k2 > °and tllere exists 8 > °such that 1(1', B) ~ 821'2 for all l' 2:: 0,
BE R

Proof. It is easy to check that 1 is bounded below and must assume its
minimum at some point. From the assumption, 1(0, B) = d2 _f2 sin2 (B+

Jr
,8) ~ °for all B ER Hence, d2 = £2 and Bo = -,8 +"2 + mJr. Also, from

1r(0, Ba) = 0, we obtain sin(Bo + a) = 0, i.e. Bo = -a + nJr. Therefore,
Jr • 2 2we must have ,8 - a = "2 + frr and hence sm (B + a) = cos (B + ,8) for

all B E IR. Now,

f(1', B) =d2 _1!2 + d1d2rz + kd2r sin( B+ a) + £z sinZ(B + a)

=d1dz (r
z + :1 Tsin(O + a) + :1 sin

2
(B + ,8))

d 1d 2 (4 . 2 k
2

• 2 )2::-4- d
1

sm (B + a) - di sm (B + a)

d2 2 . 2
=-d(4d1 - k )sm (B +a)

4 1

where the inequality is taken from the minimum of 1(r, B) considered as

a quadratic function of r, i.e. with T = -~ sin(B + a). Therefore, we
2d1

must have 4d1 - k 2 > 0 since otherwise 1 (TO, Bo) = 0 for some TO > 0
and 00 E IR.
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LEMMA 3.8. Let T be a positive linear operator on E witb dim(Ker T)
= 1, T(Ell ) = Ell, T(E22 ) = dlEll + d2 E22 , dl , d2 > O.
Ifdim(Span{xx* I T(xx*) is extreme}) = 1, tben T is not extreme.

Proof.

LetT(E12 ) = ( al. bl +Cl i),T(E12) = ( a2. b2 +C2
i ).

bl - Cl Z fl b2 - C2 Z f2

Then fl = 12 = 0 from T ~ O. By applying a unitary map of the form
58, we may assume Cl = O. Since KerT # {O}, we must have C2 = O.
Hence,

where h is as defined in Lemma 3.7. Note that the diagonal entries are
all nonnegative since T > 0, and that the determinant is nonnegative
due to Lemma 3.7. Therefore, we have 0 < S ~ T with S # AT for any
,\ ~ O.

Next, we consider the case where m = f(ro, Bo) with TO =f 0 or with
m > o. IT TO =f 0, then dim(Span {xx* IT(xx*) is extreme}) ~ 2. Thus,
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we are left with the case where m > O. Then there exists e > 0 such
that f(T,6) ;:::: f(ro,6o) > 3e(bi + b~) for all T ;:::: 0, 6 E H. Now, we define

1 1 (d l 0) 1 bl e
S(Ell ) = 2Ell , 5(Ezz ) = 2 0 d

z
,5(EIZ ) = 2T (EIZ ) - 2 EIZ ,

S(EI2 ) = ~T(EIZ) - b~e E12 , then S > 0 since dz(l + dl rz + kr sin(6 +
ex)) - (1 - e?.ez sin2 (6 + f3) ;:::: 0 for all T > 0, 6 E IR. Similarly, we can
show that T - S > 0 while S -=f AT for any A ;:::: o. Therefore, T is not
extreme.

THEOREM 3.9. Let T be a positive linear operator on E.
If dime Ker T) = 1, then T is not extreme.

Proof. Let F = Span{xx* I T(xx*) is extreme}. We consider the
three cases of dimF = 0, dimF = 1 and dimF ;:::: 2. When dimF = 0,
the theorem follows from Lemma 3.2. We assume next that dim F = 1.
Let T(xx*) = zz* where x is a unit vector and find unitary matrices U,

1
V such that U*xx*U = Ell, Vzz*V* = qEll . Define X = -V 0 To U

q
and apply Lemma 3.6 and 3.8 to conclude S is not extreme and hence
T is not extreme.

Finally we consider the case where dimF ;:::: 2. Let {xx*,yy*} be
linearly independent such that T(xx*) = zz*, T(yy*) = ww*. In case
{zz* , ww*} is linearly dependent, one can show easily that dim(Ker T) ;::::
3. Hence, we may assume {zz*, ww*} is linearly independent. We apply
Lemma 2.1 to find one-to-one strongly positive linear operators SI and
52 such that 5 1(Ell ) = xx*, SI(E22 ) = yy*, 52(zz*) = Ell, S2(WW*) =
E22 . Let S = 52 0 T 0 SI then by Lemmas 3.3 and 3.4, S is not extreme
and hence neither is T.

4. One-to-One Positive Linear Operators

In this section, we will consider one-to-one positive linear operators
on E. F will be used to denote the subspace of E spanned by {xx* I
T(xx*) is extreme} where T is the operator being concerned.

LEMMA 4.1. Let g(B) = b~ cos2 B+b~ sinz B+bl bz cosTsin2B, f(T,6) =
dz(l + dl T

z + kr sin(B + ex)) - g(B) where dl , d2 , k > 0, and q(6) =
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dzkZ sinZ(B + a)j(dz - g(B». Hmin{f(r, B) I r > 0, BE R} = f(O,A) = 0
and if f(ro,B) > 0 for all ro ~ 0 then max{q(B) I B E [0,7r]} < 4dl ·

Proof. From f(O, A) = dz - g(A), we have dz = g(A) = g(A + n7r).
Considering fer, A) as a quadratic function of r which is nonnegative for
all r 2: 0, we must have sin(A+a) 2: 0. Similarly, we have sin'(A+o+7r) 2:
O. Therefore, we have sin(A + a) = 0, i.e. A = -0 + n7r. Note that in
(0, n], there can be at most one solution for d2 = g(O) since dz 2: g(O)
for all B E R. Now,

1· (B) l' dzk z
sin(2B + 20)

III q = III ------'--~
8-..>" 8-..>" -g'(B)

which is 0 if g'(A) =f 0 and is -2dzkz jg"(A) if g'(A) = O. Note that g(O)
is a function of the form A sin 2B + B cos 20 + C and hence g' (B), g" (B)
cannot vanish simultaneously.

Let D(B) be the discriminant of f(r,B) as a quadratic function of r,
i.e. D(B) = 4kz sinz(O + 0) - 4d l dz(dz - g(B». IT D(ft) > 0 for some
ft, then with ro = -kdz sin(ft + a) + JD(ft) or with ro = -kdz sin(ft +

a + n) + JD(ft + n) = kdz sin(ft + a) + JD(ft), we have ro > °and
f( ro, ft) = O. But this is a contradiction to the hypothesis, i.e. we must
have D(ft) ::s; O. Similarly, if D(ft) = 0 for some ft then from ro = 0, we
must have sin(ft + a) = 0 and hence dz - g(ft) = °from D(ft) = O.

Therefore, for every B such that d2 =f g(B), we have

Now, we are left to show q(A) < 4dl . In case g'(A) =f 0, we have q(A) =
o by definition and hence q(A) < 4dl . When g'(A) = 0, note that
D'(A) = d0,kz sin(2A + 2a) + 4dl dz9'(A) = 0 and hence D"(A) =f 0, i.e.
2d~kz + 4dl d2 g"(A) =f 0 since D(B) is a function of the form Asin2B +
B cos 2B + C. Therefore,

i.e. q(A) < 4dl . It is clear now that max{q(B) IB E [0,1l"]} < 4d1 ·
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LEMMA 4.2. Let T be a one-to-one positive linear operator on E with
dim F = 1. Then T is not extreme.

Proof. Let T(xx*) = zz* and find unitary matrices U and V such
1

that U 0 To V(Ell ) = QEll for some Q > O. Let T I = -U 0 T 0 V
Q

and apply Lemma 3.6 to find a one-to-one strongly positive SI such that

S = SI 0 T I satisfies S(El1 ) = Ell, S(Ezz )= (~ Jz), db dz> 0.

By applying a unitary operator So, we assume that

The zero entries in the above are due to S ~ O. Now,

whose determinant is f(r,B) = dz(l + dIr z + krsin(B + Q)) - g(B),
where g(8) = bicosz8+b~sinz8+bIbzcosTsin28,kz = ai +a~. Since
f(r,8) ~ °for all r ~ 0, 8 E R, if m = min{f(r,8) I r ~ 0,8 E R} then
m ~ 0. Let M = max{g(9) I (} E IR}. If M = 0, then we have bI = bz = °
which would imply Ker T =1= {DJ. Therefore, M =1= 0.

First, we assume m =1= 0. Choose c > °such that cM < m and define

then by a routine computation, we have °::; So < S while So i= AS for
any A ~ 0, i.e. S is not extreme.

Next, we consider the case of m = 0. We must have m = f(ro, A)
for some ro ~ °and -7[ > A > 7[. Suppose ro =1= 0, then T(yy*) =
T ( l_ iA ro~iA) has determinant zero, i.e. T(yy*) is extreme, which

roe ro
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is contrary to the hypothesis. Therefore, we must have TO = 0, i.e.
f(O,..\) = 0 for some..\. Now, by Lemma 4.1, if q(O) = d2 k2 sin2 (0 +
a)/(d2 - g(O)),L = max{q(O) 10 E [0,7r]} then L < 4dl . Note also that
1 + d l r 2 + kr sine0 +a) =f 0 for all r ~ 0 and 0 E R from which we obtain
dl r 2 - kr + 1 > 0 for all r ~ 0 and hence k 2 < 4d1.

L k2

Now, choose 8 > 0 such that 8 < minid2 , d1 - 4' d1 - "4} and define

118 1
R(Ell ) = 2 S (Ell ), R(E22 ) = 2S (E22 ) - 2Ell' R(EI2 ) = 2 S(E12 ),

R(E12 ) = ~S(EI2)' then it is routine to verify that 0 ~ R ~ S while

R =f )..S for any ..\ ~ o. Therefore, S is not extreme and hence T is not
extreme.

LEMMA 4.3. Let T be a positiv~ linear operat0:"on E witb T(Eii) =
Eii , i = 1,2. HT(EI2 ) = CE12 , T(E12 ) =fE12 +gE12 wberec, f,g E R,
tben tbere exist unitary matrices U, V sucb tbat S = V 0 T 0 U satisfies
S(Eii ) = E ii , i = 1,2, S(E12 ) = dE12 , S(E12 ) = dcosaE12 +dsinaE12

for some d > 0, a E R

Proof. We define r by tan 2r = (_c2 + P + g2)/2cf where r = 1(/4
when cf = 0 and let SI = TOUT. Then we have

Sl(E12 ) =(c cos r + fsinr)E12 + gsinrE12

Sl(E12 ) =(-csinr + f cosr)E12 + 9 cosrE12 .

Note that (ccosr+ f sin r)2+(g sin r? = (-csin r+ f cosr?+(gcosr)2.
Let ccosr + f sin r + ig sin r = deiu and let S = Uu 0 TOUT. Then
S(EI2 ) = dE12 and fro~ (-csinr + f cosr + igc~sr)e-iU = deia for

some a ER, we have S(E12 ) = dcosaE12 + d sin aE12 .

LEMMA 4.4. Let T be a one-to-one positive linear operator on E with
T(E;;) = E i;, i = 1,2, T(E12 ) = CE12 , T(E12 ) = ccosrE12 +csinrE12

wbere c > 0, 7r ~ r ~ -1(. Tben T is extreme if and only if c = 1 and
1( 1(

r = - or --.
2 2

Proof. If part is trivial as noted in Examples 1.3. For the only if
part, note that we have c2 (1 +sin 20 cos r) ~ 1 for all 0 E R from T ~ o.
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Thus, we have c2(1+lcosTI) :::; 1. In case c2(1+lcoSTI) < 1, we can find
1

c > 0 such that (1 + c?c2(1 + Icos TI) < 1 and define S(Eii ) = 2T(Eii),
l-c ~ l-c ~

i = 1, 2, S(E12 ) = -2-T(EI2), S(EI2 ) = -2-T(EI2). Then we have

o:::; S :::; T with Sf-AT for any A 2: 0, i.e. T is not extreme.

Thus, we assume c2(1 + Icos 7"1) = 1. Since T is extreme if and only
if T is extreme, we may further assume 0 < 7" ~ 7r. First, consider the

case 0 ~ T ~ ~ so that COST 2: 0 and let U = ~ (e-\i _e~ti)'
1(1 et

i
) .'V = V2 1 _e~i . IT S = Vo To U, then by a routme computation,

~ T~

we have S(Eii ) = E ii , i = 1, 2, S(EI2 ) = E12 , S(EI2 ) = tan 2E12. Note

that tan T /2 ~ 1. Now it is easy to see that T = ~ in order to have S to

be extreme.
. 7r

Next, we consIder the case where - < T < 7r. We repeat the same2 - -

process with U = ~ (li \.i)' V = ~ (11 ~i~;~~2) to find
v2 e 4 -e 4 v2 ze

~ T ~ T
S(EI2 ) = cot -EI2 . Again, we must have cot - = 1 in order to have

2 2
S extreme. Therefore T ~ in any case and we obtain c = 1 from

c2(1 + cos T) = 1.

LEMMA 4.5. Let T be a one-ta-one positive linear operator on E with
dimF = o. Then T is not extreme.

Proof. From dim F = 0, T(xx*) is positive definite for all 0 f- x E C2.
Let T(Ell ) = P and U be a unitary matrix such that UPU* = PIEll +
P2E22. Let zT = (1/.jii1, 1/Vfi2) and SI = Sz 0 U oT, then Sl(Ell ) = I;
the identity matrix. Now, let SI(E22 ) = Q, VQV* = qlEll + q2E22
where V is a unitary matrix and let S2 = V 0 SI. Then S2(Ell) = I,
S2(E22 ) = qlEll + q2E22. If
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Now,

where k 2 = ai + a~, .e2 = di + 4, tana = ada2' tanf3 = ddd2 •

Let f(r,8) = (1 + qlr2 + kr sin(8 + a))(l + q2r2 + ir sin(8 + f3)) - g(8),
where g(8) = Ibl cos 8 + b2 sin 8ei-r12

. If m = min{f(r, 8) I r 2:: 0,8 ER},
then m =f 0 since otherwise dim F > 1. Let L = max{g(8) I 8 E R}

1
and choose c > 0 such that cL < m and define Tl (Eii) = '2S3(Eii),

1 cbI
Tl (E12 ) = '2 S3 (EI2 ) + T E12 '

~ 1 ( a2 (1 + c)~ei-y) .
T l (E12 ) = '2 (1 + c)~e-i-y d

2
• Then 0 :::; T l :::; S3 wIth

Tl =f )..S3 for any ).. 2:: O. Therefore, S3 is not extreme and neither is T.

LEMMA 4.6. Let A be a nonsingular 2 x 2 matrix. Then there exist
unitary matrices U and V such that S = V 0 SA 0 U satisfies S(Eii ) =

diEii, i = 1,2, S(EI2 ) = CEI2 , S(EI2 ) = tcosrE12+tsinrEI2 for some
d i > 0, c, t, r E IR.

Proof. Let {x, y} be an orthonormal set of eigenvectors of A *A, then
(Ax)*(Ay) = x*(A*A)y = 0, i.e. {Ax,Ay} is orthogonal. Now, let
U = (x,y), Vi = (z, w)*, SI = Vi 0 SA 0 U where z = Ax/IIAx 11 , W =
Ay/IIAyll. Then we have

SI(Ell ) = VI 0 SA((UeI)(Uel)*) = Vi 0 SA(XX*) = Vi ((Ax)(Ax)*)

= IIAxIl2VI(zz*) = IIAxIl2(Vlz)(Viz)* = IIAxll2Ell
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for some Cl:, (3 E C Finally, if Cl: = ce it and if S = St 0 SI then S satisfies
the desired property.

THEOREM 4.7. Let T be a one-to-one positive linear operator on E.
HT is extreme, then there exist unitary matrices U, V and z E CZ such
that T = U 0 5 z 0 V or T = U 0 S z 0 V.

Proof. Let F = Span {xx* I T(xx*) is extreme}, then from 4.2 and
4.5, we must have dim F 2::: 2. Let T(xx*) = zz*, T(yy*) = ww* where
{x,y} is linearly independent and apply Lemma 2.1 to find one-to-one
strongly positive linear operators SA, SB such that Tl = SA 0 To SB
satisfies '1j(Eid ~ E ii , i = 1, 2.:... From Tl 2::: 0, we have T1(E I2 ) =

aEIZ + bEIZ , Tl (E12 ) = cE12 + dEIZ for some a, b, c, dE IR.

Let a+~i = te ir and Tz = SrOTl' then Tz(EIZ ) = tEIZ and T2(E1Z ) =
fE12 + gEIZ . By Lemma 4.3, we find unitary matrices Uo, Vo such that
for !..3 = Uo 0 T2 0 VD, we have~T3(Eii) = Eii, i = 1, 2, T3 (E12 ) = sE12 ,

T3(E1Z ) = scosrE12 + ssinrE12 . Now, we apply Lemma 4.4 for T3 so
that we have T3 = I or 1.

Consider the case of T3 = I. Then Uo 0 Sr 0 SA 0 T 0 SB 0 Vo = I
from which we obtain T = 5A-1 0 S-r 0 Un 0 Vo* 0 SB-1 = 5 e where
c = A-I W B- 1

, W = U-ro Uoo Vo*. We apply Lemma 4.6 to find unitary
matrices U1, VI such that SI = U10T~V1 = U10Se OV1 satisfies ~l(Eii) =
d,Eii , i = 1,2, 51(E12 ) = 5E12 , SI (E12 ) = tcosrE12 +tsinrE12 where
s, t, r E R Let zT = (lj.j([;,ljy'd;) and let S = Sz 0 SI. We apply
Lemma 4.4 and Lemma 4.3 again for S to obtain UzoSz oU1oTo VI 0 V2 =
I. Therefore, we finally have T = Se = U; oSwoU; 0 V2* 0 Vt = U oSw 0 V
where w T = (va;, va:;) and U = U;, V = U; 0 Vz* 0 Vt.

In case T3 = 1, we use the fact that SoT = SoT for any linear
operators Sand T. We replace Uo by U° in T3 and repeat the same
process with T 3 = I.

5. Results and Examples

THEOREM 5.1. Let T be an arbitrary positive linear operator on E.
Then T is extreme if and only if there exist unitary matrices U, V and
z E C 2 such that T = U 0 Sz 0 V or T = U 0 Sz 0 V.

Proof. Only if part is proved by Theorem 1.4, 2.4, 3.9 and 4.7. For
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the if part, it is sufficient to prove that 5 z is extreme for an arbitrary
z E C2. First, we consider the case where both components ZI, Z2 of z are
nonzero. Let 0 :::; T :::; 5 z then T(Ell ) = alz112Ell, T(Eh2) = ,8lz212E 22 ,

*= /I ZZ ,~)

Hence, we have

2T(E12 ) = T«el + e2)(el + e2)T) - T«el - e2)(el - e2)T))

= (en -/2)lzI1
2

(,1 + /2)ZI Z2 )
(,1+/2)ZIZ2 (/I-/2)lz21 2 .

Substituting this into T«el + e2)(el + e2)T) = alz112E ll + ,8IZ212 E 22 +
T(EI2 ) = /IZZ*, we obtain a = ,8 = /1 = /2. Similarly, we can show
a = ,8 = 8. Therefore, we have a = f3 = /1 = r2 = 8, i.e. T = a5z .

COROLLARY 5.2. Let T be a nonzero positive linear operator on E.
Then T l·S ext,....crn,a ;.r ~'Y1A ........~J'TT ;.f rp ~a~s .a'TTL:J>.,..,.' .c-vo.f.T"ern.a. y,. ........;.,.,+ ,...+ 'li! 1-,..."

"" ~ v.l.~.I."-' .L.L (..W..lu. V~.lJ ~ .L LI..1. f-' \..0" V.J.J \,..A,V.L .Ll.l.v ¥V.J..Ll1I '-'.I. .L.J uv

either 0 or another extreme point.

Proof. Only if part is clear from Theorem 5.1. For the if part, we first
consider the case where T(yy*) = 0 for some y =f o. Find x such that
{x,y} is orthonormal then T(xx*) = zz* for some z =f 0 since T =f o.
Now, for some unitary matrices U and V, 5 = qU 0 To V satisfies
S(Ell ) = Ell, S(E22t= o. Note that KerS is a full ideal containing
En and hence E 12 , E 12 E Ker 5. Therefore, we have S = 5 z with
zT = (1,0).

Next, we consider the case where T(xx*) is nonzero for every 0 =f x E
(:2. It is easy to check that T is one-to-one in this case. By Lemma 2.1,
we fine SA, SB such that 51 = SA 0 T 0 5 B satisfies SI(Eii ) = E ii ,

i = 1, 2. By Lemma 4.3, we find U, V such that 5 = U 0 51 0 V satisfies
S(Eii ) = E ii , i = 1, 2, 5(EI2 ) = CEI2 , S(EI2 ) = ccosaE12 +csinaEI2 .
Note that both SI and S maps every extreme point of E to another
extreme point of E and hence S = I or 1 by Lemma 4.4. Therefore 5 is
extreme and so is T.
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The following examples of positive linear operators are not extreme.
One can show these by direct calculations but in the following, we use
theorems proved earlier.

EXAMPLE 5.3. Let T ( b~ ci b~Ci) = (b~ c b~ c) for all a,

b, c, d E IR. Then T is not extreme since dim(Ker T) = 1.

EXAMPLE 5.4. Let T(Eu ) = I, T(E22 ) = ~I, T(E12 ) = ~ (i i),
T(E12 ) = ~ (~i ~). Suppose T were extreme and let T = U 0 Sz 0 V

where U, V are unitary and z E C 2 . Then To V* = U 0 Sz. Hx = Vel
then To V*(xx*) = T((V*x)(V*x)*) = T(En ) = I, while U oSz(xx*) =
U(yy*) = ww* for some w E C2 . But I ::f ww* for any w E C2 .

Therefore T is not extreme.

( a b+Ci) (a c)EXAMPLE 5.5. Let T b _ ci d = c d for all a, b, c,

d E R T is not extreme since dim(KerT) = 1. But note also that

T (
1 -1) (1 0) . T .-1 1 = 0 1 ,l.e. maps extreme pOlllt to a non-extreme

point.
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