Comm. Korean Math. Soc. 5 (1990), No. 1, pp. 123~128

DERIVATIONS AND EPIMORPHISMS ON BANACH ALGEBRAS

SANG HUN LEE*

1. Introduction

A derivation on a Banach algebra A is a linear mapping D of A into itself such that Dab = a(Db) + (Da)b, $(a, b \in A)$. If T is a linear operator from a Banach space X into a Banach space Y, then the separating space S(T) of T is defined by $S(T) = \{y \in Y : \text{there is a sequence } \{x_n\}$ in X such that $x_n \to 0$ in X with $T_{x_n} \to y$ in Y}. It is well known that S(T) is a ideal of Y if $T: X \to Y$ has dense range, and $T: X \to Y$ is continuous if and only if $S(T) = \{0\}$.

In [8] Singer and Wermer showed that the range of a continuous derivation on a commutative Banach algebra is contained in the radical and conjectured that the assumption of continuity is unnecessary. In [3] Cusack showed that if any derivation D on a commutative Banach algebra A has a nilpotent separating space, then the range of D is contained in the radical of A. By the radical of a commutative Banach algebra A, or rad(A), we mean the intersection of the kernels of all irreducible representations of A or equivalently the intersection of all maximal modular ideals of A. Hence if A has a unit, then the radical of A is the intersection of all maximal ideals.

A closed ideal I of a Banach algebra A is called a separating ideal if, for every sequence (a_n) in A, there is a positive integer N such that

$$(Ia_1a_2\ldots a_n)^- = (Ia_1a_2\ldots a_N)^-$$
 for $n \ge N$,

where $(Ia_1a_2...a_n)^-$ is the closure of $(Ia_1a_2...a_n)$.

Received December 30, 1989.

^{*}This work was supported by the scientific research grant, Ministry of Education, 1989.

Sang Hun Lee

In this paper we show that if A is a commutative Banach algebra and if D is a derivation on A, then the range of D on rad(A) is contained in rad(A) if and only if the range of D on A is contained in the redical. Also we show that if K is defined by

$$K = \{x \in rad(A) : \text{ for every } n \ge 1, \ D^n x \in rad(A)\},\$$

then the range of D on \overline{K} is contained in \overline{K} if and only if range of D on A is contained in the radical of A, which generalizes a main result of [9], also it is a characterization of [5]. In §3, we discuss the continuity of a homomorphism on Banach algebras. We prove that if A is a Banach algebra and B is a semi-prime Banach algebra and Q is a homomorphism from A onto B such that $\bigcap_{n>1} (S(Q)^n)^- = \{0\}$, then Q is continuous.

Throughout this paper, we suppose that A is a commutative Banach algebra and let D be a derivation on A, R and L will denoted, respectively, the radical and the prime radical of A.

2. Separating spaces of derivations

LEMMA 2.1.[3,4,7]. If the radical of the separating spaces S(D) of D is nilpotent, then S(D) is nilpotent. In particular, the range of D on A is contained in R.

THEOREM 2.2. If $\cap_{n>1}((\mathcal{S}(D)\cap R)^n)^- = \{0\}$, then $DA \subseteq R$.

Proof. Let $x \in \mathcal{S}(D) \cap R$. Since $\mathcal{S}(D)$ is a separating ideal of A, there is a positive integer N such that

$$(\mathcal{S}(D)x^N)^- = (\mathcal{S}(D)x^n)^- \quad ext{for} \quad n \ge N.$$

Since $\mathcal{S}(D)x^{n+1} \subseteq \mathcal{S}(D)x^n$ for $n \ge 1$, then

$$(\mathcal{S}(D)x^N)^- = \cap_{n \ge 1} (\mathcal{S}(D)x^n)^- \subseteq \bigcap_{n \ge 1} ((\mathcal{S}(D) \cap R)^n)^- = \{0\}.$$

Therefore $x^{N+1} = 0$. Thus $\mathcal{S}(D) \cap R$ is a closed nil ideal of A and so $\mathcal{S}(D) \cap R$ is nilpotent. Hence $\mathcal{S}(D)$ is nilpotent and we have $DA \subseteq R$.

h

124

Derivations and Epimorphisms on Banach Algebras

COROLLAY 2.3. If
$$\bigcap_{n\geq 1} (\mathcal{S}(D)^n)^- = \{0\}$$
, then $DA \subset R$.

COROLLARY 2.4. If $\bigcap_{n\geq 1} ((\mathcal{S}(D)\cap R)^n)^- = \{0\}$ and R is an integral domain, then D is continuous.

Proof. By theorem 2.2, S(D) is nilpotent. Therefore S(D) is contained in the prime radical L of A. Since $L \subseteq R$ and R is an integral doamin, $L = \{0\}$. Thus $S(D) = \{0\}$ and so D is continuous.

LEMMA 2.5.[8]. Let S be a linear mapping from a Banach space X into a Banach space Y and let X_0 and Y_0 be closed linear subspaces of X and Y, respectively, such that SX_0 is contained in Y_0 . If $S_0 : X/X_0 \to Y/Y_0$ is defined by

$$S_0(x + X_0) = S_x + Y_0.$$

Then S_0 is continuous if and only if $\mathcal{S}(D)$ is contained in Y_0 .

THEOREM 2.6. If $D(\mathcal{S}(D)) \subseteq \mathcal{S}(D)$ and $\mathcal{S}(D) \subseteq R$, then $DA \subseteq R$.

Proof. If $D(\mathcal{S}(D)) \subseteq \mathcal{S}(D)$ then D gives a derivation D_1 on $A/\mathcal{S}(D)$ defined by

$$D_1(a + \mathcal{S}(D)) = D_a + \mathcal{S}(D) \quad (a \in A).$$

Since $S(D) \subseteq S(D)$, by Lemma 2.5, D_1 is continuous. Therefore $D_1(A/S(D)) \subseteq rad(A/S(D))$ and $D_1(A/S(D)) \subseteq R/S(D)$, which completes the proof.

COROLLARY 2.7. If $\mathcal{S}(D)^2 = \mathcal{S}(D)$ and $\mathcal{S}(D) \subseteq R$, then $DA \subseteq R$.

Proof. Let x = ab for $a, b \in S(D)$. Then $Dab = a(Db) + (Da)b \in S(D)$, because S(D) is an ideal of A. By Lemma 2.5, and Theorem 2.6, we complete the proof.

LEMMA 2.8.[5]. If K is the ideal defined by $K = \{x \in R : D^n x \in R \text{ for all } n \ge 1\}$, then K is a prime ideal of A.

LEMMA 2.9. If D is a derivation on A, then $D^n R^{n+1} \subseteq R$. Proof. Let $x \in R^{n+1}$. Then

$$x = \sum_{i=1}^{k} a_{i_1} \dots a_{i_{n+1}} \text{ for } \{a_{i_j}\}_{i=1,\dots,k}^{j=1,\dots,n+1} \text{ in } R.$$

125

Sang Hun Lee

We prove that $D^{n}a_{1} \ldots a_{n+1} \in R$ for $a_{1}, \ldots, a_{n+1} \in R$. For n = 1, $Da_{1}a_{2} = a_{1}(Da_{2}) + (Da_{1})a_{2} \in R$, $(a_{1}, a_{2} \in R)$. Suppose that $D^{k}a_{1} \ldots a_{k+1} \in R$, $(a_{1}, \ldots, a_{k+1} \in R)$. Then $D^{k+1}a_{1} \ldots a_{k+2} = D^{k}((a_{1} \ldots a_{k+1})Da_{k+2} + a_{k+2}D(a_{1} \ldots a_{k+1})) \in R$, $(a_{1}, \ldots, a_{k+2} \in R)$. Therefore $D^{n}a_{1} \ldots a_{n+1} \in R$, $(a_{1}, \ldots, a_{n+1} \in R)$. Since D^{n} is linear, $D^{n}x \in R$.

LEMMA 2.10.[5]. $If \cap_{n \ge 1} R^n = \{0\}$, then $DA \subseteq R$.

THEOREM 2.11. $DA \subseteq R$ if and onky if $D\overline{K} \subseteq \overline{K}$.

Proof. If $DA \subseteq R$, then K = R. Therefore $D\overline{K} = \overline{K}$. Conversely if $D\overline{K} \subseteq \overline{K}$, then D gives a derivation D_1 on A/\overline{K} defined by $D_1(a+\overline{K}) = Da + \overline{K}$, $(a \in A)$. Since $\overline{K} \subseteq R$, $rad(A/\overline{K}) = R/\overline{K}$. Now we prove that $\bigcap_{n\geq 1}(R/\overline{K})^n = \{0\}$. Let $x \in \bigcap_{n\geq 1}(R/\overline{K})^n$. Then there are $a_n \in R^n$ such that $x = a_n + \overline{K}$. Now for every $n \geq 1$, $a_1 - a_{n+1} \in \overline{K}$. Hence $D^n(a_1 - a_{n+1}) \in \overline{K}$ and by Lemma 2.9, $D^n a_{n+1} \in R$. Thus $D^n a_1 \in R$ for every $n \geq 1$. Therefore $a_1 \in K \subseteq \overline{K}$ and so x = 0 in A/\overline{K} . Thus $DA \subseteq R$.

Clearly, we have the following corollary.

COROLLARY 2.12. $DA \subseteq R$ if and only if $DR \subseteq R$.

From Theorem 2.11, Corollary 2.12 and [5], we get the following result.

COROLLARY 2.13. The following statements are equivalent: (a) $DA \subseteq R$ (b) $S(D) \cap R \subseteq K$ (c) K is closed (d) $D\overline{K} \subseteq \overline{K}$ (e) $DR \subseteq R$.

From this Corollary 2.13, we get the following. This result is a main theorem of [9].

COROLLARY 2.14.[9]. Every derivation on a commutative Banach algebra A in which every prime ideal is closed has a range in its radical.

126

3. Separating spaces of homomorphisms

Let A and B be Banach algebras. By an epimorphism Q from A onto B we mean a linear mapping satisfying Q(ab) = Q(a)Q(b), $(a, b \in A)$.

THEOREM 3.1. If $\bigcap_{n\geq 1} (S(Q)^n)^- = \{0\}$, then the separating space S(Q) of Q is nilpotent.

Proof. Let $x \in \mathcal{S}(Q)$, since $\mathcal{S}(Q)$ is a separating ideal of B, there is a positive integer N such that

$$(\mathcal{S}(Q)x^N)^- = (\mathcal{S}(Q)x^n)^- \quad (n \ge N).$$

Since $\mathcal{S}(Q)x^{n+1} \subseteq \mathcal{S}(Q)x^n$, $(n \geq 1)$, $(\mathcal{S}(Q)x^N)^- = \bigcap_{n \geq 1} (\mathcal{S}(Q)x^n)^- \subseteq \bigcap_{n \geq 1} (\mathcal{S}(Q)^n)^- = \{0\}$. Therefore $x^{N+1} = 0$ and so $\mathcal{S}(Q)$ is nil. Since $\mathcal{S}(Q)$ is a closed nil ideal of B, $\mathcal{S}(Q)$ is nilpotent.

COROLLARY 3.2. If $\bigcap_{n\geq 1}(\mathcal{S}(Q)^n)^- = \{0\}$ and if R is an integral domain, then Q is continuous.

Proof. Compare with Corollary 2.4.

COROLLARY 3.3. If $\bigcap_{n\geq 1} (S(Q)^n)^- = \{0\}$ and B is semi-prime, then Q is continuous.

Proof. By Theorem 3.1, S(Q) is nilpotent. Therefore S(Q) is contained in the prime radical L of B. Since B is semi-prime, $L = \{0\}$. Hence $S(Q) = \{0\}$ and so Q is continuous.

References

- 1. Allan, G.R., Embedding the algebras of formal power series in a Banach algebra, Proc. London Math. Soc., 25(1972), 329-340.
- Johnson, B.E., Continuity of derivations on commutative Banach algebras, Amer. J. Math., 91(1969), 1-10.
- Julian Cusack, Automatic continuity and topologically simple radical Banach algebras, J. London Math. Soc., 16(1977), 493-500.
- Garimella R.V., Continuity of derivations on some semiprime Banach algebra, Proc. Amer. Math. Soc., 99(2)(1987), 289-292.

Sang Hun Lee

- 5. Khosravi A., Derivations on commutative Banach algebras, Proc. Amer. Math. Soc., 84(1982), 60-64.
- 6. Sinclair, A.M., Continuous derivations on Banach algebras, Proc. Amer. Math. Soc., 20(1969), 166-170.
- 7. Sinclair, A.M., Automatic Continuity of Linear Operators, London Math. Soc., Lecture Note Series 21(1976).
- 8. Singer, I.M. and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129(1955), 260-264.
- 9. Young Whan Lee and Kil-Woung Jun, Derivations on commutative Banach algebras, Bull. Korean Math. Soc., 26(1989), No.1, 31-34.

Department of Mathematics Kyungpook National University Taegu 702-701, Korea