Comm. Korean Math. Soc. 5 (1990), No. 1, pp. 91~97

ON HIGHER DIMENSIONAL η -FUNCTIONS

GYO TAEK JIN

For $p \geq 2$, a *p*-link means a two component link (M, K) in S^{2p+1} , where M is a *p*-sphere and K a (2p-1)-sphere. For a *p*-link L = (M, K), we define its η -function as follows. Since $\pi_1 M = 0$, there exists a lift \widetilde{M} of M in the infinite cyclic cover \widetilde{X} of $S^{2p+1} \setminus K$. Let ℓ be a zeropush-off of M in S^{2p+1} and $\widetilde{\ell}$ its lift in \widetilde{X} . Denote by t the generator of the covering transformation corresponding to a meridian of K. Let $A(t) \in \mathbb{Z}[t, t^{-1}]$ be an annihilator of the class $[\widetilde{\ell}] \in H_p(\widetilde{X})$. Then $A(t)\widetilde{\ell}$ is a boundary of a (p+1)-chain ζ in \widetilde{X} . Define

$$\eta_L(t) = \frac{\sum_{i=-\infty}^{\infty} \operatorname{Int}(\zeta, t^i \widetilde{M}) t^i}{A(t)},$$

where Int(,) is the usual intersection number. As in the classical dimensional case, η_L is well defined and invariant under *I*-equivalence of *p*-links [**KY**].

In the case p = 1, the η -function can be described in terms of the Alexander polynomials of the link and its components [J].

PROPOSITION 1. Let L be a p-link for some $p \ge 2$. Then

(a) $\eta_L(t^{-1}) = (-1)^{p+1} \eta_L(t)$, (b) $\eta_L(1) = 0$, (c) $\eta_L(t)$ is of the form f(t)/g(t) where f(t), $g(t) \in \mathbb{Z}[t, t^{-1}]$ and |g(1)| = 1.

Proof. (a) Let L = (M, K). Choose a zero-push-off ℓ of M. Then $L' = (\ell, K)$ is ambient isotopic to L. Let ζ be as above and ζ' be a

Received November 7, 1989.

(p+1)-chain such that $\partial \zeta' = A(t)\widetilde{M}$. Then

•

$$\eta_{L}(t^{-1}) = \frac{\sum_{i=-\infty}^{\infty} \operatorname{Int}(\zeta, t^{i}\widetilde{M})t^{-i}}{A(t^{-1})}$$

$$= \frac{\sum_{i=-\infty}^{\infty} A(t) \operatorname{Int}(\zeta, t^{i}\widetilde{M})t^{-i}}{A(t)A(t^{-1})}$$

$$= \frac{\sum_{i=-\infty}^{\infty} \operatorname{Int}(\zeta, t^{i}A(t)\widetilde{M})t^{-i}}{A(t)A(t^{-1})}$$

$$= \frac{\sum_{j=-\infty}^{\infty} \operatorname{Int}(t^{j}\zeta, \partial\zeta')t^{j}}{A(t)A(t^{-1})}$$

$$= \frac{\sum_{j=-\infty}^{\infty} (-1)^{p+1} \operatorname{Int}(t^{j}\partial\zeta, \zeta')t^{j}}{A(t)A(t^{-1})}$$

$$= \frac{\sum_{j=-\infty}^{\infty} (-1)^{p+1} (-1)^{p(p+1)} \operatorname{Int}(\zeta', t^{j}A(t)\widetilde{\ell})t^{j}}{A(t)A(t^{-1})}$$

$$= \frac{\sum_{j=-\infty}^{\infty} (-1)^{p+1} A(t^{-1}) \operatorname{Int}(\zeta', t^{j}\widetilde{\ell})t^{j}}{A(t)A(t^{-1})}$$

$$= (-1)^{p+1} \eta_{L'}(t)$$

$$= (-1)^{p+1} \eta_{L}(t).$$

- (b) It follows from the fact that $lk(\ell, M) = 0$.
- (c) As in the proof of [L2, Corollary 1.3], there exists an annihilator $\Delta(t) \in \mathbb{Z}[t, t^{-1}]$ of $H_p(\widetilde{X})$, satisfying $\Delta(1) = \pm 1$.

THEOREM 2. Let $\eta(t) = f(t)/g(t)$ with $f(t), g(t) \in \mathbb{Z}[t, t^{-1}]$. Suppose that

- (a) $\eta(t^{-1}) = (-1)^{p+1} \eta(t)$
- (b) $\eta(1) = 0$
- (c) |g(1)| = 1

for some integer $p \ge 2$. Then there exists a p-link L such that $\eta_L(t) = \eta(t)$.

Proof. We use Levine's construction in [L1]. By multiplying $g(t^{-1})$ both on the denominator and the numerator of $\eta(t)$, we may assume that

 $\eta(t)$ is of the form

$$\frac{F(t) + (-1)^{p+1}F(t^{-1})}{G(t)}$$

where $G(t^{-1}) = G(t)$ and G(1) = 1. Let K_0 be a (2p-1)-dimensional unknot in S^{2p+1} . Let $S = (S_{-m}, S_{-m+1}, \ldots, S_m)$ be a trivial link of *p*-spheres in a ball $B \subset S^{2p+1} \setminus K_0$ and S_a be a *p*-dimensional unknot in *B* disjoint from *S* such that

$$lk(S_a, S_i) = g_i$$

where $G(t) = \sum_{i=-m}^{m} g_i t^i$. Let
 $S_b = S_{-m} \sharp S_{-m+1} \sharp \cdots \sharp S_m$

be an oriented connected sum, in which the connected sum between S_i and S_{i+1} is taken along an arc A_i connecting S_i and S_{i+1} , oriented from S_i to S_{i+1} and going once around $\mathbf{S}^{2p+1} \setminus K_0$ in a fixed direction for each $-m \leq i \leq m-1$. A spherical modification on the trivial normal framings on S_a and S_b will make K_0 into a knot K in a new sphere \mathbf{S}^{2p+1} . Let \tilde{X} be the infinite cyclic cover of $\mathbf{S}^{2p+1} \setminus K$. Then $H_p(\tilde{X})$ is generated by $\tilde{\alpha}$ and $\tilde{\beta}$ over $\mathbf{Z}[t, t^{-1}]$, where $\tilde{\alpha}$ and $\tilde{\beta}$ are lifts of some meridian spheres α and β to S_a and S_b , respectively. A computation shows that

$$\begin{bmatrix} 0 & G(t) \\ (-1)^{p+1}G(t) & 0 \end{bmatrix}$$

is a presentation matrix for $H_p(\widetilde{X})$.

Let $F(t) = \sum_{i=-n}^{n} f_i t^i$ and let $\mathcal{M} = (\mathcal{M}_{-n}, \mathcal{M}_{-n+1}, \dots, \mathcal{M}_n)$ be another trivial link of *p*-spheres in *B* disjoint from $S_a \cup S_b$ such that

$$lk(\mathcal{M}_i, S_a) = f_i \quad \text{for all } i$$
$$lk(\mathcal{M}_i, S_j) = \begin{cases} 1 & \text{for } i = j = 0\\ 0 & \text{otherwise.} \end{cases}$$

Let $M_0 = \mathcal{M}_{-n} \# \mathcal{M}_{-n+1} \# \cdots \# \mathcal{M}_n$ be an oriented connected sum obtained in a similar manner as S_b . Passing to the same spherical modification, M_0 becomes M such that a lift \widetilde{M} of M in \widetilde{X} is homologous to $F(t)\tilde{\alpha} + \tilde{\beta}$. Let L be the *p*-link (M, K). A computation shows that Gyo Taek Jin

$$\eta_L(t) = \frac{F(t) + (-1)^{p+1} F(t^{-1})}{G(t)}.$$

Given a *p*-link L = (M, K), suppose that M is null-homotopic in $S^{2p+1} \setminus K$. Then there exists a map $g: D^{p+1} \to S^{2p+1} \setminus K$ such that

commutes. Let $g': \mathbf{D}^{p+1} \to (\mathbf{S}^{2p+1} \setminus K) \times [0,1]$ be defined by

$$g'(x)=\left(g(x),rac{1-\|x\|}{2}
ight) ext{ for all } x\in \mathbf{D}^{p+1}.$$

We may assume that g' is a self-transverse immersion. Let \widetilde{X} be the infinite cyclic cover of $S^{2p+1} \setminus K$ and let \tilde{g} and \tilde{g}' be lifts of g and g', respectively, such that

\mathbf{S}^{p}	С	\mathbf{D}^{p+1}	$\xrightarrow{\tilde{g}'}$	$\widetilde{X} \times [0,1]$
				U
\mathbf{S}^p	С	\mathbf{D}^{p+1}	$\tilde{g} \times \{0\}$	$\widetilde{X} \times \{0\}$

commutes. Define

$$\sigma_L(t) = \sum_{i=1}^{\infty} \operatorname{Int}(t^n \tilde{g}'(\mathbf{D}^{p+1}), \tilde{g}'(\mathbf{D}^{p+1}))(t^n - 1).$$

According to the next theorem, σ_L is independent of the choice of the map g. If K is null-homotopic in $\mathbf{S}^{2p+1} \setminus M$ also, then the map g 'extends' to a link-map $g_L : \mathbf{S}^{p+1} \cup \mathbf{S}^{2p} \to \mathbf{S}^{2p+2}$ whose restriction to equators represents the *p*-link L. Then $\sigma_L(t)$ is equal to Krik's σ -invariant $\sigma_{g_L}(t)$ [K].

94

THEOREM 3. Suppose L = (M, K) is a p-link such that M is null-homotopic in $S^{2p+1} \setminus K$. Then

$$\eta_L(t) = \sigma_L(t) + (-1)^{p+1} \sigma_L(t^{-1}).$$

Proof. Let g, g', \tilde{g} and \tilde{g}' be as above. Then, for $i \geq 1$,

$$Int(\tilde{g}(\mathbf{D}^{p+1}), t^{i}\tilde{g}(\mathbf{S}^{p})) \qquad \text{in } \widetilde{X} \equiv \widetilde{X} \times \{0\}$$
$$=(-1)^{p+1} Int(\tilde{g}'(\mathbf{D}^{p+1}), t^{i}\tilde{g}'(\mathbf{D}^{p+1})) \qquad \text{in } \widetilde{X} \times [0, 1]$$
$$= Int(t^{i}\tilde{g}'(\mathbf{D}^{p+1}), \tilde{g}'(\mathbf{D}^{p+1})).$$

By Proposition 1, we have

$$\eta_L(t) = \sum_{i=1}^{\infty} \operatorname{Int}(\tilde{g}(\mathbf{D}^{p+1}), t^i \tilde{g}(\mathbf{S}^p))((t^i - 1) + (-1)^{p+1}(t^{-i} - 1)))$$
$$= \sigma_L(t) + (-1)^{p+1} \sigma_L(t^{-1}).$$

Let L = (M, K) be a *p*-link with K unknotted in S^{2p+1} . Then there exists an embedding $f_L : S^p \hookrightarrow S^1 \times D^{2p}$ making

$$\begin{array}{rcl} \mathbf{S}^p & \hookrightarrow & \mathbf{S}^1 \times \mathbf{D}^{2p} \\ \\ \| & & \| \\ M & \hookrightarrow & \mathbf{S}^{2p+1} \setminus K \end{array}$$

commutative. Let $I_L = (I_1, I_2, ...)$ be equal to the Hacon invariant

$$I_{f_L} \in \bigoplus_{i=1}^{\infty} \mathbf{Z}$$

of the embedding f_L [Ha]. Then obviously I_L is well defined. Identify

$$\bigoplus_{i=1}^{\infty} \mathbf{Z} \equiv \bigoplus_{i=1}^{\infty} \mathbf{Z}(t^{i} - 1) \subset \mathbf{Z}[t].$$

Gyo Taek Jin

Then

$$I_L = I_L(t) = \sum_{i=1}^{\infty} I_i(t^i - 1).$$

THEOREM 4. Let L = (M, K) be a p-link such that K is unknotted in S^{2p+1} . Then

$$\eta_L(t) = I_L(t) + (-1)^{p+1} I_L(t^{-1}).$$

Proof. Let ℓ , $\tilde{\ell}$, \widetilde{M} , ζ and ζ' be as in the proof of Proposition 1. Since K is unknotted, $H_p(\tilde{X}) = 0$. Therefore we may choose A(t) = 1 and then $\partial \zeta = \tilde{\ell}$ and $\partial \zeta' = \widetilde{M}$. Since the infinite cyclic cover of $\mathbf{S}^{2p+1} \setminus K$ is homeomorphic to \mathbf{R}^{2p+1} , we have, for i > 0,

$$\operatorname{Int}(\zeta,t^i\widetilde{M})=lk(\widetilde{\ell},t^i\widetilde{M})=lk(\widetilde{M},t^i\widetilde{M})$$

and

$$Int(\zeta, t^{-i}\widetilde{M}) = (-1)^{p(p+1)} Int(t^{-i}\widetilde{M}, \zeta)$$
$$= Int(\widetilde{M}, t^{i}\zeta)$$
$$= (-1)^{p+1} Int(\zeta', t^{i}\widetilde{\ell})$$
$$= (-1)^{p+1} lk(\widetilde{M}, t^{i}\widetilde{\ell})$$
$$= (-1)^{p+1} lk(\widetilde{M}, t^{i}\widetilde{M}).$$

Therefore, by Proposition 1 (b), we have

$$\eta_L(t) = \sum_{i=-\infty}^{\infty} \operatorname{Int}(\zeta, t^i \widetilde{M}) t^i$$
$$= \sum_{i \neq 0} \operatorname{Int}(\zeta, t^i \widetilde{M}) (t^i - 1)$$

96

On higher dimensional η -functions

$$\begin{split} &= \sum_{i=1}^{\infty} \operatorname{Int}(\zeta, t^{i} \widetilde{M})(t^{i} - 1) + \sum_{i=1}^{\infty} \operatorname{Int}(\zeta, t^{-i} \widetilde{M})(t^{-i}, 1) \\ &= \sum_{i=1}^{\infty} lk(\widetilde{M}, t^{i} \widetilde{M})(t^{i} - 1) + (-1)^{p+1} \sum_{i=1}^{\infty} \operatorname{Int}(\widetilde{M}, t^{i} \widetilde{M})(t^{-i} - 1) \\ &= \sum_{i=1}^{\infty} I_{i}(t^{i} - 1) + (-1)^{p+1} \sum_{i=1}^{\infty} I_{i}(t^{-i} - 1) \\ &= I_{L}(t) + (-1)^{p+1} I_{L}(t^{-1}). \end{split}$$

By Theorem 3 and Theorem 4, we obtain

COROLLARY 5. Let L = (M, K) be a p-link such that K is unknotted. Then

$$\sigma_L(t)=I_L(t).$$

References

- [H] D.D.J. Hacon, Embeddings of S^p in $S^1 \times S^q$ in the metastable range, Topology 7 (1968), 1–10.
- [J] G.T. Jin, On Kojima's η-function of links, "Differential Topology, Proceedings, Siegen 1987," ed. U. Koschorke, Springer Lecture Notes No.1350, 1988, pp. 14-30.
- [K] P. Kirk, A link homotopy invariant for $S^k \cup S^{2k-2} \to S^{2k}$, preprint, Brandeis Univ., 1986.
- [KY] S. Kojima and M. Yamasaki, Some new invariants of links, Invent. Math. 54 (1979), 213-228.
- [L1] J. Levine, A characterization of knot polynomials, Topology 4 (1965), 135-141.
- [L2] _____, Knot modules I, Trans. Amer. math. Soc. 229 (1977), 1-50.

Department of Mathematics Korea Institute of Technology Taejon 305-701, Korea