ON HIGHER DIMENSIONAL η-FUNCTIONS

Gyo Taek Jin

For $p \geq 2$, a p-link means a two component link (M, K) in $S^{2 p+1}$, where M is a p-sphere and K a $(2 p-1)$-sphere. For a p-link $L=(M, K)$, we define its η-function as follows. Since $\pi_{1} M=0$, there exists a lift \widetilde{M} of M in the infinite cyclic cover \widetilde{X} of $S^{2 p+1} \backslash K$. Let ℓ be a zero-push-off of M in $S^{2 p+1}$ and $\tilde{\ell}$ its lift in \widetilde{X}. Denote by t the generator of the covering transformation corresponding to a meridian of K. Let $A(t) \in \mathbf{Z}\left[t, t^{-1}\right]$ be an annihilator of the class $[\tilde{\ell}] \in H_{p}(\widetilde{X})$. Then $A(t) \tilde{\ell}$ is a boundary of a $(p+1)$-chain ζ in \widetilde{X}. Define

$$
\eta_{L}(t)=\frac{\sum_{i=-\infty}^{\infty} \operatorname{Int}\left(\zeta, t^{i} \widetilde{M}\right) t^{i}}{A(t)}
$$

where $\operatorname{Int}($,$) is the usual intersection number. As in the classical$ dimensional case, η_{L} is well defined and invariant under I-equivalence of p-links [KY].

In the case $p=1$, the η-function can be described in terms of the Alexander polynomials of the link and its components [J].

Proposition 1. Let L be a p-link for some $p \geq 2$. Then
(a) $\eta_{L}\left(t^{-1}\right)=(-1)^{p+1} \eta_{L}(t)$,
(b) $\eta_{L}(1)=0$,
(c) $\eta_{L}(t)$ is of the form $f(t) / g(t)$ where $f(t), g(t) \in \mathbf{Z}\left[t, t^{-1}\right]$ and $|g(1)|=1$.

Proof. (a) Let $L=(M, K)$. Choose a zero-push-off ℓ of M. Then $L^{\prime}=(\ell, K)$ is ambient isotopic to L. Let ζ be as above and ζ^{\prime} be a

[^0]$(p+1)$-chain such that $\partial \zeta^{\prime}=A(t) \widetilde{M}$. Then
\[

$$
\begin{aligned}
\eta_{L}\left(t^{-1}\right) & =\frac{\sum_{i=-\infty}^{\infty} \operatorname{Int}\left(\zeta, t^{i} \widetilde{M}\right) t^{-i}}{A\left(t^{-1}\right)} \\
& =\frac{\sum_{i=-\infty}^{\infty} A(t) \operatorname{Int}\left(\zeta, t^{\widetilde{M}}\right) t^{-i}}{A(t) A\left(t^{-1}\right)} \\
& =\frac{\sum_{i=-\infty}^{\infty} \operatorname{Int}\left(\zeta, t^{i} A(t) \widetilde{M}\right) t^{-i}}{A(t) A\left(t^{-1}\right)} \\
& =\frac{\sum_{j=-\infty}^{\infty} \operatorname{Int}\left(t^{j} \zeta, \partial \zeta^{\prime}\right) t^{j}}{A(t) A\left(t^{-1}\right)} \\
& =\frac{\sum_{j=-\infty}^{\infty}(-1)^{p+1} \operatorname{Int}\left(t^{j} \partial \zeta, \zeta^{\prime}\right) t^{j}}{A(t) A\left(t^{-1}\right)} \\
& =\frac{\sum_{j=-\infty}^{\infty}(-1)^{p+1}(-1)^{p(p+1)} \operatorname{Int}\left(\zeta^{\prime}, t^{j} A(t) \tilde{\ell}\right) t^{j}}{A(t) A\left(t^{-1}\right)} \\
& =\frac{\sum_{j=-\infty}^{\infty}(-1)^{p+1} A\left(t^{-1}\right) \operatorname{Int}\left(\zeta^{\prime}, t^{j} \tilde{\ell}\right) t^{j}}{A(t) A\left(t^{-1}\right)} \\
& =(-1)^{p+1} \eta_{L^{\prime}(t)} \\
& =(-1)^{p+1} \eta_{L}(t) .
\end{aligned}
$$
\]

(b) It follows from the fact that $l k(\ell, M)=0$.
(c) As in the proof of [L2, Corollary 1.3], there exists an annihilator $\Delta(t) \in \mathbf{Z}\left[t, t^{-1}\right]$ of $H_{p}(\widetilde{X})$, satisfying $\Delta(1)= \pm 1$.

Theorem 2. Let $\eta(t)=f(t) / g(t)$ with $f(t), g(t) \in \mathbf{Z}\left[t, t^{\mathbf{- 1}}\right]$. Suppose that
(a) $\eta\left(t^{-1}\right)=(-1)^{p+1} \eta(t)$
(b) $\eta(1)=0$
(c) $|g(1)|=1$
for some integer $p \geq 2$. Then there exists a p-link L such that $\eta_{L}(t)=$ $\eta(t)$.

Proof. We use Levine's construction in [L1]. By multiplying $g\left(t^{-1}\right)$ both on the denominator and the numerator of $\eta(t)$, we may assume that
$\eta(t)$ is of the form

$$
\frac{F(t)+(-1)^{p+1} F\left(t^{-1}\right)}{G(t)}
$$

where $G\left(t^{-1}\right)=G(t)$ and $G(1)=1$. Let K_{0} be a $(2 p-1)$-dimensional unknot in $\mathbf{S}^{2 p+1}$. Let $S=\left(S_{-m}, S_{-m+1}, \ldots, S_{m}\right)$ be a trivial link of p-spheres in a ball $B \subset \mathbf{S}^{2 p+1} \backslash K_{0}$ and S_{a} be a p-dimensional unknot in B disjoint from S such that

$$
l k\left(S_{a}, S_{i}\right)=g_{i}
$$

where $G(t)=\sum_{i=-m}^{m} g_{i} t^{i}$. Let

$$
S_{b}=S_{-m} \sharp S_{-m+1} \sharp \cdots \sharp S_{m}
$$

be an oriented connected sum, in which the connected sum between S_{i} and S_{i+1} is taken along an arc A_{i} connecting S_{i} and S_{i+1}, oriented from S_{i} to S_{i+1} and going once around $\mathbf{S}^{2 p+1} \backslash K_{0}$ in a fixed direction for each $-m \leq i \leq m-1$. A spherical modification on the trivial normal framings on S_{a} and S_{b} will make K_{0} into a knot K in a new sphere $\mathbf{S}^{2 p+1}$. Let \widetilde{X} be the infinite cyclic cover of $\mathrm{S}^{2 p+1} \backslash K$. Then $H_{p}(\tilde{X})$ is generated by $\tilde{\alpha}$ and $\tilde{\beta}$ over $Z\left[t, t^{-1}\right]$, where $\tilde{\alpha}$ and $\tilde{\beta}$ are lifts of some meridian spheres α and β to S_{a} and S_{b}, respectively. A computation shows that

$$
\left[\begin{array}{cc}
0 & G(t) \\
(-1)^{p+1} G(t) & 0
\end{array}\right]
$$

is a presentation matrix for $H_{p}(\tilde{X})$.
Let $F(t)=\sum_{i=-n}^{n} f_{i} t^{i}$ and let $\mathcal{M}=\left(\mathcal{M}_{-n}, \mathcal{M}_{-n+1}, \ldots, \mathcal{M}_{n}\right)$ be another trivial link of p-spheres in B disjoint from $S_{a} \cup S_{b}$ such that

$$
\begin{aligned}
& l k\left(\mathcal{M}_{i}, S_{a}\right)=f_{i} \quad \text { for all } i \\
& l k\left(\mathcal{M}_{i}, S_{j}\right)= \begin{cases}1 & \text { for } i=j=0 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Let $M_{0}=\mathcal{M}_{-n} \sharp \mathcal{M}_{-n+1} \sharp \cdots \sharp \mathcal{M}_{n}$ be an oriented connected sum obtained in a similar manner as S_{b}. Passing to the same spherical modification, M_{0} becomes M such that a lift \widetilde{M} of M in \widetilde{X} is homologous to $F(t) \tilde{\alpha}+\tilde{\beta}$. Let L be the $p-\operatorname{link}(M, K)$. A computation shows that

$$
\eta_{L}(t)=\frac{F(t)+(-1)^{p+1} F\left(t^{-1}\right)}{G(t)}
$$

Given a p-link $L=(M, K)$, suppose that M is null-homotopic in $\mathbf{S}^{2 p+1} \backslash K$. Then there exists a map $g: \mathbf{D}^{p+1} \rightarrow \mathbf{S}^{2 p+1} \backslash K$ such that

$$
\begin{array}{ccc}
\mathbf{S}^{p} & \equiv & M \\
\cap & & \cap \\
\mathbf{D}^{p+1} & \xrightarrow{g} & \mathbf{S}^{2 p+1} \backslash K
\end{array}
$$

commutes. Let $g^{\prime}: \mathbf{D}^{p+1} \rightarrow\left(\mathbf{S}^{2 p+1} \backslash K\right) \times[0,1]$ be defined by

$$
g^{\prime}(x)=\left(g(x), \frac{1-\|x\|}{2}\right) \text { for all } x \in \mathbf{D}^{p+1} .
$$

We may assume that g^{\prime} is a self-transverse immersion. Let \widetilde{X} be the infinite cyclic cover of $\mathbf{S}^{2 p+1} \backslash K$ and let \tilde{g} and \tilde{g}^{\prime} be lifts of g and g^{\prime}, respectively, such that

$$
\begin{array}{ccccc}
\mathbf{S}^{p} \subset \mathbf{D}^{p+1} & \xrightarrow{\tilde{g}^{\prime}} & \tilde{X} \times[0,1] \\
\| & & & U \\
\mathbf{S}^{p} \subset \mathbf{D}^{p+1} & \xrightarrow{\bar{g} \times\{0\}} & \tilde{X} \times\{0\}
\end{array}
$$

commutes. Define

$$
\sigma_{L}(t)=\sum_{i=1}^{\infty} \operatorname{Int}\left(t^{n} \tilde{g}^{\prime}\left(\mathbf{D}^{p+1}\right), \tilde{g}^{\prime}\left(\mathbf{D}^{p+1}\right)\right)\left(t^{n}-1\right) .
$$

According to the next theorem, σ_{L} is independent of the choice of the map g. If K is null-homotopic in $\mathbf{S}^{2 p+1} \backslash M$ also, then the map g 'extends' to a link-map $g_{L}: \mathbf{S}^{p+1} \cup \mathbf{S}^{2 p} \rightarrow \mathbf{S}^{2 p+2}$ whose restriction to equators represents the p-link L. Then $\sigma_{L}(t)$ is equal to Krik's σ-invariant $\sigma_{g_{L}}(t)$ [K].

Theorem 3. Suppose $L=(M, K)$ is a p-link such that M is nullhomotopic in $\mathbf{S}^{2 p+1} \backslash K$. Then

$$
\eta_{L}(t)=\sigma_{L}(t)+(-1)^{p+1} \sigma_{L}\left(t^{-1}\right) .
$$

Proof. Let g, g^{\prime}, \tilde{g} and \tilde{g}^{\prime} be as above. Then, for $i \geq 1$,

$$
\begin{array}{rll}
& \operatorname{Int}\left(\tilde{g}\left(\mathbf{D}^{p+1}\right), t^{i} \tilde{g}\left(\mathbf{S}^{p}\right)\right) & \text { in } \tilde{X} \equiv \widetilde{X} \times\{0\} \\
= & (-1)^{p+1} \operatorname{Int}\left(\tilde{g}^{\prime}\left(\mathbf{D}^{p+1}\right), t^{i} \tilde{g}^{\prime}\left(\mathbf{D}^{p+1}\right)\right) & \text { in } \widetilde{X} \times[0,1] \\
= & \operatorname{Int}\left(t^{i} \tilde{g}^{\prime}\left(\mathbf{D}^{p+1}\right), \tilde{g}^{\prime}\left(\mathbf{D}^{p+1}\right)\right) . &
\end{array}
$$

By Proposition 1, we have

$$
\begin{aligned}
& \eta_{L}(t) \\
= & \sum_{i=1}^{\infty} \operatorname{Int}\left(\tilde{g}\left(\mathbf{D}^{p+1}\right), t^{i} \tilde{g}\left(\mathbf{S}^{p}\right)\right)\left(\left(t^{i}-1\right)+(-1)^{p+1}\left(t^{-i}-1\right)\right) \\
= & \sigma_{L}(t)+(-1)^{p+1} \sigma_{L}\left(t^{-1}\right)
\end{aligned}
$$

Let $L=(M, K)$ be a p-link with K unknotted in $\mathbf{S}^{2 p+1}$. Then there exists an embedding $f_{L}: \mathbf{S}^{p} \hookrightarrow \mathbf{S}^{1} \times \mathbf{D}^{2 p}$ making

$$
\mathbf{S}^{p} \hookrightarrow \mathbf{S}^{1} \times \mathbf{D}^{2 p}
$$

commutative. Let $I_{L}=\left(I_{1}, I_{2}, \ldots\right)$ be equal to the Hacon invariant

$$
I_{f_{L}} \in \bigoplus_{i=1}^{\infty} \mathbf{Z}
$$

of the embedding $f_{L}[\mathbf{H a}]$. Then obviously I_{L} is well defined. Identify

$$
\bigoplus_{i=1}^{\infty} \mathbf{Z} \equiv \bigoplus_{i=1}^{\infty} \mathbf{Z}\left(t^{i}-1\right) \subset \mathbf{Z}[t] .
$$

Then

$$
I_{L}=I_{L}(t)=\sum_{i=1}^{\infty} I_{i}\left(t^{i}-1\right)
$$

Theorem 4. Let $L=(M, K)$ be a p-link such that K is unknotted in $\mathbf{S}^{2 p+1}$. Then

$$
\eta_{L}(t)=I_{L}(t)+(-1)^{p+1} I_{L}\left(t^{-1}\right) .
$$

Proof. Let $\ell, \tilde{\ell}, \widetilde{M}, \zeta$ and ζ^{\prime} be as in the proof of Proposition 1. Since K is unknotted, $H_{p}(\widetilde{X})=0$. Therefore we may choose $A(t)=1$ and then $\partial \zeta=\tilde{\ell}$ and $\partial \zeta^{\prime}=\widetilde{M}$. Since the infinite cyclic cover of $\mathbf{S}^{2 p+1} \backslash K$ is homeomorphic to $\mathbf{R}^{2 p+1}$, we have, for $i>0$,

$$
\operatorname{Int}\left(\zeta, t^{i} \widetilde{M}\right)=l k\left(\tilde{\ell}, t^{i} \widetilde{M}\right)=l k\left(\widetilde{M}, t^{i} \widetilde{M}\right)
$$

and

$$
\begin{aligned}
\operatorname{Int}\left(\zeta, t^{-i} \widetilde{M}\right) & =(-1)^{p(p+1)} \operatorname{Int}\left(t^{-i} \widetilde{M}, \zeta\right) \\
& =\operatorname{Int}\left(\widetilde{M}, t^{i} \zeta\right) \\
& =(-1)^{p+1} \operatorname{Int}\left(\zeta^{\prime}, t^{i} \widetilde{\ell}\right) \\
& =(-1)^{p+1} l k\left(\widetilde{M}, t^{i} \tilde{\ell}\right) \\
& =(-1)^{p+1} l k\left(\widetilde{M}, t^{i} \widetilde{M}\right) .
\end{aligned}
$$

Therefore, by Proposition 1 (b), we have

$$
\begin{aligned}
\eta_{L}(t) & =\sum_{i=-\infty}^{\infty} \operatorname{Int}\left(\zeta, t^{i} \widetilde{M}\right) t^{i} \\
& =\sum_{i \neq 0} \operatorname{Int}\left(\zeta, t^{i} \widetilde{M}\right)\left(t^{i}-1\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{\infty} \operatorname{Int}\left(\zeta, t^{i} \widetilde{M}\right)\left(t^{i}-1\right)+\sum_{i=1}^{\infty} \operatorname{Int}\left(\zeta, t^{-i} \widetilde{M}\right)\left(t^{-i}, 1\right) \\
& =\sum_{i=1}^{\infty} l k\left(\widetilde{M}, t^{i} \widetilde{M}\right)\left(t^{i}-1\right)+(-1)^{p+1} \sum_{i=1}^{\infty} \operatorname{Int}\left(\widetilde{M}, t^{i} \widetilde{M}\right)\left(t^{-i}-1\right) \\
& =\sum_{i=1}^{\infty} I_{i}\left(t^{i}-1\right)+(-1)^{p+1} \sum_{i=1}^{\infty} I_{i}\left(t^{-i}-1\right) \\
& =I_{L}(t)+(-1)^{p+1} I_{L}\left(t^{-1}\right) .
\end{aligned}
$$

By Theorem 3 and Theorem 4, we obtain
Corollary 5. Let $L=(M, K)$ be a p-link such that K is unknotted. Then

$$
\sigma_{L}(t)=I_{L}(t)
$$

References

[H] D.D.J. Hacon, Embeddings of S^{p} in $S^{1} \times S^{q}$ in the metastable range, Topology 7 (1968), 1-10.
[J] G.T. Jin, On Kojima's η-function of links, "Differential Topology, Proceedings, Siegen 1987," ed. U. Koschorke, Springer Lecture Notes No.1350, 1988, pp. 14-30.
[K] P. Kirk, A link homotopy invariant for $S^{k} \cup S^{2 k-2} \rightarrow S^{2 k}$, preprint, Brandeis Univ., 1986.
[KY] S. Kojima and M. Yamasaki, Some new invariants of links, Invent. Math. 54 (1979), 213-228.
[L1] J. Levine, A characterization of knot polynomials, Topology 4 (1965), 135-141.
$[\mathbf{L 2}] \longrightarrow$ Knot modules I, Trans. Amer. math. Soc. 229 (1977), 1-50.

Department of Mathematics
Korea Institute of Technology
Taejon 305-701, Korea

[^0]: Received November 7, 1989.

