UNBOUNDED DERIVATIONS ON COMPACT ACTIONS OF C*-ALGEBRAS

SA-GE LEE+ AND SUN YOUNG JANG++

1. Introduction

Let A be a C^* -algebra and let Aut(A) be the group of *-automorphisms of A. Let G be a locally compact group. Let $\alpha: G \to Aut(A)$ be a strongly continuous homomorphism. The triple (A, G, α) is called a C^* -dynamical system. Let δ be a densely defined *-derivation on a C^* -algebra A. We say that δ is a generator of a C^* -dynamical system (A, \mathbf{R}, α) with real number group \mathbf{R} if there exists a strongly continuous one-parameter group $\alpha: \mathbf{R} \to Aut(A)$ of *-automorphisms such that δ is the infinitesimal generator for α , i.e. $\delta(x) = \lim_{t\to 0} \frac{\alpha_t(x)-x}{t}$ for all x in the domain of δ . A derivation δ is called a pre-generator if there exists an extension δ' of δ which is a generator of a C^* -dynamical system (A, \mathbf{R}, α) . Bratteli, Goodman and Jorgensen [4,5 etc] showed that unbounded derivation tangential to compact group of automorphisms with some domain condition is automatically a generator.

In this paper we prove that a densely defined closed *-derivation commuting with α on A is a generator if the C^* - dynamical system (A, G, α) satisfies certain conditions.

2. Preliminaries

Let (A, G, α) be a C^* -dynamical system and let G be a locally compact abelian group. Let dg denote the Haar measure on G. Let \widehat{G} be the dual

Received September 19, 1989.

Revised February 28, 1990.

⁺Partially supported by KOSEF, 1988-1989.

group of G. Let $L^1(G)$ be the group algebra of G. For $f \in L^1(G)$ the bounded linear operator $\alpha_f : A \to A$ is defined by

$$lpha_f(x) = \int_G f(g) lpha_g(x) dg \quad ext{for all } x \in A.$$

The Arveson spectrum of α is defined by $Sp(\alpha) = \{\gamma \in \widehat{G} | \alpha_f = 0 \Rightarrow \widehat{f}(\gamma) = 0\}$. If $x \in A$, let $Sp_{\alpha}(x) = \{\gamma \in \widehat{G} | \alpha_f(x) = 0 \Rightarrow \widehat{f}(\gamma) = 0\}$. If E is a subset of \widehat{G} , the spectral subspace associated with E is defined by $A^{\alpha}(E)$ = the norm closure of $\{x \in A : Sp_{\alpha}(x) \subset E\}$. Let A_F^{α} be the union of $A^{\alpha}(K)$ for all compact subsets K of \widehat{G} . It is known that A_F^{α} is a dense *-subalgebra of A [2]. For $\gamma \in \widehat{G}$ and $x \in A$, we set

$$P_{\gamma}(x) = \int_G \overline{\gamma(g)} lpha_g(x) dg.$$

Then P_{γ} is a projection of norm 1 from A onto $A^{\alpha}(\gamma)$, where $A^{\alpha}(\gamma)$ is the spectral subspace corresponding to γ . A^{α} denotes the fixed point algebra of α , i.e. $A^{\alpha} = \{x \in A | \alpha_{q}(x) = x \text{ for all } g \in G\}$.

Let (A,G,α) be a C^* -dynamical system. The representation π : $A \to L(H)$, where L(H) is the set of all bounded linear operators on a Hilbert space H, of A is α -covariant if α extends to a σ -weakly continuous action $\widehat{\alpha}$ of G in the σ -weak closure $\pi(A)''$ of $\pi(A)$ such that $\widehat{\alpha}_g(\pi(x)) = \pi(\alpha_g(x))$ for all $x \in A$. If G is compact, there exists always a nondegenerately α -covariant faithful representation of (A,G,α) . We denote von Neumann algebra $\pi(A)''$ generated by $\pi(A)$. For any non-empty subset S of $\pi(A)$, S' denotes the commutant of S in L(H).

REMARK 2.1. Let (A, G, α) be a C^* -dynamical system with a compact group G. Any approximate unit of A^{α} is also the approximate unit of A [9]. If A is represented nondegenerately in α -covariant faithful representation, by the covariance $A^{\alpha''} = A''^{\alpha}$.

3. Main results

Let G be a compact abelian group and we assume that A is represented faithfully, covariantly and nondegenerately on a Hilbert space H. The

 σ -weak closure of $A^{\alpha}(\gamma)A^{\alpha}(\gamma)^*$ is the σ -weak closed two sided ideal of $A^{\alpha''}$ for each $\gamma \in \widehat{G}$. Let $E(\gamma)$ be a projection in the center Z of $A^{\alpha''}$ such that the σ -weak closure of $A^{\alpha}(\gamma)A^{\alpha}(\gamma)^* = A^{\alpha''}E(\gamma)$. Put $C(\gamma) = A^{\alpha''}E(\gamma) \cap E(\gamma)A''E(\gamma)$. There are the linear map $\beta: C(-\gamma) \to C(\gamma)$ such that $\beta_{\gamma}(a)x = xa$ for all $a \in C(-\gamma)$ and $x \in A^{\alpha}(\gamma)$ and the closed linear map $L(\gamma)(x\xi) = \delta(x)\xi$ for all $x \in A^{\alpha}(\gamma)$ and $\xi \in H$. These maps were considered in [3]. A densely defined *-derivation δ is called tangential with respect to (A, G, α) if

- (1) $\delta(\alpha_g(x)) = \alpha_g(\delta(x))$ for all $x \in D(\delta)$,
- (2) $\delta(x) = 0$ for all $x \in A^{\alpha}$.

These consepts were first studied in [4,5,6].

THEOREM 3.1. Let (A, G, α) be a C^* -dynamical system and let G be a compact abelian group. Let δ be a *-closed derivation tangential with respect to (A, G, α) . Assume that $A^{\alpha'} \cap A' = \mathbf{C}I$. Then the following conditions are equivalent:

- (1) δ is bounded,
- (2) there exists an element h in Z such that $\delta = ad_{ih}$,
- (3) there exists an element h in Z such that

$$L(\gamma) = hE(\gamma) - \beta_{\gamma}(E(-\gamma)hE(-\gamma))$$
 for all $\gamma \in \widehat{G}$.

Proof. (1) \Rightarrow (2). Since δ is a bounded derivation on A, there exists $h \in A''_+$ such that $\delta = ad_{ih}$. Since $\delta|_{A^{\alpha}} = 0$, h is contained in $A^{\alpha'}$. Since δ commutes with α , we have

$$\delta(\alpha_g(x)) = i(h\alpha_g(x) - \alpha_g(x)h) = i(\widehat{\alpha}_g(h)\alpha_g(x) - \alpha_g(x)\widehat{\alpha}_g(h))$$

where $\widehat{\alpha}_g$ is an extension of α_g on A''. Hence $h - \widehat{\alpha}_g(h)$ is contained in A' for all $g \in G$. Since $A^{\alpha'} \cap A' = \mathbf{C}I$, there exists a complex number λ such that $h - \widehat{\alpha}_g(h) = \lambda I$. Let $h_n = (\alpha_g)^n(h)$ and then $||h_n|| \ge |||h|| - n\lambda|$. If we take enough large integer n, then λ must be zero. So we have $\widehat{\alpha}_g(h) = h$ for all $g \in G$ and h is contained in $A^{\alpha''}$.

(2) \Rightarrow (3). Supposed that there exists h in Z such that $\delta(x) = hx - xh$ for all $x \in D(\delta)$. Note that $xE(-\gamma) = E(\gamma)x = x$ for all $x \in A^{\alpha}(\gamma)$. For each $x \in A^{\alpha}(\gamma) \cap D(\delta)$, we have

$$\delta(x) = hx - xh = hx - xE(-\gamma)hE(-\gamma) = (hE(\gamma) - \beta_{\gamma}(E(-\gamma)hE(-\gamma))x :$$

Put $\widehat{L(\gamma)} = hE(\gamma) - \beta_{\gamma}(E(-\gamma)hE(-\gamma))$. Then $L(\gamma)$ and $\widehat{L(\gamma)}$ agree on $(A^{\alpha}(\gamma) \cap D(\delta))H$. Since $A^{\alpha}(\gamma) \cap D(\delta)$ is dense in $A^{\alpha}(\gamma)$ and since $L(\gamma)$ is closed, $L(\gamma)$ is bounded. Thus $L(\gamma) = \widehat{L(\gamma)}$.

 $(3) \Rightarrow (1)$. Since \widehat{G} is discrete, for each $x \in A_F^{\alpha} \cap D(\delta)$, x can be written as a finite linear combination of $x_{\gamma_i} \in A^{\alpha}(\gamma_i)$, say $x = \sum x_{\gamma_i}$ where $x_{\gamma_i} \in A^{\alpha}(\gamma_i)$. Then we have for all $\xi \in H$

$$\delta(x)\xi = \sum \delta(x_{\gamma_i})\xi = \sum (L(\gamma_i)x_{\gamma_i} - x_{\gamma_i}E(-\gamma_i)hE(-\gamma_i))\xi.$$

Since $xE(-\gamma) = E(\gamma)x = x$ for all $x \in A^{\alpha}(\gamma)$ and $h \in Z$,

$$\sum h E(\gamma_i) x_{\gamma_i} - x_{\gamma_i} E(-\gamma_i) h E(-\gamma_i) = \sum h x_{\gamma_i} - x_{\gamma_i} h = hx - xh.$$

Therefore $\delta(x) = hx - xh$ for all $x \in A_F^{\alpha} \cap D(\delta)$. Since $A_F^{\alpha} \cap D(\delta)$ is dense in A, $\delta(x) = hx - xh$ on A. In particular δ is bounded.

THEOREM 3.2. Let (A,G,α) be a C^* -dynamical system with a compact abelian group. Let δ be a *-derivation such that $A_F^{\alpha} = D(\delta)$ and $\delta(A^{\alpha}) \subset A_F^{\alpha}$. Supposed that there exists a faithful α -covariant representation $\{\pi,U,H\}$ of (A,G,α) such that $\{U_g|g\in G\}$ is contained in $\pi(A)''$. Then δ is a bounded perturbation of a derivation tangential to (A,G,α) .

Proof. Let $\{\pi, U, H\}$ be such a representation and let $(\pi(A), G, \widehat{\alpha})$ be the induced C^* -dynamical system. Let $M = \pi(A)''$. Let δ_{π} be the induced *-derivation on $\pi(D(\delta))$. Since π is faithful, we drop the notation π for simplicity. As in the proof of Lemma 5.1 of [5], there exists an element h in $\sum_{\gamma \in \widehat{G}} \oplus M^{\alpha}(\gamma)$ such that $\delta|_{A^{\widehat{\alpha}}} = ad_{ih}|_{A^{\widehat{\alpha}}}$. Define a linear map $\delta_0 : A^{\widehat{\alpha}} \to A$ by the formula $\delta_0 = \delta - ad_{ih}|_{A^{\widehat{\alpha}}}$. Then clearly $\delta_0|_{A^{\widehat{\alpha}}} = 0$. Since $D(\delta) = A_F^{\widehat{\alpha}}$, by Lemma 2.7.5 of [2] there exists an element L_0 in M such that $\delta_0(x) = L_0x$ for each $x \in A^{\widehat{\alpha}}$. Since multiplication is separately continuous under σ -weak topology, $\delta_0|_{A^{\widehat{\alpha}}}$ can be extended to $M^{\widehat{\alpha}}$ and $\delta_0|_{M^{\widehat{\alpha}}} = 0$. Since U_g is fixed by $\widehat{\alpha}$, we have

$$\delta_0(\widehat{\alpha}_g(x)) = \delta_0(U_g x U_g^*) = U_g \delta_0(x) U_g^* = \widehat{\alpha}_g(\delta_0(x)).$$

Therefore δ_0 is tangential to the C^* -dynamical system (A, G, α) .

The shift dynamical system given in [8] is a nice example of the above theorem.

Example 3.3. Let X be a infinite compact Hausdorff space, σ a homeomorphism of X and ϕ be a map from the integer group **Z** to X such that $\phi(\mathbf{Z})$ is dense in X and $\sigma(\phi(n)) = \phi(n+1)$ for each $n \in \mathbf{Z}$. Let $(C(X), \mathbf{Z}, \alpha)$ be a C^* -dynamical system induced by (X, σ) such that $\alpha^n(f)(x) = f(\sigma^{-n}(x))$ for all $x \in X, n \in \mathbb{Z}$. And let $(C(X) \times_{\alpha} \mathbb{Z}, \widehat{\mathbb{Z}}, \widehat{\alpha})$ be a dual system of $(C(X), \mathbf{Z}, \alpha)$. For each $n \in \mathbf{Z}$ let $\phi(n) = x_n$ and let μ_{x_n} be a pure state of C(X) defined by $\mu_{x_n}(f) = f(x_n)$ for all $f \in C(X)$. Since the isotropy group G_{x_n} of x_n is trivial, by Theorem 3.3.7 of [10] μ_{x_n} has uniquely state extension $\tilde{\mu}_{x_n}$ of $C(X) \times_{\alpha} \mathbf{Z}$. Let ds be the normalized Haar measure on the torus T. If we consider the map $P_0: C(X) \times_{\alpha} \mathbf{Z} \to C(X)$ defined by $P_0(x) = \int_{\mathbf{T}} \widehat{\alpha}_g(x) ds$, then we have $\tilde{\mu}_{x_n} = \mu_{x_n} \circ P_0$. Since $\tilde{\mu}_{x_n}$ is an $\hat{\alpha}$ -invariant and pure state of $C(X) \times_{\alpha} \mathbf{Z}$, the representation (π_n, U_n, H_n) induced by $\tilde{\mu}_{x_n}$ is a irreducible covariant representation of $(C(X) \times_{\alpha} \mathbf{Z}, \mathbf{T}, \widehat{\alpha})$. We consider the covariant representation $(\pi = \oplus \pi_n, U = \oplus U_n, H = \oplus H_n)$. Since $\|\tilde{\mu}_{x_n} - \tilde{\mu}_{x_m}\| = 2 \text{ for } n \neq m, \{\pi_n | n \in \mathbb{Z}\} \text{ are pairwise disjoint. So we}$ have $\pi(A)'' = \sum \bigoplus \pi_n(A)''$ by Theorem 10.3.5 of [7]. Since $\phi(\mathbf{Z})$ is dense in X, $\{\mu_{x_n}|n\in \mathbb{Z}\}$ separates the points of C(X). Then π is faithful and U_s is contained in $\pi(A)''$ for each $s \in \mathbf{T}$. Hence the covariant representation (π, U, H) is our desired representation.

Let (A,G,α) be a C^* -dynamical system and let G_1 be a compact normal subgroup of G. Let A_1 be the fixed point subalgebra of A under α_{G_1} . Let dg_1 be the normalized Haar measure on G_1 . Then the map defined by $P_1(x) = \int_{G_1} \alpha_g(x) dg_1$ is the conditional expectation from A onto A_1 . We consider a C^* -dynamical system $(A_1, G/G_1, [\alpha]^1)$ with the action $[\alpha]^1$ on the quotient group G/G_1 . A C^* -dynamical system (A, G, α) is called G-finite if the spectral subspace $A^{\alpha}(\gamma)$ is finite dimensional for each $\gamma \in \widehat{G}$.

THEOREM 3.4. Let (A, G, α) be a C^* -dynamical system with a compact group G. Let $\{G_i\}_{i\in I}$ be a net of compact open subgroups of G. Let A_i be the fixed point subalgebra of A under α_{G_i} . Let δ be a densely defined closed *-derivation commuting with α . Assume that $\bigcup A_i$ be a

dense *-subalgebra of A and that $(A_i, G/G_i, [\alpha]^i)$ be G/G_i -finite. Then δ is a generator of a C^* -dynamical system of A.

Proof. Let P_i be the conditional expectation from A to A_i and let D be a domain of δ . Since P_i is norm continuous, $P_i(D)$ is dense in A_i . Put $P_i(D) = D_i$ and $\delta_i = \delta|_{D_i}$. Since δ commutes with α , δ_i also commutes with $[\alpha]^i$. By Lemma 2.5.8 of [2] $\delta_i(D_i) \subset A_i$. Let $A_i(\gamma)$ be the spectral subspace of $(A_i, G/G_i, [\alpha]^i)$ corresponding to $\gamma \in (\widehat{G/G_i})$. Let P_i^{γ} be a conditional expectation from A_i onto $A_i(\gamma)$ defined in the Preliminaries. Since $P_i^{\gamma}(D_i)$ is dense in $A_i(\gamma)$ and $A_i(\gamma)$ is finite dimensional, we have $P_i^{\gamma}(D_i) = A_i(\gamma)$. Since $A_i(\gamma)$ is closed, $\delta_i|_{A_i(\gamma)}$ is closed map. Since δ_i commutes with $[\alpha]^i$, $\delta_i|_{A_i(\gamma)} : A_i(\gamma) \to A_i(\gamma)$ is bounded by the closed graph theorem. Let A_i^F be the set of G/G_i -finite elements of $(A_i, G/G_i, [\alpha]^i)$. Then every element of A_i^F is the analytic element for δ_i . Futhermore by Theorem 2.6.1 in [2] δ_i is a generator of a C^* -dynamical system of A_i . Then by the Hille-Yosida theorem we have

$$||(I - \delta_i)(x)|| \ge ||x||$$
 for all $x \in D_i$.

Since $\cup A_i$ is a dense *-subalgebra of A, $\cup A_i^F$ is dense *-subspace of analytic elements of δ . Put $D^0 = \cup D_i$. Then D^0 is dense in A and

$$||(I-\delta)(x)|| \ge ||x||$$
 for each $x \in D^0$,

i.e. $\delta|_{D^0}$ is dissipative. By Lemma 3.1.14. in ([1]) $\delta|_{D^0}$ is closable and its closure is also dissipative. Let δ' be the closure of $\delta|_{D^0}$. Then by the Hille-Yosida theorem δ' is the generator of a C^* -dynamical system of A. Since δ is closed, we have $\delta' \subset \delta$. Since $\bigcup A_i^F \subset A_\delta$ where A_δ is the set of all analytic elements of δ and

$$A = (I - \delta')(D(\delta')) \subset (I - \delta)(D(\delta)),$$

 δ is also a generator of a C^* -dynamical system of A.

Let G be a locally compact abelian group and let \widehat{G} be its dual group. For any arbitrary nonvoid subset H of G let A(H) denote the subset of \widehat{G} consisting of all γ in \widehat{G} such that $\gamma(H) = 1$ and called annihilator of H in \widehat{G} .

LEMMA 3.5. Let (A, G, α) be a C^* -dynamical system. Let G be a locally compact abelian group and let e be its unit. $\{G_i\}_{i\in I}$ be the directed system of compact open subgroups of G such that $\bigcap_{i\in I}G_i=\{e\}$ and A_i be the fixed point algebra under α_{G_i} . Then $\bigcup A_i$ is a dense *-subalgebra of A.

Proof. Let K be a compact subset of \widehat{G} . Supposed that K is contained in the annihilator $A(G_i)$ in \widehat{G} for some $i \in I$. Since $A(G_i)$ is open, we can choose a neighborhood U_K of K in $A(G_i)$. Choose $f \in L^1(G)$ such that $\widehat{f} = 1$ on U_K . Since $\alpha_f(x) = \int_G f(g)\alpha_g(x)dg = x$ for each $x \in A^{\alpha}(K)$, we have for each $t \in G_i$

$$lpha_t(x) = lpha_t(lpha_f(x)) = \int_G f(g) lpha_t(lpha_g(x)) dg = lpha_{f_t}(x)$$

where $f_t(s) = f(s-t)$. For each $\gamma \in U_K$ we have

$$\hat{f}_t(\gamma) = \int_G f(g-t)\gamma(g)dg = \int_G f(g)\gamma(g)\gamma(t)dg = \hat{f}(\gamma) = 1.$$

Hence we have $\alpha_t(x) = x$ for all $t \in G_i$ and $A^{\alpha}(K)$ is contained in A_i . Since $\bigcap G_i = \{e\}$, we have $\bigcup A(G_i) = \widehat{G}$. Therefore $\{A(G_i) | i \in I\}$ is the open covering of \widehat{G} . By the compactness of K there exists a finite subset $\{i_k\}_{k=1}^n$ of I such that $K \subset \bigcup A(G_{i_k})$. Hence there exists an index $i_0 \in I$ such that $K \subset A(G_{i_0})$. Since A_F^{α} is contained in $\bigcup A_i$, $\bigcup A_i$ is dense in A.

REMARK 3.6. If G is totally disconnected, then G has the property in Lemma 3.5.

Combining Theorem 3.4 and Lemma 3.5, we have the following.

COROLLARY 3.7. Let (A, G, α) be a C^* -dynamical system with a compact abelian group G and G satisfy the same condition as in Lemma 3.5. Let δ be a densely defined closed *-derivation commuting with α on A. Assume that $(A_i, G/G_i, [\alpha]^i)$ be G/G_i -finite. Then δ is a generator of a C^* -dynamical system of A.

References

- 1. O.Bratteli and D.W.Robinson, Operator Algebras and Quantum Statistical Mechanics 1, Spinger-Verlag, Berlin-Heidelberg-New York 1979.
- O.Bratteli, Derivations and dissipations on operator algebra, Lecture notes of Springer-Verlag 1987.
- O.Bratteli, P.E.T. Jorgensen, A.Kishimoto and D.W. Robinson, A C*-algebraic Schoenberg Theorem, Ann. Inst. Fourier Grenoble, 33(1984), 399-405.
- 4. O.Bratteli and P.E.T. Jorgensen, Unboundd derivation tangential to compact groups of automorphsims, J. Func. Anal 48(1982), 107-133.
- 5. O.Bratteli, F.M. Goodman and P.E.T. Jorgensen, Unbounded derivations tangential to compact group of automorphisms 2, J. Func. Anal. 55(1985), 247-289.
- F.M. Goodman and A.J. Wasserman, Unbounded derivations commuting with compact group actions 2, J. Func. Anal. 55 (1984), 389-397.
- R.V. Kadison and J.R. Ringrose, Fundamental of the theory of operator algebra 2, Academic Press, 1986.
- S.Kawamura and H.Takemoto, C*-algebras associated with shift dynamical system,
 J. Math. Soc. Japan, 36 (1984), 279-289.
- 9. A.Kishmoto and H.Takai, Some remarks on C*-dynamical systems with a compact abelian group, Publ. Rims. Kyoto Univ., 14(1978), 383-397.
- Jun Tomiyama, Invitation to C*-algebra and Topological dynamics, World Scientific, 1987.
 - ⁺Department of Mathematics Seoul National University Seoul, 151-742, Korea
 - ++ Department of Mathematics University of Ulsan Ulsan, 690-749, Korea