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ON JOINT NUMERICAL RANGES AND JOINT
SPECTRA OF LINEAR OPERATORS

ON S.I.P. SPACES
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1. Introduction

G.Lumer [lJ studied a vector space of type of inner product with a
more general system of axiom than that of Hilbert space. He defined a
semi-inner product on a vector space X as a complex (real) form [x, y]
on X X X which is linear in first one component only, strictly positive,
and satisfies a Schwarz inequality. Such form induces a norm, by setting
[x, x]!, and for every normed linear space one can construct at least one
such form (and in general, infinitely many) consistent with the norm in
the sense [x, x]! = 11 x 11. In fact, every normed linear space can be made
into a semi-inner-product space. In such a setting, one can then talk
about a numerical range and spectrum of a bounded linear operator T
on a semi-inner-product space X.

K.R.Unni and C.Puttamadaiah [2] studied a semi-inner-product and
a bounded linear operator on a cartesian product of the two semi-inner­
product space. Also, they showed that if A and B are bounded linear
operators on homogeneous s.i.p. spaces X and Y respectively and W(A)
and W(B) are convex subsets of complex numbers C, then W(AEBB) =

Co(W(A) U W(B)).
In this paper if S = (A}, ... ,An ) and T = (B}, ... ,Bn ) are n-tupls

of bounded linear operators on s.i.p. space X, then the joint numerical
range W(SEBT) is the convex hull of the union of W(S) and W(T). And
joint spectrum cr( S EB T) contains the union of cr(S) and cr(T).

2. Preliminaries and notations
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For completeness, we begin with the definition of s.i.p. space.

DEFINITION 2.1. Let X be a complex vector space. A semi-inner­
product on X is a complex function [x, y] on X x X witb tbe following
properties:

(1) [Ax + y,z] = A[x,z] + [y,z]
(2) [x, x] > 0 for x =f 0
(3) I[x, y]1 2 :S [x, x][y, y]

for all x, y, z in X and for all complex numbers A. A vector space with
a semi-inner-product is called a semi-inner-product space (briefly s.i.p.
space).

This definition has concrete significance by the following;

THEOREM 2.2.([1]). A semi-inner-product space is a normed linear
space witb tbe norm

1

IIxll = [x,x]"2.

Conversely, every normed linear space can be made into a semi-inner­
product space (in general, infinitely many different ways).

DEFINITION 2.3. A s.i.p. space bas bomogeneity property wben the
s.i.p. satisfies

(4) [x, Ay] = "X[x, y]
for all x, y in X and for all complex numbers A.

THEOREM 2.4.([3]). Every normed linear space can be represented
as a semi-inner-product witb tbe bomogeneity property.

3. The joint numerical range and spectrum of bounded linear
operator

IT X and Y are s.i.p. space, then X EB Y = {(x, y)lx E X, y E Y} is an
s.i.p. space with componentwise addition, scalar multiplication together
with the s.i.p. defined by
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The norm on X Efl Y is then given by
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If TI and T2 are bounded linear operators on s.i.p. spaces X and Y
respectively, then the bounded linear operator TI Efl Tz on X Efl Y is
defined by

DEFINITION 3.1. Let A = (AI, ... , An) be an n-tuple of bounded
linear operators on s.i.p. space X. The joint numerical range W(A) of
A is the set of all points Z = (Zl, ... , Zn) of c n such that for some x in
X, with IIxll = 1, Zj = [Ajx,x] i.e.,

W(A) = {[Ax, x] = ([Alx, x], ... , [Anx, xl) : Ilxll = I}.

THEOREM 3.2. Let A = (AI, ... ,An) and B = (Bl, ... , B n) be n­
tuples of bounded linear operators on homogeneous s.i.p. space X, Y
respectively. IfW(A) and WeB) are convex subsets ofCn, then

W(A E9 B) = Go(W(A) U W(B»,

where Go(S) denotes the convex hull of the set S.

Proof. Let ..\ E W(A Efl B). We can find an element (x, y) in X Efl Y
such that

and
..\ = [(A Efl B)(x, y), (x, y)] = [Ax, x] + [By, y].

Let Hxll = a, we see that 0 ::; a ::; 1 and Hyll2 = 1 - a. Now ..\ E WeB)
when a = 0 and ..\ E W(A) for a = 1. If 0 < a < 1, then

,\ = a[Ax', x'] + (1 - a )[By', y'],

where x' = ~and y' =~ are unit vectors in X and Y respec-
ya I-a

tively. This shows that

,\ E Go(W(A) U W(B».
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Conversely suppose A E Co(W(A) U WeB)) so that

with 0 ~ f3 ~ 1, p. E W(A) and I E WeB). There exist unit vectors x
in X and y' in Y such that

p. = [Ax, x] and I = [By, y].

Then

A = f3[Ax,x] + (1- .B)[By,y]

= [AJ7ix, y',Bx] +[B~y,~y]
= [(AJ7ix,B~y),(J7ix,~y)]

= [(A EI7 B)( .jpx,~y),(J7ix, ~y)]

Now

lIeJ7ix, ~Y1l2 = (lIJ7ix Il2+ lI~yIl2)

= f3l1xll2 + (1 - f3)lIyIl2
= f3 + (1 - /3) = 1.

Hence we conclude that A E W(A EI7 B).

DEFINITION 3.3. Let T be a bounded linear operator on a normed
linear space X. If there exists N > 0 such that

IIxllN < IITxll for all x in X.

We then call T bounded from below.

DEFINITION 3.4. Let A = (AI, ... ,An ) be an n-tup1e of bounded
linear operators on s.i.p. space X. The joint spectrum <T(A) of A is
the set of all points A = (AI, ... , An) of en such that Ai - Ad is not
invertible for each i = 1,2, ... , n i.e.,
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where I denotes the identity operator on X.
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LEMMA 3.4.([2]). Let X and Y be s.i.p. spaces. Suppose S: X -t X
and T : Y -t Y are bounded linear operators. Then;

(a) S EB T is bounded from below if and only if S and T are both
bounded from below.

(b) R(S EB T) = X EB Y if and only ifR(S) = X and R(T) = Y, where
R(U) denote the closure of the range of the operator U.

THEOREM 3.5. If A = (A1, ... ,An ) and B = (Bl, ... ,Bn ) are n­
tuples of bounded linear operators on s.i.p. space X, Y respectively,
then

u(A EB B) ::) u(A) U u(B).

Proof. Let Ix, Iy and IX(J)Y denote the identity operators on X, Y
and X EB Y respectively. Suppose (AI, ... , An) f/:. u(A EB B). Then for
some i, Ai f/:. a(Ai EB B i). Let Si = Ai - AiIx and Ti = B i - AJy.
Then Si EB Ti = Ai EB Bi - AiIx(J)y and Si E& Ti is bounded from below,
R(Si EB Ti ) = X EB Y. By Lemma 3.4., Si and Ti are bounded from
below and R(Si) = X and R(Ti) = Y. This shows that Ai f/:. a(Ai) and
Ai f/:. a(Bi) and hence Ai f/:. a(Ai) U u(Bi). This completes the proof.
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