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ON JOINT NUMERICAL RANGES AND JOINT
SPECTRA OF LINEAR OPERATORS
ON S.I.P. SPACES

BoNG KEUN HAN, YOUNG-KEY KiM AND Eur WHAN CHO

1. Introduction

G.Lumer [1] studied a vector space of type of inner product with a
more general system of axiom than that of Hilbert space. He defined a
semi-inner product on a vector space X as a complex (real) form [z, y]
on X x X which is linear in first one component only, strictly positive,
and satisfies a Schwarz inequality. Such form induces a norm, by setting
[z, m]%, and for every normed linear space one can construct at least one
such form (and in general, infinitely many) consistent with the norm in
the sense [z, :v]% = ||z||- In fact, every normed linear space can be made
into a semi-inner-product space. In such a setting, one can then talk
about a numerical range and spectrum of a bounded linear operator T
on a semi-inner-product space X.

K.R.Unni and C.Puttamadaiah {2] studied a semi-inner-product and
a bounded linear operator on a cartesian product of the two semi-inner-
product space. Also, they showed that if A and B are bounded linear
operators on homogeneous s.i.p. spaces X and Y respectively and W(A)
and W (B) are convex subsets of complex numbers C, then W(A® B) =
Co(W(A)U W(B)).

In this paper if § = (A1,...,4,) and T = (B4,...,By) are n-tupls
of bounded linear operators on s.i.p. space X, then the joint numerical
range W(S@T) is the convex hull of the union of W(S) and W(T'). And
joint spectrum ¢ (S @ T') contains the union of ¢(5) and o(T).

2. Preliminaries and notations
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For completeness, we begin with the definition of s.i.p. space.

DEFINITION 2.1. Let X be a complex vector space. A semi-inner-
product on X is a complex function [z,y] on X x X with the following
properties:

(1) Pz +y,2] = Az, 2] + [y, 7]

(2) [z,] >0 for z#0

(3) [z, yI* < [z, 2]y, y]
for all z,y,z in X and for all complex numbers A. A vector space with
a semi-inner-product is called a semi-inner-product space (briefly s.1.p.
space).

This definition has concrete significance by the following;

THEOREM 2.2.([1]). A semi-inner-product space is a normed linear
space with the norm

llz|| = [z, 2]*.

Conversely, every normed linear space can be made into a semi-inner-
product space (in general, infinitely many different ways).

DEFINITION 2.3. A s.i.p. space has homogeneity property when the
s.1.p. satisfies

(4) [z, \y] = X[z, ]
for all z,y in X and for all complex numbers A.

THEOREM 2.4.([3]). Every normed linear space can be represented
as a semi-inner-product with the homogeneity property.

3. The joint numerical range and spectrum of bounded linear
operator

K X and Y are s.i.p. space, then X @Y = {(z,y)|r € X,y € Y}isan
s.i.p. space with componentwise addition, scalar multiplication together
with the s.i.p. defined by

[(zlay1)7 (‘7"2’ y2)] = [131,1:2] + [yl, y?]-
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The norm on X @Y is then given by
Iz, )l = (ll=||? + ly]®)3.

If Ty and T, are bounded linear operators on s.i.p. spaces X and Y
respectively, then the bounded linear operator T) @ T on X @ Y is
defined by

(Th ® T2)(z,y) = (T1z, T2y).

DEFINITION 3.1. Let A = (Ay,...,A,) be an n-tuple of bounded
linear operators on s.i.p. space X. The joint numerical range W(A) of
A is the set of all points Z = (Z,,...,2Z,) of C" such that for some z in
X, with ||z|| =1, Z; = [Ajz,z] i.e,

W(4) = {[Az,z] = ([A12,2],. .., [Aaz,2]) : [l2]| = 1}.

THEOREM 3.2. Let A = (Ay,...,An) and B = (By,...,By) be n-
tuples of bounded linear operators on homogeneous s.i.p. space XY
respectively. If W(A) and W(B) are convex subsets of C", then

W(A® B) = Co(W(A)U W(B)),
where Cy(S) denotes the convex hull of the set S.

Proof. Let A € W(A@® B). We can find an element (z,y) in X @Y
such that

Il = (lell® + llyl*)* =1
and
A =[(A @ B)(z,y),(z,y)] = [Az, 2] + [By,y].
Let ||z|| = a, we see that 0 < a < 1 and ||y||*> =1 — a. Now X € W(B)
whena=0and Ae W(A)fora=1. If 0 < a < 1, then
X =aldz' 2"l + (1 — a)[BY', ],

x
where ' = — and y' =

T are unit vectors in X and Y respec-
—a
tively. This shows that

X € Co(W(A)U W(B)).
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Conversely suppose A € Cy(W(A)U W(B)) so that

A=Bu+(1-B)y

with 0 < B <1, p € W(A) and v € W(B). There exist unit vectors z
in X and y' in Y such that

p = [Az,z] and v = [By, y]

Then
A = BlAz,z] + (1 - §)[By,y]
= [A\/B:L‘, \/,Eﬁ] + [B\/l — By, \/1 - ﬂy]
= [(AV/Bz, B\/1 - By),(v/Bz,/1— By)]
= [(A @ B)(\/B$7 V 1-— ,By),(\/ﬁx, Vv 1- ﬂy)]
Now

I(v/Bz, /1 = Byll* = (Iv/B=I” + V1 - Byl*)
= Bll* + (1 - B)llyll?
=f+(1-B) =1

Hence we conclude that A € W(A @ B).

DEFINITION 3.3. Let T be a bounded linear operator on a normed
linear space X. If there exists N > 0 such that

|z||N < ||Tz|| for all z in X.

We then call T bounded from below.

DEFINITION 3.4. Let A = (A,,...,A,) be an n-tuple of bounded
linear operators on s.i.p. space X. The joint spectrum o(A) of A is
the set of all points A = (Ay,...,A,) of C" such that A; — M\;I is not
invertible for eacht = 1,2,...,n i.e.,

0(A) = {(A1,-..,An) € C*|A; — A1 is not invertible for each 1},
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where I denotes the identity operator on X.

LEMMA 3.4.([2]). Let X and Y be s.i.p. spaces. Suppose S : X — X
and T : Y — Y are bounded linear operators. Then;
(a) S ® T is bounded from below if and only if S and T are both
bounded from below. _
(b) R(S®T) = X@Y ifand only if R(S) = X and R(T) = Y, where
R(U) denote the closure of the range of the operator U.

THEOREM 3.5. If A = (Ay,...,A,) and B = (B,,...,By) are n-
tuples of bounded linear operators on s.i.p. space X,Y respectively,
then

(A& B) D o(A)Uo(B).

Proof. Let Ix,Iy and Ixgy denote the identity operators on XY
and X @ Y respectively. Suppose (A1,...,As) € 0(A @ B). Then for
some 1, A; ¢ O'(A,‘ D B,‘). Let S; = A; — NI, and T; = B; — /\,’Iy.
Then S; ® T; = A; ® B; — A\il,g, and S; & T; is bounded from below,
R(S;®T;)) = X®Y. By Lemma 3.4., S; and T; are bounded from
below and R(S;) = X and R(T;) =Y. This shows that A; ¢ 0(A;) and
Ai ¢ o(B;) and hence \; ¢ 0(A;) U o(B;). This completes the proof.
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