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ON INJECTIVITY PRESERVING MAPS
AND INJECTIVE ELEMENTS ON B(H)*

DONG-YUN SHINt, SA-GE LEEt AND CHANG Ho Byuntt

0. Introduction

Many people has studied the theory of injective operator spaces([1],
[2] et.c. ).

In this paper we give examples of injectivity preserving maps on B(H),
study related operator spaces and injective operators. In section2, we
show that on B(H) *-operation and transpose map are injective but
not 2-injective for dim H > 2. In section3, we define extremely injective
space and show that for rank 1 projection p, p B(H ) is a maximal injective
operator space and a C*-algebra A is extremely injective if and only if
dim A < 2. In section 4, we show that for a finite dimensional C*-algebra
A, an element x € A with ||z||=1 is injective if and only if z is unitary,
for a seperable Hilbert space H , an invertible element z € B(H) with
|z|=1, z is injective if and only if z is unitary and for a C*-algebra A, if
z € A is an isometry, then z is left injective.

1. Preliminaries

We let M,, be the space of complex n x n matrices and B(H ) be the
bounded operators on a Hilbert space H. M, has the canonical basis
{E;j} where E;;j is the matrix with 1 at (2, j) position and zero elsewhere.
A linear subspace E C B(H) is said to be an operator space.

Given operator space E, M (E) = E @ M, denotes the vector space
of n X n matrices with entries in F.
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For o = (z:5) = 3.7 ; ij ® Eij € Mo(E) and y = (yij) € Mm(E), we

write

0
z®y= (g y) EMn+m(E).

Identifying M,(B(H)) with B(H"),M,(E) can be regarded as an
operator space of B(H™). Let E C B(H) and F C B(K) be operator
spaces and ¢ : E — F a linear or conjugate linear map. We define the
map ¢n : Mn(E) = Mp(F) by ¢a((zi;)) = (¢(2:5)) for (zi5) € Mn(E).
We write, ||@]lcs = sup{||¢n|| : n € N}, where [|¢]| = sup{||¢(z)| :
z € E,||z|| = 1}. We call ¢ completely bounded if ||¢||ss < oo, and ¢
completely contractive if ||¢[|cs < 1.

Let E be an operator space. E is said to be an injective operator space
if for every operator space F', every operator subspace Fy of F' and every
completely bounded linear map ¢ : Fy; — E, there exists a linear map
% : F — E such that $|z, = ¢ and [$les = 8]

It is well known that B(H) is an injective operator space for arbitrary
Hilbert space H. A linear map ¢ : B(H) — B(H) is called a completely
contractive projection if ||||cs < 1 and ¢ = ¢. Let E C B(H) be an
operator space. An E-projection of B(H) is a completely contractive
projection ¢ : B(H) — B(H) such that ¢(z) =z for all z € E.

Let H be a Hilbert space and let {e;}icr be a fixed orthonormal basis
for H. For each { = > aie; € H we set £ = > Gie; € H. For each
z € B(H) and &,7 € H, we define §(z) and 7(z) by < 8(z)¢ | n >=
<z | € > and < 7(z)¢ | n >=< 7 | € >, respectively. For each z,y €
B(H), ||zl = 10(=)]| = l|7(2)ll, 8(zy) = 6(y)6(=), 8(z)" = 7(z) = 8(z"),
and 7(zy) = 7(z)7(y). But 6(z) and 7(z) depend on orthonormal bases.

2. Examples of injectivity preserving maps on B(H)

THEOREM 2.1. Let E C B(H) be an operator space. Then E is
injective if and only if there is an E-projection ¢ such that ¢(B(H)) = E.

Proof. Combining Theorem 3.1. and Corollary 3.3([6]) completes the
proof.

DEFINITION 2.2.. Let E C B(H) and F C B(K) be operator spaces.
A map ¢ : E — F is an injectivity preserving map if ¢(Ey) is injective
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whenever Ey is an injective subspace of E. We say ¢ is n-injective
if ¢, is an injectivity preserving map and completely injective if ¢ is
n-injective for each positive inter n.

THEOREM 2.3. Let E C B(H) and F C B(K) be operator spaces and
¢ : E — F be a completely contractive linear map which has completely
contractive inverse. Then ¢ is completely injective.

Proof. Let N C M,(E) be an injective opereator space. For every
operator space M, every operator subspace L of M and every completely
bounded linear map ¢ : L — ¢.(N),¢, ' 0% : L — N is completely
bounded. Hence there is a linear map 7 : M — N such that 7| =
¢ o and |||l = |lgnt 0 Yllee = ||#]lct- Then the linear map
¢noT: M — ¢,(N) is an extension of 1 such that ||¢, o 7||cs = |[%||cs-

COROLLARY 2.4. Let E C B(H) and F C B(K) be operator spaces
and ¢ : E — F be a linear bijection with ||¢||cs||¢!||cs = 1.Then ¢ is
completely injective.

-1

_ ¢ -1 _ _¢ 3
Proof. P}1t.1,l) = Tolles Ther.l P~ = T T ep B.y Theorem?2. 3, ¢ is
completely injective. Hence 1 is completely injective.

COROLLARY 2.5. Let A C B(H) be a C*-algebra and ¢ : A — B(K)
be a x-isomorphism. Then ¢ is completely injective.

COROLLARY 2.6. Let ¢ be a *— automorphism on B(H). Then ¢ is
completely injective.

LEMMA 2.7. Let a: B(H) — B(H) be a bijection with a o a = 1d, ¢
be an E-projection with ¢(B(H)) = E and ¢ = ao¢oa. Thenporp =
1/)» 7v[)|ot(E) = Z‘doz(E) and ¢(B(H)) = a(E)

Proof. 1t is an easy compuation.
THEOREM 2.8. Let * : B(H) — B(H) be the map defined by *(z) =
z* Then * is an injectivity preserving map.

Proof. Let E C B(H) be an injective operator space. By Theorem 2.
1, there is an E-projection ¢ with ¢(B(H)) = E. We denote *(E) = E*.
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Let ¢* = %0 ¢ o*. Then by Lemma 2. 7, ¢* 0 ¢* = ¢*,¢*(z) = z for all
z € E* and ¢*(B(H)) = E*. Hence to complete the proof, we must show
that ¢* is completely contractive. Let 337, z:; ® E;; € M,,(B(H ))
and ¢ = (&, ,&)5 1 = (1, ,7m)t € H™ Then < E,] 5 ®
zJé.|77> <£|Zn1—1$‘J®E]1n>_<E:J— z'J®EJ'1’IE>'

Hence ” Zl ,j=1 :] ® E*] “ - ” Z; ,J=1 1T ® E‘J” Therefore
llén( Z zi; @ Ej)| = || Z ¢™(2i;) ® Eij|
t,J=1 ',j—1
= Z é(z3;) ® Ejif| = [|¢a( Z zi; ® Eji)|
aJ—l
<|l Z zi ® Ejil| = || Z zij @ Eij|-
i,j=1 i=1

Hence ¢* is completely contractive.

REMARK 2.9._ * : My — M, is not 2-injective since *3(aFEy; + bE12 +
cEy4) =GE;; + bEj; +TE23. Hence + : B(H) — B(H) is not 2-injective
whenever dim H > 2.

REMARK 2.10. Let A be a C*-algebra. Since A can be embeded
in B(H) for some Hilbert space H, the map * on A is an injectivity
preserving map.

COROLLARY 2.11. Let ¢ : B(H) — B(H) be a conjugate linear, *-
preserving bijection with ¢(zy) = ¢(y)¢(z). Then ¢ is an injectivity
preserving map.

Proof. Since * o ¢ is a *-automorphism on B(H),¢ = * o (* 0 ¢) is an
injectivity preserving map.

THEOREM 2.12. Let {e;} be an orthonormal basis for a Hilbert space
H and § the transpose map with respect to this basis. Then 8 is an
injectivity preserving map.

Proof. Let E C B(H) be an injective operator space. By Theorem 2.
1, there is an E-projection ¢ with ¢(B(H)) = E. Define ¢*(z) : B(H) —
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B(H) by ¢*(z) = 8(¢(6(z))). Then by Lemma 2. 7, ¢* 0 ¢* = ¢*,¢*(z) =
z for z € §(E) and ¢*(B(H)) = 6(E). Hence to complete the proof,
we must show that ¢! is completely contractive. Let Z: j=1%ij ® E;; €

M,(B(H)) and &€ = (&1, ,€n), n=m1,--- ,nn)t € H®. Then

n

< Y 0(zi;)®Eyt | n>= D <8(zi) | mi >

ij=1 ij=1
n n
=Y <z |§>=< ) w; ®E;f | €>,
ij=1 ij=1

where 7’7 = (ﬁl’ T a—ﬁn)t and Z = (Zlv te ,En)t. Hence ” E?,j:l 9(93:‘1') ®
Eiil =i EZJ-___I z;; @ Eji||. Therefore

6D 25 @ Bl = || Y ¢'(=:5) ® Eij|

i,7=1 i,7=1
= ) $(6(z5)) ® Eijill = lIga( D 8(=5i) ® Eij)|
ij=1 i,5=1
<Y (=i @ E)ll =1 Y 25 ® Eij-
ij=1 ij=1

COROLLARY 2.13. Let ¢ : B(H) — B(H) be a linear *-preserving
bijection with ¢(zy) = ¢(y)¢(z). Then ¢ is an injectivity preserving map.

Proof. The same as the proof of Corollaey 2.11.

COROLLARY 2.14. Let {e;}icr be an orthonormal basis _for a Hilbert
space H. Let 7 be a map defined by < 7(z){ | n >=<7|{>. Then 1
is completely injective.

Proof. By elementary caculation, 7 = %0 (= 6 o x). Hence 7 is
an injectivity preserving map. It is easy to show that the map 7, :
M, (B(H)) — M, (B(H)) is the map 7 : B(H®C") — B(H®C™) with
basis {e; ® Ex : ¢ € I,1 < k < n}. Hence 7 is completely injective.
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Let H = C? with basis {(1,0),(0,1)}. Then 6 : My — M, is not
2-injective since

62(aEy1 + bE13 + cE14) = aEyy1 + bE3; + cEas.

Let H be a Hilbert space and o = {e;}ier and f = {fi}icr be two
orthonormal basis for H. Let U be the unitary operator with Ue; = f;
and 6,63 be the transpose maps with respect to the bases o and S.
Then

< bOx(x)e; | ej > =< zej | e; >
=< :IIU*fj l U*fi >
=< UzU*f; | fi >
=< 0g(UzU")fi | f; >
=< 8g(UzU*)Ue; | Uej >
=< U*0s(UzU*)Ue; | € > .

Hence 04(z) = U*05(UzU*)U. Therefore 6, is n-injective if and only if
fsis n-injective. Since 6 : My — M, is not 2-injective, 6 : B(H) — B(H)
is not 2-injective whenever dim H > 2.

If dim H = 1,60 = id. Hence 6 is completely injective. Since § = xo7, *
is 2-injective if and only if dim H < 1. Hence we have shown the following
theorem.

THEOREM 2.15. Let H be a Hilbert space with basis o = {e;}. Then
the following are equivalent:

(1) The map *: B(H) — B(H) is 2-injective.

(2) The map *: B(H) — B(H) is completely injective.

(3) dim H <1.

(4) The transpose map 8, is 2-injective.

(5) The transpose map 8, is completely injective.

COROLLARY 2.16. Let ¢ : B(H) — B(H) be a conjugate linear, *-
preserving bijection with ¢(zy) = ¢(y)¢(z) and o : B(H) — B(H)
be a linear, x-preserving bijection with ¥(zy) = ¥(y)¥(x). Then the
following are equivalent:

(1) ¢ is 2-injective.
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(2) ¢ is completely injective.
(3) dim H <1.

(4) % is 2-injective.

(5) ¢ is completely injective.

THEOREM 2.17. Let E C B(H),F C B(K) be operator spaces and
¢ : E — F be (n+1)-injective. Then ¢ is n-injective.

Proof. Let L be an injective operator space contained in M,(E). We
denote L0 ={z@0:2¢€ L,0€ B(H)} C Mp41(E). Then LSO 18
injective. Since ¢p41(L ® 0) = ¢,.(L) &0 is injective, ¢,(L) is injective.

3. Extremely injective spaces

DEFINITION 3.1.. An operator space E is called (finitely) extremely
injective if its (finite dimensional) closed subspaces are injective.

THEOREM 3.2. Let p € B(H) be a rank 1 projection in B(H). Then
B(H)p is extremely injective.

Proof. Choose a unit vector 5 in the range of p. For each z,y € B(H),
define ¢ : B(H)p — H by ¢(zp) = zn and < zp | yp >=< zn | yn >,
where < xn | yn > is the inner product in H. Then (B(H)p,< | >)is
a Hilbert space and ¢ is an isometric isomorphism. Let E be a closed
subspace of B(H)p. Then ¢(FE) is a closed subspace of H. Hence there
is the projection ¢ € B(H) with ¢(E) = qH. Therefore E = ¢B(H)p
and F is injective.

COROLLARY 3.3. Let p € B(H) be a rank 1 projection. Then pB(H)
is extremely injective.

Proof. Since pB(H) = (B(H)p)* and * is an injectivity preserving
map, pB(H) is extremely injective.

LEMMA 3.4. Let z = (zi;) € My, with zy;, = 0 (1 < ¢ < n),
E=Span{E;1M,,z} and ¢ : M, — E be an E-projection. Then for
1 2 2, ¢(E;;) = b;jz for some b;; € C.

Proof. For i > 2, put ¢(Eij) = Y ., B + bijz for some ay,b;; € C.
Since ¢(E1k) = Elk, (ﬁ(E,‘J‘ -+ mElk) = Z?___.l biEy + b,'jw, where b = q;
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for 1 # k and by = ar + m. By elementry caculation, ||E;; + mE || <
Vi+m? and ||§(Bij + mEw)|| = | 02, 6B + bijzll 2 | b | =
| ax +m | . This implies V1 + m? > | ax + m | for each m € C. Hence
ar =0 and ¢(E§j) = b,‘]‘:l:.

THEOREM 3.5. Let Ey7M,, CEC M, anddim E =n+ 1. Then E

18 not injective.

Proof. We can choose z = (z;;) € E with ||z]] = 1 and z;; = 0
for 1 < ¢ < n. Suppose E is injective. Then there is an E-projection
¢: M, — E.

Case 1.

There exist ¢,7(i # j) such that zE;; # 0,zE;; # 0. By Lemma 3.4,
H(Eri)) =brfor2<k <n,1 <l<n Forl# t, | Ex + Eyijl =1 and
|6(Eki+En)|| = |Eri+buz| 2 |Bri+buz Bl = /14 | bul? ||z il
Hence bz; = 0. By the same way, by = 0 for [ # j. Hence b = 0 for
2<k<n,1<I<nand ¢(z)=0. It is a contradiction.

Case 2. There is only one ¢ such that tE;; # 0. We may assume
¢ =1 and z2; # 0. By Lemma 3.4, ¢(E2;) = by2z. Since ¢(E11 + Ep2) =
Ey1 + baaz, ||Eyy + Ezz|| = 1 and [|Eqg + bazz]| = /1 + [b22)?,b22 = 0.
Hence ¢(FE22) = 0. We have

|Ex1 + 221 E12 — Eg3 + z||?
=||(E11 + 221 E12 — E32 + )" (Ey1 + 221 E12 — E22 + 7)||

2 0
1(5 14 poae) !

Since ¢(Eqry + 291 E1g — Eop + ) = Eyy + 201 E12 + 2,

|¢(E11 + z21E12 — B2y + z)|?
=[(EBy1 + 22 Era + 2)" (B + 221E12 + 2)|

2 1
=|| ( £ ) If>2+ §|$21|2-

2 |-7521 |2

Hence ¢ is not contractive and it is a contradiction. Therefore E is not
injective.
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Theorem 3.5 implies that F;; M, is a maximal extremely injective
operator subspace of M,,.

COROLLARY 3.6. Let p € B(H) be a rank 1 projection. Then pB(H)
is a maximal extremely injective operator subspace of B(H).

PROPOSITION 3.7. Let Y i la| < 1for 1 < k < m and E =
{ZZ=1 by (Ekk + E?;l aszn+1n+z) : bl,...,b,1 = C}. Then E is in-

jective.

Proof. Define ¢ : My, = E(C™™ C Mytr) with ¢(Exx) = Exx +
S rey aktEntintk for 1 < k < n, and ¢(Ex) = 0 for otherwise. Then
pod = ¢ and ¢l = id, and ¢(B) = Y 1, bixd(Exr) for an (n 4+ m)
matrix B = (b;;). Hence ||¢(B)||=max {|bxx|: 1 < k <n} < ||Bj},|¢ll =
1. Since E C C™™ ||$|les = [|#]l = 1([4], Theorem3. 8. ). Therefore E
is injective.

PROPOSITION 3.8. Let 0 < ay < a3 < -+ < a, be fixed and E =
{3 re; bk(Erk + akEnying1) : b1, b2,...,ba € C}. Then E is injective if
andonly if .7 _,ar<lorl+a;+ -+ an_1 < an.

Proof. (<) Case 1. Z;::l ar < 1. By Proposition 3.7, E is injective.

Case 2. 14+a1+ -+ an— 1 < a,. By elementary caculation, £ =
{bn(3=Enn + Entin41) + Sory be(Erk — 24 Fan) : b1,...,bn € C}, and
E s 1n_]ect1ve

(=) Let E be injective and 1 + a; + --- + an—1 > a@n. Since E is
injective, there is an E-projection ¢ : M,y — M,y with ¢(Mp41)=FE
Hence there are complex numbers ¢;; for 1 < ¢, < n + 1 such that
#(Ekr) = E:;l cki( Eii + aiEptiny1) for 1 <k <n+ 1. Since ¢(Exr +
arEntint1) = Exk + axEngingr for 1 <k <n,¢(Enging1) = al—k(Ekk +
akEnping1 — Zn cki(Eiyi + aiEpginy1)) for 1 < k < n, and cpp1k =
l—cﬂ‘- = =g for 1 < I, k(I # k) < n. Since |ckx| < 1 and ageny1x =
1 - ckk,Re cn+1k > 0. Since Exx¢(2Ekx + 2Ept1n41 — I) = (2cri +
2ent1k — Sorty k) Exk = {1+ (1 = 2a + o0, @i)cns1x} Eri, Re (1 —
20k + Y 0 Gi)cat1x < 0for 1 < k < n. Since 1 —2a; + Z?:l a; > 0 for
1<k<nRecppip =0for 1 <k<n. Henceggp =1lforl1 <k <n
and cx; = 0 for otherwise. Then ¢(I)Entint1 = Z;::l arEntint-
Therefore Y ;_, ar < 1.
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Proposition 3.8 implies that for a positive inter n C*-algebra C™ is
extremely injective if and only if n < 2.

COROLLARY 3.9. Let A be a Cx-algebra. Then A is extremely injec-
tive if and only if dim A < 2.

Proof. (<) Clear.

(=) Case 1. 3 < dim A < oo.
Since dim A < o0, A is decomposed into the direct sum A = ®F_, Ax,
where each Aj is isomorphic to the algebra of ng X ng-matrices ([7],
Theorem 1.11.2.) Hence 4 is not extremely injective.

Case 2. dim A is infinite.
Since A is infinite dimensional C*-algebra, there is a positive element z
with infinite spectrum ([3], Exersise 6.14.). Choose A1, A3, A3 € Sp(x)
with 0 < A < A2 < A3z. Put =0 and Ay =1 +/\3 Define f,('l, =
1,2,3,):[0,00) — [0,1] with

2A = dim1 — A for Ai—1 + A <22 < 2),,
Ai —Aig

i) =9 22— A~ Ay for 2X; < 2X < A\ + Ait1,
Ai — A1

0 otherwise

Then fi(z) € A, fi(z)fj(z) = 0 for ¢+ # 37 and [lafi(z) + bfa(z) +
cfs(z)||=max {|a], |, |c|}. Hence, by the same way in the proof of Propo-
sition 3.8, E = {afi(z) + bfo(z) — (@ + b)f3(x) : a,b € C} C A is not
injective. Therefore A is not extremely injective.

THEOREM 3.10. Let E C B(H) be an operator space such that dim
E is at most countable. Then the following are equivalent:

(1) E is extremely injective.

(2) E is injective and for each operator space F' and any linear map
¢ : F — E, ¢ is an injectivity preserving map.

(3) E is injective and for each operator space F' of E, and any linear
map ¢ : F — E| ¢ 1s an injectivity preserving map.

(4) E is injective and for any linear map ¢ : E — E is an injectivity
preserving map.
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Proof. (1) = (2) = (3) = (4). Clear.

(4) = (1). Let F C E be a subspace. Choose a basis {z;}icr of F
and a basis {z;};cs of E with I C J. Define a linear map ¢ : E — E
by #(z;) = z; for s € I and ¢(z;) =0fori € J\ I. Hence F = ¢(E) is

injective.

For operator spaces E and F, the set of all injectivity preserving lin-
ear maps ¢ : E — F will be denoted by IP(E,F). And #IP(E,F)
denotes the supremum of all dimensions of subspaces of IP(E, F). We
set IP(E) = IP(E,FE). In general, IP(E,F) is not a vector space. If
F is extremely injective or dim E < 1, then IP(E, F) is a vector space
but the converse is not known. For an operator space E, I(E) denotes
the set of all extremely injective subspace of E. And #I(E) denotes the
supremum of all dimensions of subspaces of I(E).

Let £ and F be finite dimensional operator spaces, let Fy C F be
an extremely injective subspace, let {e;,e,...,e,} be a basis for E,| and
let {f1, f2,..., fe} be a basis for Fy. For 1 < i < n,1 < j < k, define
¢ij :F - F by d),'j(e[) = (5,'1fj. Then {¢ij 01 S ? S n,l SJ S k} 1s
linearly independent and Span{¢;;: 1 <i<n 1<j]<k} CIP(E,F).
Hence dim E - #I(F) < #IP(E,F) < dim E- dim F. In particular,
#IP(E,F) = dim E- dim F whenever F is extremely injective. Since
E11 M, is extremely injective, #I(M,) > n and #IP(M,) > n3.

4. Injective elements in Cx-algebras

For a C*-algebra A and z,y € A, let L, and R, be a linear map
defined by L,y = zy and R,y = yz.

DEFINITION 4.1.. For a C*-algebra A, an element = € A is called le ft
(resp. right) injective if L,(resp. R;) is an injectivity preserving map.
An element z € A is injective if z is left and right injective.

Obviously a unitary element = € A is injective. Since L, E = (R, E*)*
and *-operation is an injectivity preserving map, z is left injective if and
only if z* is right injective.

1 0

LEMMA 4.2. Let z = <a b) € M, and ab # 0 Then z is not left
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injective.
a 0
Proof. Put E =
oof. Pu {(0 8
z is left injective. Then

L. E = Span{ ((11 8) , (g (1))} is injective.

Hence there is an L, E-projection ¢ : M, — L. E. Put ¢ ((1) 8) =

10 0 0 . 1 0 a 0
O‘(a 0)+ﬂ(o 1)' Smced’(o :l:l) = (aa ﬂ:tl) and
||<of‘a ﬂil)llsl,a=ﬂ=0- Sinceqs(g 8)=¢(1 g)—

10 00 1 0 .- .
¢(0 0)’¢<a 0>~<a 0>,acontrad1ct10n. Therefore z is not

) :a, 3 € C}. Then E is injective. Suppose

injective.

1 a

LEMMA 4.3. Let z = (0 b

) € M; and ab # 0. Then = is not left
injective.
Proof. By the same method in the proof of Lemma 4.2, it is trivial.

10

LEMMA 4.4. Let z = (
0 a

) € M; and |a| > 1. Then z is not left
injective.

Proof. Put E = {(Z Z) :a,b € C}. Then E is injective. Suppose

z is left injective. Then L,E=Span {<(1) 2) , (2 é)} is injective.

Hence there is an L, E-projection ¢ : My — L. E. Put ¢(<(1) g)) =

a((l) 2) +5(2 (1)) Since ¢((’“§1 koa)) = k¢(<(1) 2))+
o(5 o)) = tra(y O)4s(2 §)ilkal 2 [+l for
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0
k) 2 (1) for all k € C, 8 = 0. Hence qS(é g = (g 8) Sim-
0 1 00 00 1 0

ilarly ¢<0 0) = (0 0} Therefore q5(0 <) = \o a) and

0 0 0 1 0 0 11 . 0 0
o(00)=(2 o) meas(2 )= ) simeel (2 0)1
= v/2|a| and || (Z clz) | = v/2(1 + |a|?, ¢ is not contractive. It is a con-

tradiction. Therefore z is not left injective.

sufficiently large £ € C. Hence o = 0. Since ¢(k1a k) = (B +

1 0

COROLLARY 4.5. Let z = (
0 a

>€M2a.nd0<|a|<1. Then z is

not left injective.

. 1 0 0 1 a 0 0 1 . .
Proof. Since (0 a>_(1 0) (0 1)<1 0>,xxsnotleft1n—

jective.

L 2 or (1) Z)EMgandb;éO.

Then x is left injective if and only if a = 0 and |b] = 1.

COROLLARY 4.6. Let z =

Proof. (<) Since a =0, || = 1, z is unitary and z is injective.
(=) By Lemma 4.2 and Lemma 4.3, a = 0. By Lemma 4.4 and
Corollary 4.5, |b| = 1.

a b

LEMMA 4.7. E = {<c a) : a,b,c € C} is not injective.

Proof. Suppose E is injective. Then there is an E-projection ¢ : My —

M, with ¢(M;) = E. Put ¢ ((1] 8) = (‘cl z) Since ¢(11c 8) =

4 ®) and [c+ k| < /TF]FE for all k € C, ¢ = 0. Similarly

b=0a,nd¢<g 2):(‘; 3) with @ +d = 1. Since ¢ is unital

contraction, ¢ is completely positive ([4], Proposition 2. 11). Since ¢ is
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1 0 01
¢(00) #(00))
1s positive

completely positive if and only if 0 0 0 0
+(10) +(0 1)
a 0 0 1
([4], Theorem 3. 12). Thus 0 a 0 0 ) is positive. But
? 0 0 1—a 0
1 0 0 1—-a
a 0 0 1 1 1
< 0 ¢ O 0 0 | 0 o —1
0 0 1—a O 0 0
1 0 0 1—-a -1 -1

Therefore E is not injective.

100
LEMMA 4.8. Letz = | 0 1 0 ]| € M;. Then z is not left injective.
0 00
a b ¢
Proof. Pt E={}lc a b} :a,bce C}. SinceE isa commuta-
b ¢ a

tive C*-algebra with dim E = 3, F is injective. By Lemma 4.7, zEz is
not injective. Hence z is not left injective.

LEMMA 4.9. Let £ = ) 7. \iEii € M, with Ay =1 and Ay > A2 >

-+ 2> Ap 2 0. Then z is left injective if and only if \; =1 for1 <:<n
or\;=0for2<i<n.

Proof. (<) Since z = I or z is a projection of rank 1, z is injective.

(=) Suppose A; # 0. Since z is left injective, ((1) ;)2 ), (/})2 ;)3)

1 0 0
and | 0 A2 O | isleft injective. By Corollary 4.6 \; =1land A\3 =1
0 0 A

or 0. By Lemma 4.8, A; = 1. Simiarly A\ =1for 1 <k <mn.

COROLLARY 4.10. Let = € B(H) be a non-zero projection. Then z
1s injective if and only if z = I or rank = = 1.
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THEOREM 4.11. Let z € M, with ||z|| = 1. Then the following are
equivalent:

(1) z is injective

(2) z 1s left injective

(3) z is right injective

(4) z is unitary or rank of z is 1.

Proof. (1)=(2) trivial.

(2)=(4) Since z € M,, and ||z|| = 1, there are unitary matrices U and
V, diagonal matrix D = EZ:I MEw withl=A2>X2>---2>2 2,20
with z = UV DV™*. Since z is left injective, D is left injective. Hence by
Lemma 4.9, D = I or D = E;,. Therefore z is unitary or rank =z = 1.

(4)=(1) For rank = = 1, there are unitary matrices U and V such
that x = UE;, V. Hence if rank z = 1, z is injective.

(3) © (4) Since z is left injective if and only if * is right injective
and rank z = rank z*, it is obvious.

LEMMA 4.12. Let H be a separable Hilbert space and * € B(H)
be invertible, {€,}52, be an orthonormal basis for H. Then there is
an invertable operator y € B(H) such that zy is unitary in B(H), <
yerlen >=0 for k < n and < ye, | €, >> 0.

Proof. Since z is invertible, {zen }32; forms a basis for H. Let ze, =
Br and ay,- - - , @, be the vectors obtained by the Gram-Schmidt process.
Then for each n € N, {a3,---,a,} is an orthonormal basis for the
subspace spanned by {#;,---,8,} and

(a3 :ﬂ —§——————~—-——<ﬂn|ak>a
no o .
k=1

Hence, for each n there exist unique scalars c,; such that a, = 8, —
Z;ll cknBi. Let U be the unitary operator with U(e,) = W%T’ and y
be the operator defined by

1 1
y(en) = €n — (Clnel +---+ Cn—lnen—l)-
lonll ™ Jlanll
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Then xy(en) = 'n'a_l';ﬂﬂn - m(clnlgl + -+ Cn—lnﬂn—l) = n’%:ﬁ"- Hence
U=zy,z7'U =y e B(H),<yer|e,) =0fork <nand < ye, | en >=

“;—nﬂ>0.

LEMMA 4.13. Let H be a separable Hilbert space and {e,}32, be an
orthonormal basis for H. Let x € B(H) be invertible with < zeg | e, >=
0fork < n, < zeple, >> 0, ||z|| = 1 and x is left injective. Then z = I.

Proof. Put pi be the projection with Ran py =< ex >, and Ex =
{ap1+bp; : a,b € C} for k > 1. Then Ej is injective and z By is injective.
By Corollary 4.6, < zeq|e; >=< zeglex > and < ze;|ep >= 0for 1 # k.
Similary < zen|ex >= 0 for k # n. Thus ¢ =< zeiley > I = 1.

THEOREM 4.14. Let H be a separable Hilbert space, and z € B(H)
be invertible with ||z|| = 1. Then the following are equivalent:

(1) =z is injective

(2) x is left injective
(3) z is right injective
(4) z is unitary.

Proof. (1)=(2) Obvious.

(2)=>(4) by Lemma 4.12, there is an invertible operator y € B(H) such
that 2y is unitary in B(H), < yexlen, >= 0for k < n and < yeplen >>0
for n € N. Obviously < ytexler >=0for k <n and < ylenle, >> 0
for n € N. Since (zy)*zy = I,y™! = (zy)*z and y~! is left injective
with ||y ~!|| = 1. Hence by Lemma 4.13, y~! = I and 7 is unitary

(4)=(1) trivial.

Since z is left injective if and only if z* is right injective, (3) & (4) is
trivial.

THEOREM 4.15. Let H be a Hilbert space and ¢ € B(H) be an
isometry. Then z is left injective.

Proof. Since z is an isometry, zz* = p is a projection and ¢ H = pH is
closed. Hence there is a unitary v: tH — H. Define U : zH @ zHL @
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tH®zHY — zH®zHL @ 2H ® 2 HL with

pY 0 0 0
(I-pw 0 O 0

0 0 zp z(I-—p)

0 I 0 0

U =

Then U is unitary in B(H @ H) and U is injective. Let N C B(H) be

injective. Then (8 ](3,) is injective in B(H @ H). Since U (?) ]%) =

(g JII?V ) , (g :E(])V) is injective and zM is injective. Hence z is left

injective.

REMARK 4.16. Let z be an isometry but not unitary. Since zz* is a
projection with rank p = oo and p # I, p is not left injective. Hence z*
is not left injective, that is z is not right injective.

REMARK 4.17. Let A be a C*-algebra. Then A has a unital imbed-
ding in B(H). Hence an isometry x € A is left injective. :

PROPOSITION 4.18. Let H be an infinite dimensional Hilbert space
and x € B(H) with finite rank. Then the following are equivalent:

(1) =z 1s injective.

(2) =z is left injective.

(3) z is right injective.

(4) rankz =0 or 1.

Proof. (1)(=)(2) Obvious.

(2) = (4) Suppose rank z = k > 2. Obviously rank z* = k. Let
{ai,...,ar} C ker z* and {B, ..., Bx} C Ran z be orthonormal bases re-
spectly, K=Span {a,...,ak, /1, ..., 5} and p € B(H) be the projection
with Ran p = K. Then pzp = z. Let ¢ be a projection with p < ¢ and
rank ¢ = k + 1. Then gzq = pzp and qzq : ¢H — ¢qH is not invertible
and rank gzq = k > 2. Hence qzq is not left injective. Therefore z is
not left injective.
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(4) = (1) Since rank z = 0 or 1, Ran = and Ran z* are extremely
injective. Hence z is injective. Since z is left injective if and only if z*
is right injective, (3) < (4) is trivial.
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