ON INJECTIVITY PRESERVING MAPS AND INJECTIVE ELEMENTS ON $B(H)$ *

Dong-Yun Shin ${ }^{+}$, Sa-Ge Lee ${ }^{+}$and Chang Ho Byun ${ }^{+}$

0. Introduction

Many people has studied the theory of injective operator spaces([1], [2] e.t.c.).
In this paper we give examples of injectivity preserving maps on $B(H)$, study related operator spaces and injective operators. In section2, we show that on $B(H) *$-operation and transpose map are injective but not 2 -injective for $\operatorname{dim} H \geq 2$. In section3, we define extremely injective space and show that for rank 1 projection $p, p B(H)$ is a maximal injective operator space and a C^{*}-algebra A is extremely injective if and only if $\operatorname{dim} A \leq 2 . \operatorname{In}$ section 4, we show that for a finite dimensional C^{*}-algebra A, an element $x \in A$ with $\|x\|=1$ is injective if and only if x is unitary, for a seperable Hilbert space H, an invertible element $x \in B(H)$ with $|x|=1, x$ is injective if and only if x is unitary and for a C^{*}-algebra A, if $x \in A$ is an isometry, then x is left injective.

1. Preliminaries

We let M_{n} be the space of complex $n \times n$ matrices and $B(H)$ be the bounded operators on a Hilbert space $H . M_{n}$ has the canonical basis $\left\{E_{i j}\right\}$ where $E_{i j}$ is the matrix with 1 at (i, j) position and zero elsewhere. A linear subspace $E \subset B(H)$ is said to be an operator space.

Given operator space $E, M_{n}(E)=E \otimes M_{n}$ denotes the vector space of $n \times n$ matrices with entries in E.

[^0]*This research was supported by KOSEF, 1986-1989.

For $x=\left(x_{i j}\right)=\sum_{i, j}^{n} x_{i j} \otimes E_{i j} \in M_{n}(E)$ and $y=\left(y_{i j}\right) \in M_{m}(E)$, we write

$$
x \oplus y=\left(\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right) \in M_{n+m}(E) .
$$

Identifying $M_{n}(B(H))$ with $B\left(H^{n}\right), M_{n}(E)$ can be regarded as an operator space of $B\left(H^{n}\right)$. Let $E \subset B(H)$ and $F \subset B(K)$ be operator spaces and $\phi: E \rightarrow F$ a linear or conjugate linear map. We define the $\operatorname{map} \phi_{n}: M_{n}(E) \rightarrow M_{n}(F)$ by $\phi_{n}\left(\left(x_{i j}\right)\right)=\left(\phi\left(x_{i j}\right)\right)$ for $\left(x_{i j}\right) \in M_{n}(E)$. We write, $\|\phi\|_{c b}=\sup \left\{\left\|\phi_{n}\right\|: n \in N\right\}$, where $\|\phi\|=\sup \{\|\phi(x)\|:$ $x \in E,\|x\|=1\}$. We call ϕ completely bounded if $\|\phi\|_{c b}<\infty$, and ϕ completely contractive if $\|\phi\|_{c b} \leq 1$.
Let E be an operator space. E is said to be an injective operator space if for every operator space F, every operator subspace F_{0} of F and every completely bounded linear map $\phi: F_{0} \rightarrow E$, there exists a linear map $\psi: F \rightarrow E$ such that $\left.\psi\right|_{F_{0}}=\phi$ and $\|\psi\|_{c b}=\|\phi\|_{c b}$.

It is well known that $B(H)$ is an injective operator space for arbitrary Hilbert space H. A linear map $\phi: B(H) \rightarrow B(H)$ is called a completely contractive projection if $\|\phi\|_{c b} \leq 1$ and $\phi^{2}=\phi$. Let $E \subset B(H)$ be an operator space. An E-projection of $B(H)$ is a completely contractive projection $\phi: B(H) \rightarrow B(H)$ such that $\phi(x)=x$ for all $x \in E$.

Let H be a Hilbert space and let $\left\{e_{i}\right\}_{i \in I}$ be a fixed orthonormal basis for H. For each $\xi=\sum a_{i} e_{i} \in H$ we set $\bar{\xi}=\sum \bar{a}_{i} e_{i} \in H$. For each $x \in B(H)$ and $\xi, \eta \in H$, we define $\theta(x)$ and $\tau(x)$ by $<\theta(x) \xi \mid \eta>=$ $\langle x \bar{\eta}| \bar{\xi}>$ and $\langle\tau(x) \xi| \eta>=\langle\bar{\eta} \mid x \bar{\xi}\rangle$, respectively. For each $x, y \in$ $B(H),\|x\|=\|\theta(x)\|=\|\tau(x)\|, \theta(x y)=\theta(y) \theta(x), \theta(x)^{*}=\tau(x)=\theta\left(x^{*}\right)$, and $\tau(x y)=\tau(x) \tau(y)$. But $\theta(x)$ and $\tau(x)$ depend on orthonormal bases.

2. Examples of injectivity preserving maps on $B(H)$

Theorem 2.1. Let $E \subset B(H)$ be an operator space. Then E is injective if and only if there is an E-projection ϕ such that $\phi(B(H))=E$.

Proof. Combining Theorem 3.1. and Corollary 3.3([6]) completes the proof.

Definition 2.2.. Let $E \subset B(H)$ and $F \subset B(K)$ be operator spaces. A map $\phi: E \rightarrow F$ is an injectivity preserving map if $\phi\left(E_{0}\right)$ is injective
whenever E_{0} is an injective subspace of E. We say ϕ is n-injective if ϕ_{n} is an injectivity preserving map and completely injective if ϕ is n-injective for each positive inter n.

Theorem 2.3. Let $E \subset B(H)$ and $F \subset B(K)$ be operator spaces and $\phi: E \rightarrow F$ be a completely contractive linear map which has completely contractive inverse. Then ϕ is completely injective.

Proof. Let $N \subset M_{n}(E)$ be an injective opereator space. For every operator space M, every operator subspace L of M and every completely bounded linear map $\psi: L \rightarrow \phi_{n}(N), \phi_{n}{ }^{-1} \circ \psi: L \rightarrow N$ is completely bounded. Hence there is a linear map $\tau: M \rightarrow N$ such that $\left.\tau\right|_{L}=$ $\phi_{n}^{-1} \circ \psi$ and $\|\tau\|_{c b}=\left\|\phi_{n}^{-1} \circ \psi\right\|_{c b}=\|\psi\|_{c b}$. Then the linear map $\phi_{n} \circ \tau: M \rightarrow \phi_{n}(N)$ is an extension of ψ such that $\left\|\phi_{n} \circ \tau\right\|_{c b}=\|\psi\|_{c b}$.

Corollary 2.4. Let $E \subset B(H)$ and $F \simeq B(K)$ be operator spaces and $\phi: E \rightarrow F$ be a linear bijection with $\|\phi\|_{c b}\left\|\phi^{-1}\right\|_{c b}=1$. Then ϕ is completely injective.

Proof. Put $\psi=\frac{\phi}{\|\phi\|_{c b}}$. Then $\psi^{-1}=\frac{\phi^{-1}}{\left\|\phi^{-1}\right\|_{c b}}$. By Theorem2. 3, ψ is completely injective. Hence ψ is completely injective.

Corollary 2.5. Let $A \subset B(H)$ be a C^{*}-algebra and $\phi: A \rightarrow B(K)$ be a*-isomorphism. Then ϕ is completely injective.

Corollary 2.6. Let ϕ be a *- automorphism on $B(H)$. Then ϕ is completely injective.

Lemma 2.7. Let $\alpha: B(H) \rightarrow B(H)$ be a bijection with $\alpha \circ \alpha=i d, \phi$ be an E-projection with $\phi(B(H))=E$ and $\psi=\alpha \circ \phi \circ \alpha$. Then $\psi \circ \psi=$ $\psi,\left.\psi\right|_{\alpha(E)}=i d_{\alpha(E)}$ and $\psi(B(H))=\alpha(E)$.

Proof. It is an easy compuation.
Theorem 2.8. Let $*: B(H) \rightarrow B(H)$ be the map defined by $*(x)=$ x^{*} Then $*$ is an injectivity preserving map.

Proof. Let $E \subset B(H)$ be an injective operator space. By Theorem 2. 1 , there is an E-projection ϕ with $\phi(B(H))=E$. We denote $*(E)=E^{*}$.

Let $\phi^{*}=* \circ \phi \circ *$. Then by Lemma 2. 7, $\phi^{*} \circ \phi^{*}=\phi^{*}, \phi^{*}(x)=x$ for all $x \in E^{*}$ and $\phi^{*}(B(H))=E^{*}$. Hence to complete the proof, we must show that ϕ^{*} is completely contractive. Let $\sum_{i, j=1}^{n} x_{i j} \otimes E_{i j} \in M_{n}(B(H))$ and $\xi=\left(\xi_{1}, \cdots, \xi_{n}\right)^{t}, \eta=\left(\eta_{1}, \cdots, \eta_{n}\right)^{t} \in H^{n}$. Then $<\sum_{i, j}^{n} x_{i j}^{*} \otimes$ $E_{i j} \xi|\eta>=<\xi| \sum_{i, j=1}^{n} x_{i j} \otimes E_{j i} \eta>=\overline{\left\langle\sum_{i, j=1}^{n} x_{i j} \otimes E_{j i} \eta \mid \xi\right\rangle}$. Hence $\left\|\sum_{i, j=1}^{n} x_{i j}^{*} \otimes E_{i j}\right\|=\left\|\sum_{i, j=1}^{n} x_{j i} \otimes E_{i j}\right\|$. Therefore

$$
\begin{aligned}
&\left\|\phi_{n}^{*}\left(\sum_{i, j=1}^{n} x_{i j} \otimes E_{i j}\right)\right\|=\left\|\sum_{i, j=1}^{n} \phi^{*}\left(x_{i j}\right) \otimes E_{i j}\right\| \\
&=\left\|\sum_{i, j}^{n} \phi\left(x_{i j}^{*}\right) \otimes E_{j i}\right\|=\left\|\phi_{n}\left(\sum_{i, j=1}^{n} x_{i j}^{*} \otimes E_{j i}\right)\right\| \\
& \leq\left\|\sum_{i, j=1}^{n} x_{i j}^{*} \otimes E_{j i}\right\|=\left\|\sum_{i, j=1}^{n} x_{i j} \otimes E_{i j}\right\| .
\end{aligned}
$$

Hence ϕ^{*} is completely contractive.
Remark 2.9. *: $M_{2} \rightarrow M_{2}$ is not 2-injective since $*_{2}\left(a E_{11}+b E_{12}+\right.$ $\left.c E_{14}\right)=\bar{a} E_{11}+\bar{b} E_{21}+\bar{c} E_{23}$. Hence $*: B(H) \rightarrow B(H)$ is not 2-injective whenever $\operatorname{dim} H \geq 2$.

Remark 2.10. Let A be a C^{*}-algebra. Since A can be embeded in $B(H)$ for some Hilbert space H, the map $*$ on A is an injectivity preserving map.

Corollary 2.11. Let $\phi: B(H) \rightarrow B(H)$ be a conjugate linear, *preserving bijection with $\phi(x y)=\phi(y) \phi(x)$. Then ϕ is an injectivity preserving map.

Proof. Since $* \circ \phi$ is a $*$-automorphism on $B(H), \phi=* \circ(* \circ \phi)$ is an injectivity preserving map.

Theorem 2.12. Let $\left\{e_{i}\right\}$ be an orthonormal basis for a Hilbert space H and θ the transpose map with respect to this basis. Then θ is an injectivity preserving map.

Proof. Let $E \subset B(H)$ be an injective operator space. By Theorem 2. 1 , there is an E-projection ϕ with $\phi(B(H))=E$. Define $\phi^{t}(x): B(H) \rightarrow$
$B(H)$ by $\phi^{t}(x)=\theta(\phi(\theta(x)))$. Then by Lemma 2. 7, $\phi^{t} \circ \phi^{t}=\phi^{t}, \phi^{t}(x)=$ x for $x \in \theta(E)$ and $\phi^{t}(B(H))=\theta(E)$. Hence to complete the proof, we must show that ϕ^{t} is completely contractive. Let $\sum_{i, j=1}^{n} x_{i j} \otimes E_{i j} \in$ $M_{n}(B(H))$ and $\left.\xi=\left(\xi_{1}, \cdots, \xi_{n}\right)^{t}, \eta=\eta_{1}, \cdots, \eta_{n}\right)^{t} \in H^{n}$. Then

$$
\begin{aligned}
& <\sum_{i, j=1}^{n} \theta\left(x_{i j}\right) \otimes E_{i j} \xi|\eta\rangle=\sum_{i, j=1}^{n}\left\langle\theta\left(x_{i j}\right) \xi_{j} \mid \eta_{i}\right\rangle \\
& =\sum_{i, j=1}^{n}\left\langle x_{i j} \overline{\eta_{i}} \mid \overline{\xi_{j}}\right\rangle=<\sum_{i, j=1}^{n} x_{i j} \otimes E_{j i} \bar{\eta}|\bar{\xi}\rangle
\end{aligned}
$$

where $\bar{\eta}=\left(\bar{\eta}_{1}, \cdots, \bar{\eta}_{n}\right)^{t}$ and $\bar{\xi}=\left(\bar{\xi}_{1}, \cdots, \bar{\xi}_{n}\right)^{t}$. Hence $\| \sum_{i, j=1}^{n} \theta\left(x_{i j}\right) \otimes$ $E_{i j}\|=\| \sum_{i, j=1}^{n} x_{i j} \otimes E_{j i} \|$. Therefore

$$
\begin{aligned}
& \left\|\phi_{n}^{t}\left(\sum_{i, j=1}^{n} x_{i j} \otimes E_{i j}\right)\right\|=\left\|\sum_{i, j=1}^{n} \phi^{t}\left(x_{i j}\right) \otimes E_{i j}\right\| \\
= & \left\|\sum_{i, j=1}^{n} \phi\left(\theta\left(x_{j i}\right)\right) \otimes E_{i j}\right\|=\left\|\phi_{n}\left(\sum_{i, j=1}^{n} \theta\left(x_{j i}\right) \otimes E_{i j}\right)\right\| \\
\leq & \left\|\sum_{i, j=1}^{n} \theta\left(x_{j i} \otimes E_{i j}\right)\right\|=\left\|\sum_{i, j=1}^{n} x_{i j} \otimes E_{i j}\right\| .
\end{aligned}
$$

Corollary 2.13. Let $\phi: B(H) \rightarrow B(H)$ be a linear *-preserving bijection with $\phi(x y)=\phi(y) \phi(x)$. Then ϕ is an injectivity preserving map.

Proof. The same as the proof of Corollaey 2.11.
Corollary 2.14. Let $\left\{e_{i}\right\}_{i \in I}$ be an orthonormal basis for a Hilbert space H. Let τ be a map defined by $\langle\tau(x) \xi \mid \eta\rangle=\langle\bar{\eta} \mid \bar{\xi}\rangle$. Then τ is completely injective.

Proof. By elementary caculation, $\tau=* \circ \theta(=\theta \circ *)$. Hence τ is an injectivity preserving map. It is easy to show that the map τ_{n} : $M_{n}(B(H)) \rightarrow M_{n}(B(H))$ is the map $\tau: B\left(H \otimes C^{n}\right) \rightarrow B\left(H \otimes C^{n}\right)$ with basis $\left\{e_{i} \otimes E_{k}: i \in I, 1 \leq k \leq n\right\}$. Hence τ is completely injective.

Let $H=C^{2}$ with basis $\{(1,0),(0,1)\}$. Then $\theta: M_{2} \rightarrow M_{2}$ is not 2-injective since

$$
\theta_{2}\left(a E_{11}+b E_{12}+c E_{14}\right)=a E_{11}+b E_{21}+c E_{23}
$$

Let H be a Hilbert space and $\alpha=\left\{e_{i}\right\}_{i \in I}$ and $\beta=\left\{f_{i}\right\}_{i \in I}$ be two orthonormal basis for H. Let U be the unitary operator with $U e_{i}=f_{i}$ and $\theta_{\alpha}, \theta_{\beta}$ be the transpose maps with respect to the bases α and β. Then

$$
\begin{aligned}
<\theta_{\alpha}(x) e_{i} \mid e_{j}> & =<x e_{j} \mid e_{i}> \\
& =<x U^{*} f_{j} \mid U^{*} f_{i}> \\
& =<U x U^{*} f_{j} \mid f_{i}> \\
& =<\theta_{\beta}\left(U x U^{*}\right) f_{i} \mid f_{j}> \\
& =<\theta_{\beta}\left(U x U^{*}\right) U e_{i} \mid U e_{j}> \\
& =<U^{*} \theta_{\beta}\left(U x U^{*}\right) U e_{i} \mid e_{j}>
\end{aligned}
$$

Hence $\theta_{\alpha}(x)=U^{*} \theta_{\beta}\left(U x U^{*}\right) U$. Therefore θ_{α} is n-injective if and only if θ_{β} is n-injective. Since $\theta: M_{2} \rightarrow M_{2}$ is not 2-injective, $\theta: B(H) \rightarrow B(H)$ is not 2 -injective whenever $\operatorname{dim} H \geq 2$.

If $\operatorname{dim} H=1, \theta=i d$. Hence θ is completely injective. Since $\theta=* \circ \tau, *$ is 2 -injective if and only if $\operatorname{dim} H \leq 1$. Hence we have shown the following theorem.

Theorem 2.15. Let H be a Hilbert space with basis $\alpha=\left\{e_{i}\right\}$. Then the following are equivalent:
(1) The map *: $B(H) \rightarrow B(H)$ is 2-injective.
(2) The map *: $B(H) \rightarrow B(H)$ is completely injective.
(3) $\operatorname{dim} H \leq 1$.
(4) The transpose map θ_{α} is 2 -injective.
(5) The transpose map θ_{α} is completely injective.

Corollary 2.16. Let $\phi: B(H) \rightarrow B(H)$ be a conjugate linear, *preserving bijection with $\phi(x y)=\phi(y) \phi(x)$ and $\psi: B(H) \rightarrow B(H)$ be a linear, *-preserving bijection with $\psi(x y)=\psi(y) \psi(x)$. Then the following are equivalent:
(1) ϕ is 2-injective.
(2) ϕ is completely injective.
(3) $\operatorname{dim} H \leq 1$.
(4) ψ is 2-injective.
(5) ψ is completely injective.

Theorem 2.17. Let $E \subset B(H), F \subset B(K)$ be operator spaces and $\phi: E \rightarrow F$ be ($n+1$)-injective. Then ϕ is n-injective.

Proof. Let L be an injective operator space contained in $M_{n}(E)$. We denote $L \oplus 0=\{x \oplus 0: x \in L, 0 \in B(H)\} \subset M_{n+1}(E)$. Then $L \oplus 0$ is injective. Since $\phi_{n+1}(L \oplus 0)=\phi_{n}(L) \oplus 0$ is injective, $\phi_{n}(L)$ is injective.

3. Extremely injective spaces

Definition 3.1.. An operator space E is called (finitely) extremely injective if its (finite dimensional) closed subspaces are injective.

Theorem 3.2. Let $p \in B(H)$ be a rank 1 projection in $B(H)$. Then $B(H) p$ is extremely injective.

Proof. Choose a unit vector η in the range of p. For each $x, y \in B(H)$, define $\phi: B(H) p \rightarrow H$ by $\phi(x p)=x \eta$ and $<x p|y p>=<x \eta| y \eta>$, where $<x \eta \mid y \eta>$ is the inner product in H. Then $(B(H) p,<\mid>)$ is a Hilbert space and ϕ is an isometric isomorphism. Let E be a closed subspace of $B(H) p$. Then $\phi(E)$ is a closed subspace of H. Hence there is the projection $q \in B(H)$ with $\phi(E)=q H$. Therefore $E=q B(H) p$ and E is injective.

Corollary 3.3. Let $p \in B(H)$ be a rank 1 projection. Then $p B(H)$ is extremely injective.

Proof. Since $p B(H)=(B(H) p)^{*}$ and * is an injectivity preserving $\operatorname{map}, p B(H)$ is extremely injective.

Lemma 3.4. Let $x=\left(x_{i j}\right) \in M_{n}$ with $x_{1 i}=0(1 \leq i \leq n)$, $E=\operatorname{Span}\left\{E_{11} M_{n}, x\right\}$ and $\phi: M_{n} \rightarrow E$ be an E-projection. Then for $i \geq 2, \phi\left(E_{i j}\right)=b_{i j} x$ for some $b_{i j} \in C$.

Proof. For $i \geq 2$, put $\phi\left(E_{i j}\right)=\sum_{l=1}^{n} a_{l} E_{1 l}+b_{i j} x$ for some $a_{l}, b_{i j} \in C$. Since $\phi\left(E_{1 k}\right)=E_{1 k}, \phi\left(E_{i j}+m E_{1 k}\right)=\sum_{l=1}^{n} b_{l} E_{1 l}+b_{i j} x$, where $b_{l}=a_{l}$
for $l \neq k$ and $b_{k}=a_{k}+m$. By elementry caculation, $\left\|E_{i j}+m E_{1 k}\right\| \leq$ $\sqrt{1+m^{2}}$ and $\left\|\phi\left(E_{i j}+m E_{1 k}\right)\right\|=\left\|\sum_{l=1}^{n} b_{l} E_{1 l}+b_{i j} x\right\| \geq\left|b_{k}\right|=$ $\left|a_{k}+m\right|$. This implies $\sqrt{1+m^{2}} \geq\left|a_{k}+m\right|$ for each $m \in C$. Hence $a_{k}=0$ and $\phi\left(E_{i j}\right)=b_{i j} x$.

Theorem 3.5. Let $E_{11} M_{n} \subset E \subset M_{n}$ and $\operatorname{dim} E=n+1$. Then E is not injective.

Proof. We can choose $x=\left(x_{i j}\right) \in E$ with $\|x\|=1$ and $x_{1 i}=0$ for $1 \leq i \leq n$. Suppose E is injective. Then there is an E-projection $\phi: M_{n} \rightarrow E$.

Case 1.
There exist $i, j(i \neq j)$ such that $x E_{i i} \neq 0, x E_{j j} \neq 0$. By Lemma 3.4, $\phi\left(E_{k l}\right)=b_{k l}$ for $2 \leq k \leq n, 1 \leq l \leq n$. For $l \neq i,\left\|E_{k l}+E_{1 i}\right\|=1$ and $\left\|\phi\left(E_{k l}+E_{1 i}\right)\right\|=\left\|E_{1 i}+b_{k l} x\right\| \geq\left\|E_{1 i}+b_{k l} x E_{i i}\right\|=\sqrt{1+\mid b_{k l}\left\|^{2}\right\| x E_{i i} \|^{2}}$. Hence $b_{k l}=0$. By the same way, $b_{k l}=0$ for $l \neq j$. Hence $b_{k l}=0$ for $2 \leq k \leq n, 1 \leq l \leq n$ and $\phi(x)=0$. It is a contradiction.

Case 2. There is only one i such that $x E_{i i} \neq 0$. We may assume $i=1$ and $x_{21} \neq 0$. By Lemma 3.4, $\phi\left(E_{22}\right)=b_{22} x$. Since $\phi\left(E_{11}+E_{22}\right)=$ $E_{11}+b_{22} x,\left\|E_{11}+E_{22}\right\|=1$ and $\left\|E_{11}+b_{22} x\right\|=\sqrt{1+\left|b_{22}\right|^{2}}, b_{22}=0$. Hence $\phi\left(E_{22}\right)=0$. We have

$$
\begin{aligned}
& \left\|E_{11}+x_{21} E_{12}-E_{22}+x\right\|^{2} \\
= & \left\|\left(E_{11}+x_{21} E_{12}-E_{22}+x\right)^{*}\left(E_{11}+x_{21} E_{12}-E_{22}+x\right)\right\| \\
= & \left\|\left(\begin{array}{cc}
2 & 0 \\
0 & 1+\left|x_{21}\right|^{2}
\end{array}\right)\right\|=2 .
\end{aligned}
$$

Since $\phi\left(E_{11}+x_{21} E_{12}-E_{22}+x\right)=E_{11}+x_{21} E_{12}+x$,

$$
\begin{aligned}
& \left\|\phi\left(E_{11}+x_{21} E_{12}-E_{22}+x\right)\right\|^{2} \\
= & \left\|\left(E_{11}+x_{21} E_{12}+x\right)^{*}\left(E_{11}+x_{21} E_{12}+x\right)\right\| \\
= & \left\|\left(\begin{array}{cc}
2 & x_{21} \\
x_{21} & \left|x_{21}\right|^{2}
\end{array}\right)\right\|>2+\frac{1}{2}\left|x_{21}\right|^{2} .
\end{aligned}
$$

Hence ϕ is not contractive and it is a contradiction. Therefore E is not injective.

Theorem 3.5 implies that $E_{11} M_{n}$ is a maximal extremely injective operator subspace of M_{n}.

Corollary 3.6. Let $p \in B(H)$ be a rank 1 projection. Then $p B(H)$ is a maximal extremely injective operator subspace of $B(H)$.

Proposition 3.7. Let $\sum_{l=1}^{n}\left|a_{k l}\right| \leq 1$ for $1 \leq k \leq m$ and $E=$ $\left\{\sum_{k=1}^{n} b_{k}\left(E_{k k}+\sum_{l=1}^{m} a_{k l} E_{n+l n+l}\right): b_{1}, \ldots, b_{n} \in C\right\}$. Then E is injective.

Proof. Define $\phi: M_{n+m} \rightarrow E\left(C^{n+m} \subset M_{n+m}\right)$ with $\phi\left(E_{k k}\right)=E_{k k}+$ $\sum_{k=1}^{m} a_{k l} E_{n+k n+k}$ for $1 \leq k \leq n$, and $\phi\left(E_{k l}\right)=0$ for otherwise. Then $\phi \circ \phi=\phi$ and $\left.\phi\right|_{E}=i d$, and $\phi(B)=\sum_{k=1}^{n} b_{k k} \phi\left(E_{k k}\right)$ for an $(n+m)$ matrix $B=\left(b_{i j}\right)$. Hence $\|\phi(B)\|=\max \left\{\left|b_{k k}\right|: 1 \leq k \leq n\right\} \leq\|B\|,\|\phi\|=$ 1. Since $E \subset C^{n+m},\|\phi\|_{c b}=\|\phi\|=1([4]$, Theorem3. 8. $)$. Therefore E is injective.

Proposition 3.8. Let $0<a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ be fixed and $E=$ $\left\{\sum_{k=1}^{n} b_{k}\left(E_{k k}+a_{k} E_{n+1 n+1}\right): b_{1}, b_{2}, \ldots, b_{n} \in C\right\}$. Then E is injective if and only if $\sum_{k=1}^{n} a_{k} \leq 1$ or $1+a_{1}+\cdots+a_{n-1} \leq a_{n}$.

Proof. (\Leftrightarrow) Case 1. $\sum_{k=1}^{n} a_{k} \leq 1$. By Proposition 3.7, E is injective.
Case 2. $1+a_{1}+\cdots+a_{n-1} \leq a_{n}$. By elementary caculation, $E=$ $\left\{b_{n}\left(\frac{1}{a_{n}} E_{n n}+E_{n+1 n+1}\right)+\sum_{k=1}^{n-1} b_{k}\left(E_{k k}-\frac{a_{k}}{a_{n}} E_{n n}\right): b_{1}, \ldots, b_{n} \in C\right\}$, and E is injective.
(\Rightarrow) Let E be injective and $1+a_{1}+\cdots+a_{n-1}>a_{n}$. Since E is injective, there is an E-projection $\phi: M_{n+1} \rightarrow M_{n+1}$ with $\phi\left(M_{n+1}\right)=E$. Hence there are complex numbers $c_{i j}$ for $1 \leq i, j \leq n+1$ such that $\phi\left(E_{k k}\right)=\sum_{i=1}^{n} c_{k i}\left(E_{i i}+a_{i} E_{n+1 n+1}\right)$ for $1 \leq k \leq n+1$. Since $\phi\left(E_{k k}+\right.$ $\left.a_{k} E_{n+1 n+1}\right)=E_{k k}+a_{k} E_{n+1 n+1}$ for $1 \leq k \leq n, \phi\left(E_{n+1 n+1}\right)=\frac{1}{a_{k}}\left(E_{k k}+\right.$ $\left.a_{k} E_{n+1 n+1}-\sum_{i=1}^{n} c_{k i}\left(E_{i i}+a_{i} E_{n+1 n+1}\right)\right)$ for $1 \leq k \leq n$, and $c_{n+1 k}=$ $\frac{1-c_{k k}}{a_{k}}=\frac{-c_{l k}}{a_{l}}$ for $1 \leq l, k(l \neq k) \leq n$. Since $\left|c_{k k}\right| \leq 1$ and $a_{k} c_{n+1 k}=$ $1-c_{k k}, \operatorname{Re} c_{n+1 k} \geq 0$. Since $E_{k k} \phi\left(2 E_{k k}+2 E_{n+1 n+1}-I\right)=\left(2 c_{k k}+\right.$ $\left.2 c_{n+1 k}-\sum_{i=1}^{n+1} c_{i k}\right) E_{k k}=\left\{1+\left(1-2 a_{k}+\sum_{i=1}^{n} a_{i}\right) c_{n+1 k}\right\} E_{k k}, \operatorname{Re}(1-$ $\left.2 a_{k}+\sum_{i=1}^{n} a_{i}\right) c_{n+1 k} \leq 0$ for $1 \leq k \leq n$. Since $1-2 a_{k}+\sum_{i=1}^{n} a_{i}>0$ for $1 \leq k \leq n, \operatorname{Re} c_{n+1 k}=0$ for $1 \leq k \leq n$. Hence $c_{k k}=1$ for $1 \leq k \leq n$ and $c_{k l}=0$ for otherwise. Then $\phi(I) E_{n+1 n+1}=\sum_{k=1}^{n} a_{k} E_{n+1 n+1}$. Therefore $\sum_{k=1}^{n} a_{k} \leq 1$.

Proposition 3.8 implies that for a positive inter $n C^{*}$-algebra C^{n} is extremely injective if and only if $n \leq 2$.

Corollary 3.9. Let A be a $C *$-algebra. Then A is extremely injective if and only if $\operatorname{dim} A \leq 2$.

Proof. (\leftarrow) Clear.
(\Rightarrow) Case $1.3 \leq \operatorname{dim} A<\infty$.
Since $\operatorname{dim} A<\infty, A$ is decomposed into the direct sum $A=\oplus_{k=1}^{n} A_{k}$, where each A_{k} is isomorphic to the algebra of $n_{k} \times n_{k}$-matrices ([7], Theorem 1.11.2.) Hence A is not extremely injective.

Case 2. $\operatorname{dim} A$ is infinite.
Since A is infinite dimensional C^{*}-algebra, there is a positive element x with infinite spectrum ([3], Exersise 6.14.). Choose $\lambda_{1}, \lambda_{2}, \lambda_{3} \in S p(x)$ with $0<\lambda_{1}<\lambda_{2}<\lambda_{3}$. Put $\lambda_{0}=0$ and $\lambda_{4}=1+\lambda_{3}$. Define $f_{i}(i=$ $1,2,3,):[0, \infty) \rightarrow[0,1]$ with

$$
f_{i}(\lambda)=\left\{\begin{array}{l}
\frac{2 \lambda-\lambda_{i-1}-\lambda_{i}}{\lambda_{i}-\lambda_{i-1}} \text { for } \lambda_{i-1}+\lambda_{i} \leq 2 \lambda \leq 2 \lambda_{i} \\
\frac{2 \lambda-\lambda_{i}-\lambda_{i+1}}{\lambda_{i}-\lambda_{i+1}} \text { for } 2 \lambda_{i} \leq 2 \lambda \leq \lambda_{i}+\lambda_{i+1} \\
0
\end{array}\right.
$$

Then $f_{i}(x) \in A, f_{i}(x) f_{j}(x)=0$ for $i \neq j$ and $\| a f_{1}(x)+b f_{2}(x)+$ $c f_{3}(x) \|=\max \{|a|,|b|,|c|\}$. Hence, by the same way in the proof of Proposition 3.8, $E=\left\{a f_{1}(x)+b f_{2}(x)-(a+b) f_{3}(x): a, b \in C\right\} \subset A$ is not injective. Therefore A is not extremely injective.

Theorem 3.10. Let $E \subset B(H)$ be an operator space such that dim E is at most countable. Then the following are equivalent:
(1) E is extremely injective.
(2) E is injective and for each operator space F and any linear map $\phi: F \rightarrow E, \phi$ is an injectivity preserving map.
(3) E is injective and for each operator space F of E, and any linear map $\phi: F \rightarrow E, \phi$ is an injectivity preserving map.
(4) E is injective and for any linear map $\phi: E \rightarrow E$ is an injectivity preserving map.

Proof. (1) $\Rightarrow(2) \Rightarrow(3) \Rightarrow(4)$. Clear.
(4) \Rightarrow (1). Let $F \subset E$ be a subspace. Choose a basis $\left\{x_{i}\right\}_{i \in I}$ of F and a basis $\left\{x_{j}\right\}_{j \in J}$ of E with $I \subset J$. Define a linear map $\phi: E \rightarrow E$ by $\phi\left(x_{i}\right)=x_{i}$ for $i \in I$ and $\phi\left(x_{i}\right)=0$ for $i \in J \backslash I$. Hence $F=\phi(E)$ is injective.

For operator spaces E and F, the set of all injectivity preserving linear maps $\phi: E \rightarrow F$ will be denoted by $\operatorname{IP}(E, F)$. And \#IP(E,F) denotes the supremum of all dimensions of subspaces of $\operatorname{IP}(E, F)$. We set $I P(E)=I P(E, E)$. In general, $I P(E, F)$ is not a vector space. If F is extremely injective or $\operatorname{dim} E \leq 1$, then $I P(E, F)$ is a vector space but the converse is not known. For an operator space $E, I(E)$ denotes the set of all extremely injective subspace of E. And $\# I(E)$ denotes the supremum of all dimensions of subspaces of $I(E)$.

Let E and F be finite dimensional operator spaces, let $F_{0} \subset F$ be an extremely injective subspace, let $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be a basis for E, and let $\left\{f_{1}, f_{2}, \ldots, f_{k}\right\}$ be a basis for F_{0}. For $1 \leq i \leq n, 1 \leq j \leq k$, define $\phi_{i j}: E \rightarrow F$ by $\phi_{i j}\left(e_{l}\right)=\delta_{i l} f_{j}$. Then $\left\{\phi_{i j}: 1 \leq i \leq n, 1 \leq j \leq k\right\}$ is linearly independent and $\left.\operatorname{Span}\left\{\phi_{i j}: 1 \leq i \leq n, 1 \leq j\right] \leq k\right\} \subset I P(E, F)$. Hence $\operatorname{dim} E \cdot \# I(F) \leq \# I P(E, F) \leq \operatorname{dim} E \cdot \operatorname{dim} F$. In particular, $\# I P(E, F)=\operatorname{dim} E \cdot \operatorname{dim} F$ whenever F is extremely injective. Since $E_{11} M_{n}$ is extremely injective, $\# I\left(M_{n}\right) \geq n$ and $\# I P\left(M_{n}\right) \geq n^{3}$.

4. Injective elements in $C *$-algebras

For a C^{*}-algebra A and $x, y \in A$, let L_{x} and R_{x} be a linear map defined by $L_{x} y=x y$ and $R_{x} y=y x$.

Definition 4.1.. For a C^{*}-algebra A, an element $x \in A$ is called left (resp. right) injective if L_{x} (resp. R_{x}) is an injectivity preserving map. An element $x \in A$ is injective if x is left and right injective.

Obviously a unitary element $x \in A$ is injective. Since $L_{x} E=\left(R_{x^{*}} E^{*}\right)^{*}$ and $*$-operation is an injectivity preserving map, x is left injective if and only if x^{*} is right injective.
Lemma 4.2. Let $x=\left(\begin{array}{ll}1 & 0 \\ a & b\end{array}\right) \in M_{2}$ and $a b \neq 0$ Then x is not left
injective.
Proof. Put $E=\left\{\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right): \alpha, \beta \in \mathbf{C}\right\}$. Then E is injective. Suppose x is left injective. Then

$$
L_{x} E=\operatorname{Span}\left\{\left(\begin{array}{ll}
1 & 0 \\
a & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\} \text { is injective. }
$$

Hence there is an $L_{x} E$-projection $\phi: M_{2} \rightarrow L_{x} E$. Put $\phi\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)=$ $\alpha\left(\begin{array}{ll}1 & 0 \\ a & 0\end{array}\right)+\beta\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$. Since $\phi\left(\begin{array}{cc}1 & 0 \\ 0 & \pm 1\end{array}\right)=\left(\begin{array}{cc}\alpha & 0 \\ \alpha a & \beta \pm 1\end{array}\right)$ and $\left\|\left(\begin{array}{cc}\alpha & 0 \\ \alpha a & \beta \pm 1\end{array}\right)\right\| \leq 1, \alpha=\beta=0$. Since $\phi\left(\begin{array}{ll}0 & 0 \\ a & 0\end{array}\right)=\phi\left(\begin{array}{ll}1 & 0 \\ a & 0\end{array}\right)-$ $\phi\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), \phi\left(\begin{array}{ll}0 & 0 \\ a & 0\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ a & 0\end{array}\right)$, a contradiction. Therefore x is not injective.

Lemma 4.3. Let $x=\left(\begin{array}{ll}1 & a \\ 0 & b\end{array}\right) \in M_{2}$ and $a b \neq 0$. Then x is not left injective.

Proof. By the same method in the proof of Lemma 4.2, it is trivial.
Lemma 4.4. Let $x=\left(\begin{array}{ll}1 & 0 \\ 0 & a\end{array}\right) \in M_{2}$ and $|a|>1$. Then x is not left injective.

Proof. Put $E=\left\{\left(\begin{array}{ll}a & b \\ b & a\end{array}\right): a, b \in C\right\}$. Then E is injective. Suppose x is left injective. Then $L_{x} E=\operatorname{Span}\left\{\left(\begin{array}{cc}1 & 0 \\ 0 & a\end{array}\right),\left(\begin{array}{cc}0 & 1 \\ a & 0\end{array}\right)\right\}$ is injective. Hence there is an $L_{x} E$-projection $\phi: M_{2} \rightarrow L_{x} E$. Put $\phi\left(\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\right)=$ $\alpha\left(\begin{array}{ll}1 & 0 \\ 0 & a\end{array}\right)+\beta\left(\begin{array}{ll}0 & 1 \\ a & 0\end{array}\right)$. Since $\phi\left(\left(\begin{array}{cc}k+1 & 0 \\ 0 & k a\end{array}\right)\right)=k \phi\left(\left(\begin{array}{ll}1 & 0 \\ 0 & a\end{array}\right)\right)+$ $\phi\left(\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\right)=(k+\alpha)\left(\begin{array}{ll}1 & 0 \\ 0 & a\end{array}\right)+\beta\left(\begin{array}{ll}0 & 1 \\ a & 0\end{array}\right),|k a| \geq|(k+\alpha) a|$ for
sufficiently large $k \in \mathbf{C}$. Hence $\alpha=0$. Since $\phi\left(\begin{array}{cc}1 & k \\ k a & 0\end{array}\right)=(\beta+$ $k)\left(\begin{array}{ll}0 & 1 \\ a & 0\end{array}\right)$ for all $k \in \mathbf{C}, \beta=0$. Hence $\phi\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$. Similarly $\phi\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$. Therefore $\phi\left(\begin{array}{ll}0 & 0 \\ 0 & a\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & a\end{array}\right)$ and $\phi\left(\begin{array}{ll}0 & 0 \\ a & 0\end{array}\right)=\left(\begin{array}{ll}0 & 1 \\ a & 0\end{array}\right)$. Then $\phi\left(\begin{array}{ll}0 & 0 \\ a & a\end{array}\right)=\left(\begin{array}{ll}1 & 1 \\ a & a\end{array}\right)$. Since $\left\|\left(\begin{array}{ll}0 & 0 \\ a & a\end{array}\right)\right\|$ $=\sqrt{2}|a|$ and $\left\|\left(\begin{array}{ll}1 & 1 \\ a & a\end{array}\right)\right\|=\sqrt{2\left(1+|a|^{2}\right.}, \phi$ is not contractive. It is a contradiction. Therefore x is not left injective.

Corollary 4.5. Let $x=\left(\begin{array}{ll}1 & 0 \\ 0 & a\end{array}\right) \in M_{2}$ and $0<|a|<1$. Then x is not left injective.

Proof. Since $\left(\begin{array}{ll}1 & 0 \\ 0 & a\end{array}\right)=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), x$ is not left injective.

Corollary 4.6. Let $x=\left(\begin{array}{ll}1 & 0 \\ a & b\end{array}\right)$ or $\left(\begin{array}{ll}1 & a \\ 0 & b\end{array}\right) \in M_{2}$ and $b \neq 0$. Then x is left injective if and only if $a=0$ and $|b|=1$.

Proof. (\Leftarrow) Since $a=0,|b|=1, x$ is unitary and x is injective.
(\Rightarrow) By Lemma 4.2 and Lemma 4.3, $a=0$. By Lemma 4.4 and Corollary $4.5,|b|=1$.

LEMMA 4.7. $E=\left\{\left(\begin{array}{ll}a & b \\ c & a\end{array}\right): a, b, c \in \mathbf{C}\right\}$ is not injective.
Proof. Suppose E is injective. Then there is an E-projection $\phi: M_{2} \rightarrow$ M_{2} with $\phi\left(M_{2}\right)=E$. Put $\phi\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}a & b \\ c & a\end{array}\right)$. Since $\phi\left(\begin{array}{ll}1 & 0 \\ k & 0\end{array}\right)=$ $\left(\begin{array}{cc}a & b \\ c+k & a\end{array}\right)$ and $|c+k| \leq \sqrt{1+|k|^{2}}$ for all $k \in \mathbf{C}, c=0$. Similarly $b=0$ and $\phi\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}d & 0 \\ 0 & d\end{array}\right)$ with $a+d=1$. Since ϕ is unital contraction, ϕ is completely positive ([4], Proposition 2. 11). Since ϕ is

$$
\left.<\left(\begin{array}{cccc}
a & 0 & 0 & 1 \\
0 & a & 0 & 0 \\
0 & 0 & 1-a & 0 \\
1 & 0 & 0 & 1-a
\end{array}\right)\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right) \right\rvert\,\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right)>=-1
$$

Therefore E is not injective.
Lemma 4.8. Let $x=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right) \in M_{3}$. Then x is not left injective.
Proof. Put $E=\left\{\left(\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right): a, b, c \in \mathbf{C}\right\}$. Since E is a commutative C^{*}-algebra with $\operatorname{dim} E=3, E$ is injective. By Lemma 4.7, $x E x$ is not injective. Hence x is not left injective.

Lemma 4.9. Let $x=\sum_{i=1}^{n} \lambda_{i} E_{i i} \in M_{n}$ with $\lambda_{1}=1$ and $\lambda_{1} \geq \lambda_{2} \geq$ $\cdots \geq \lambda_{n} \geq 0$. Then x is left injective if and only if $\lambda_{i}=1$ for $1 \leq i \leq n$ or $\lambda_{i}=0$ for $2 \leq i \leq n$.

Proof. (\Leftarrow) Since $x=I$ or x is a projection of rank $1, x$ is injective.
(\Rightarrow) Suppose $\lambda_{2} \neq 0$. Since x is left injective, $\left(\begin{array}{cc}1 & 0 \\ 0 & \lambda_{2}\end{array}\right),\left(\begin{array}{cc}\lambda_{2} & 0 \\ 0 & \lambda_{3}\end{array}\right)$ and $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3}\end{array}\right)$ is left injective. By Corollary $4.6 \lambda_{2}=1$ and $\lambda_{3}=1$ or 0 . By Lemma $4.8, \lambda_{3}=1$. Simiarly $\lambda_{k}=1$ for $1 \leq k \leq n$.

Corollary 4.10. Let $x \in B(H)$ be a non-zero projection. Then x is injective if and only if $x=I$ or rank $x=1$.

Theorem 4.11. Let $x \in M_{n}$ with $\|x\|=1$. Then the following are equivalent:
(1) x is injective
(2) x is left injective
(3) x is right injective
(4) x is unitary or rank of x is 1 .

Proof. (1) $\Rightarrow(2)$ trivial.
$(2) \Rightarrow(4)$ Since $x \in M_{n}$ and $\|x\|=1$, there are unitary matrices U and V, diagonal matrix $D=\sum_{k=1}^{n} \lambda_{k} E_{k k}$ with $1=\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0$ with $x=U V D V^{*}$. Since x is left injective, D is left injective. Hence by Lemma $4.9, D=I$ or $D=E_{11}$. Therefore x is unitary or rank $x=1$.
$(4) \Rightarrow(1)$ For rank $x=1$, there are unitary matrices U and V such that $x=U E_{11} V$. Hence if rank $x=1, x$ is injective.
$(3) \Leftrightarrow$ (4) Since x is left injective if and only if x^{*} is right injective and $\operatorname{rank} x=\operatorname{rank} x^{*}$, it is obvious.

Lemma 4.12. Let H be a separable Hilbert space and $x \in B(H)$ be invertible, $\left\{e_{n}\right\}_{n=1}^{\infty}$ be an orthonormal basis for H. Then there is an invertable operator $y \in B(H)$ such that $x y$ is unitary in $B(H),<$ $y e_{k} \mid e_{n}>=0$ for $k<n$ and $<y e_{n} \mid e_{n} \gg 0$.

Proof. Since x is invertible, $\left\{x e_{n}\right\}_{n=1}^{\infty}$ forms a basis for H. Let $x e_{n}=$ β_{n} and $\alpha_{1}, \cdots, \alpha_{n}$ be the vectors obtained by the Gram-Schmidt process. Then for each $n \in N,\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}$ is an orthonormal basis for the subspace spanned by $\left\{\beta_{1}, \cdots, \beta_{n}\right\}$ and

$$
\alpha_{n}=\beta_{n}-\sum_{k=1}^{n-1} \frac{<\beta_{n} \mid \alpha_{k}>}{\left\|\alpha_{k}\right\|^{2}} \alpha_{k}
$$

Hence, for each n there exist unique scalars $c_{n k}$ such that $\alpha_{n}=\beta_{n}-$ $\sum_{k=1}^{n-1} c_{k n} \beta_{k}$. Let U be the unitary operator with $U\left(e_{n}\right)=\frac{\alpha_{n}}{\left\|\alpha_{n}\right\|^{\prime}}$, and y be the operator defined by

$$
y\left(e_{n}\right)=\frac{1}{\left\|\alpha_{n}\right\|} e_{n}-\frac{1}{\left\|\alpha_{n}\right\|}\left(c_{1 n} e_{1}+\cdots+c_{n-1 n} e_{n-1}\right)
$$

Then $x y\left(e_{n}\right)=\frac{1}{\left\|\alpha_{n}\right\|} \beta_{n}-\frac{1}{\left\|\alpha_{n}\right\|}\left(c_{1 n} \beta_{1}+\cdots+c_{n-1 n} \beta_{n-1}\right)=\frac{\alpha_{n}}{\left\|\alpha_{n}\right\|}$. Hence $\left.U=x y, x^{-1} U=y \in B(H),<y e_{k} \mid e_{n}\right)=0$ for $k<n$ and $<y e_{n} \mid e_{n}>=$ $\frac{1}{\left\|\alpha_{n}\right\|}>0$.

Lemma 4.13. Let H be a separable Hilbert space and $\left\{e_{n}\right\}_{n=1}^{\infty}$ be an orthonormal basis for H. Let $x \in B(H)$ be invertible with $\left\langle x e_{k} \mid e_{n}\right\rangle=$ 0 for $k<n,<x e_{n} \mid e_{n} \gg 0,\|x\|=1$ and x is left injective. Then $x=I$.

Proof. Put p_{k} be the projection with $\operatorname{Ran} p_{k}=<e_{k}>$, and $E_{k}=$ $\left\{a p_{1}+b p_{k}: a, b \in \mathbf{C}\right\}$ for $k>1$. Then E_{k} is injective and $x E_{k}$ is injective. By Corollary 4.6, $<x e_{1}\left|e_{1}>=<x e_{k}\right| e_{k}>$ and $<x e_{1} \mid e_{k}>=0$ for $1 \neq k$. Similary $<x e_{n} \mid e_{k}>=0$ for $k \neq n$. Thus $x=<x e_{1} \mid e_{1}>I=I$.

Theorem 4.14. Let H be a separable Hilbert space, and $x \in B(H)$ be invertible with $\|x\|=1$. Then the following are equivalent:
(1) x is injective
(2) x is left injective
(3) x is right injective
(4) x is unitary.

Proof. (1) \Rightarrow (2) Obvious.
$(2) \Rightarrow(4)$ by Lemma 4.12, there is an invertible operator $y \in B(H)$ such that $x y$ is unitary in $B(H),<y e_{k} \mid e_{n}>=0$ for $k<n$ and $<y e_{n} \mid e_{n} \gg 0$ for $n \in N$. Obviously $<y^{-1} e_{k} \mid e_{n}>=0$ for $k<n$ and $<y^{-1} e_{n} \mid e_{n} \gg 0$ for $n \in N$. Since $(x y)^{*} x y=I, y^{-1}=(x y)^{*} x$ and y^{-1} is left injective with $\left\|y^{-1}\right\|=1$. Hence by Lemma $4.13, y^{-1}=I$ and x is unitary
(4) \Rightarrow (1) trivial.

Since x is left injective if and only if $x *$ is right injective, (3) $\Leftrightarrow(4)$ is trivial.

Theorem 4.15. Let H be a Hilbert space and $x \in B(H)$ be an isometry. Then x is left injective.

Proof. Since x is an isometry, $x x^{*}=p$ is a projection and $x H=p H$ is closed. Hence there is a unitary $v: x H \longrightarrow H$. Define $U: x H \oplus x H^{\perp} \oplus$
$x H \oplus x H^{\perp} \longrightarrow x H \oplus x H^{\perp} \oplus x H \oplus x H^{\perp}$ with

$$
U=\left(\begin{array}{cccc}
p v & 0 & 0 & 0 \\
(I-p) v & 0 & 0 & 0 \\
0 & 0 & x p & x(I-p) \\
0 & I & 0 & 0
\end{array}\right)
$$

Then U is unitary in $B(H \oplus H)$ and U is injective. Let $N \subset B(H)$ be injective. Then $\left(\begin{array}{cc}0 & 0 \\ 0 & N\end{array}\right)$ is injective in $B(H \oplus H)$. Since $U\left(\begin{array}{cc}0 & 0 \\ 0 & N\end{array}\right)=$ $\left(\begin{array}{cc}0 & 0 \\ 0 & x N\end{array}\right),\left(\begin{array}{cc}0 & 0 \\ 0 & x N\end{array}\right)$ is injective and $x M$ is injective. Hence x is left injective.

Remark 4.16. Let x be an isometry but not unitary. Since $x x^{*}$ is a projection with rank $p=\infty$ and $p \neq I, p$ is not left injective. Hence x^{*} is not left injective, that is x is not right injective.

Remark 4.17. Let A be a C^{*}-algebra. Then A has a unital imbedding in $B(H)$. Hence an isometry $x \in A$ is left injective.

Proposition 4.18. Let H be an infinite dimensional Hilbert space and $x \in B(H)$ with finite rank. Then the following are equivalent:
(1) x is injective.
(2) x is left injective.
(3) x is right injective.
(4) $\operatorname{rank} x=0$ or 1 .

Proof. $(1)(\Rightarrow)(2)$ Obvious.
(2) \Rightarrow (4) Suppose rank $x=k \geq 2$. Obviously rank $x^{*}=k$. Let $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\} \subset \operatorname{ker} x^{\perp}$ and $\left\{\beta_{1}, \ldots, \beta_{k}\right\} \subset \operatorname{Ran} x$ be orthonormal bases respectly, $K=\operatorname{Span}\left\{\alpha_{1}, \ldots, \alpha_{k}, \beta_{1}, \ldots, \beta_{k}\right\}$ and $p \in B(H)$ be the projection with Ran $p=K$. Then $p x p=x$. Let q be a projection with $p \leq q$ and rank $q=k+1$. Then $q x q=p x p$ and $q x q: q H \rightarrow q H$ is not invertible and rank $q x q=k \geq 2$. Hence $q x q$ is not left injective. Therefore x is not left injective.
(4) \Rightarrow (1) Since rank $x=0$ or $1, \operatorname{Ran} x$ and Ran x^{*} are extremely injective. Hence x is injective. Since x is left injective if and only if x^{*} is right injective, $(3) \Leftrightarrow(4)$ is trivial.

References

1. M. D. Choi and E. G. Effros, Injectivity and Operator Spaces, J. Functional Analysis 24(1977), 156-209.
2. M. Hamana, Injective Envelope of C*-algebra, J. Math. Soc. Japan 31(1979), 181-197.
3. R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras 1, Academic Press, New York, 1983.
4. V. I. Paulsen, Completely Bounded Maps and Dilations, John Wiley \& Sons, Inc. , New York 1986.
5. Z. J. Ruan, On Matricially Normed Spaces Associated with Operator Algebras, Ph. D. thesis, University of California, Los Angeles (1987).
6. D. Y. Shin, S. G. Lee and S. J. Cho, On Minimal E-projection of operator Spaces, Comm. Korean Math. Soc. 4 (1989), No. 2, 349-356.
7. M. Takesaki, Theory of Operator Algebras 1, Springer-Verlag, New York, (1979).
${ }^{+}$Department of Mathematics
Seoul National University Seoul 151-742, Korea

+ Department of Mathematics
Chonnam National University Kwangju 500-757, Korea

[^0]: Received August 14, 1989.

