Comm. Korean Math. Soc. 5 (1990), No. 1, pp. 55~72

ON INJECTIVITY PRESERVING MAPS AND INJECTIVE ELEMENTS ON B(H)*

DONG-YUN SHIN⁺, SA-GE LEE⁺ AND CHANG HO BYUN⁺⁺

0. Introduction

Many people has studied the theory of injective operator spaces([1], [2] e.t.c.).

In this paper we give examples of injectivity preserving maps on B(H), study related operator spaces and injective operators. In section2, we show that on B(H) *-operation and transpose map are injective but not 2-injective for dim $H \ge 2$. In section3, we define extremely injective space and show that for rank 1 projection p, pB(H) is a maximal injective operator space and a C^* -algebra A is extremely injective if and only if dim $A \le 2$. In section 4, we show that for a finite dimensional C^* -algebra A, an element $x \in A$ with ||x||=1 is injective if and only if x is unitary, for a seperable Hilbert space H, an invertible element $x \in B(H)$ with |x|=1, x is injective if and only if x is unitary and for a C^* -algebra A, if $x \in A$ is an isometry, then x is left injective.

1. Preliminaries

We let M_n be the space of complex $n \times n$ matrices and B(H) be the bounded operators on a Hilbert space H. M_n has the canonical basis $\{E_{ij}\}$ where E_{ij} is the matrix with 1 at (i, j) position and zero elsewhere. A linear subspace $E \subset B(H)$ is said to be an operator space.

Given operator space E, $M_n(E) = E \otimes M_n$ denotes the vector space of $n \times n$ matrices with entries in E.

Received August 14, 1989.

^{*}This research was supported by KOSEF, 1986-1989.

For $x = (x_{ij}) = \sum_{i,j}^{n} x_{ij} \otimes E_{ij} \in M_n(E)$ and $y = (y_{ij}) \in M_m(E)$, we write

$$x \oplus y = \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} \in M_{n+m}(E).$$

Identifying $M_n(B(H))$ with $B(H^n), M_n(E)$ can be regarded as an operator space of $B(H^n)$. Let $E \subset B(H)$ and $F \subset B(K)$ be operator spaces and $\phi: E \to F$ a linear or conjugate linear map. We define the map $\phi_n: M_n(E) \to M_n(F)$ by $\phi_n((x_{ij})) = (\phi(x_{ij}))$ for $(x_{ij}) \in M_n(E)$. We write, $\|\phi\|_{cb} = \sup\{\|\phi_n\| : n \in N\}$, where $\|\phi\| = \sup\{\|\phi(x)\| : x \in E, \|x\| = 1\}$. We call ϕ completely bounded if $\|\phi\|_{cb} < \infty$, and ϕ completely contractive if $\|\phi\|_{cb} \leq 1$.

Let *E* be an operator space. *E* is said to be an injective operator space if for every operator space *F*, every operator subspace F_0 of *F* and every completely bounded linear map $\phi: F_0 \to E$, there exists a linear map $\psi: F \to E$ such that $\psi|_{F_0} = \phi$ and $\|\psi\|_{cb} = \|\phi\|_{cb}$.

It is well known that B(H) is an injective operator space for arbitrary Hilbert space H. A linear map $\phi : B(H) \to B(H)$ is called a completely contractive projection if $\|\phi\|_{cb} \leq 1$ and $\phi^2 = \phi$. Let $E \subset B(H)$ be an operator space. An *E*-projection of B(H) is a completely contractive projection $\phi : B(H) \to B(H)$ such that $\phi(x) = x$ for all $x \in E$.

Let *H* be a Hilbert space and let $\{e_i\}_{i \in I}$ be a fixed orthonormal basis for *H*. For each $\xi = \sum a_i e_i \in H$ we set $\overline{\xi} = \sum \overline{a}_i e_i \in H$. For each $x \in B(H)$ and $\xi, \eta \in H$, we define $\theta(x)$ and $\tau(x)$ by $\langle \theta(x)\xi | \eta \rangle =$ $\langle x\overline{\eta} | \overline{\xi} \rangle$ and $\langle \tau(x)\xi | \eta \rangle = \langle \overline{\eta} | x\overline{\xi} \rangle$, respectively. For each $x, y \in$ $B(H), ||x|| = ||\theta(x)|| = ||\tau(x)||, \ \theta(xy) = \theta(y)\theta(x), \ \theta(x)^* = \tau(x) = \theta(x^*),$ and $\tau(xy) = \tau(x)\tau(y)$. But $\theta(x)$ and $\tau(x)$ depend on orthonormal bases.

2. Examples of injectivity preserving maps on B(H)

THEOREM 2.1. Let $E \subset B(H)$ be an operator space. Then E is injective if and only if there is an E-projection ϕ such that $\phi(B(H)) = E$.

Proof. Combining Theorem 3.1. and Corollary 3.3([6]) completes the proof.

DEFINITION 2.2.. Let $E \subset B(H)$ and $F \subset B(K)$ be operator spaces. A map $\phi : E \to F$ is an injectivity preserving map if $\phi(E_0)$ is injective

 $\mathbf{56}$

whenever E_0 is an injective subspace of E. We say ϕ is n-injective if ϕ_n is an injectivity preserving map and completely injective if ϕ is n-injective for each positive inter n.

THEOREM 2.3. Let $E \subset B(H)$ and $F \subset B(K)$ be operator spaces and $\phi : E \to F$ be a completely contractive linear map which has completely contractive inverse. Then ϕ is completely injective.

Proof. Let $N \subset M_n(E)$ be an injective operator space. For every operator space M, every operator subspace L of M and every completely bounded linear map $\psi : L \to \phi_n(N), \phi_n^{-1} \circ \psi : L \to N$ is completely bounded. Hence there is a linear map $\tau : M \to N$ such that $\tau|_L = \phi_n^{-1} \circ \psi$ and $\|\tau\|_{cb} = \|\phi_n^{-1} \circ \psi\|_{cb} = \|\psi\|_{cb}$. Then the linear map $\phi_n \circ \tau : M \to \phi_n(N)$ is an extension of ψ such that $\|\phi_n \circ \tau\|_{cb} = \|\psi\|_{cb}$.

COROLLARY 2.4. Let $E \subset B(H)$ and $F \subset B(K)$ be operator spaces and $\phi : E \to F$ be a linear bijection with $\|\phi\|_{cb} \|\phi^{-1}\|_{cb} = 1$. Then ϕ is completely injective.

Proof. Put $\psi = \frac{\phi}{\|\phi\|_{cb}}$. Then $\psi^{-1} = \frac{\phi^{-1}}{\|\phi^{-1}\|_{cb}}$. By Theorem 2. 3, ψ is completely injective. Hence ψ is completely injective.

COROLLARY 2.5. Let $A \subset B(H)$ be a C^{*}-algebra and $\phi : A \to B(K)$ be a *-isomorphism. Then ϕ is completely injective.

COROLLARY 2.6. Let ϕ be a *- automorphism on B(H). Then ϕ is completely injective.

LEMMA 2.7. Let $\alpha : B(H) \to B(H)$ be a bijection with $\alpha \circ \alpha = id, \phi$ be an *E*-projection with $\phi(B(H)) = E$ and $\psi = \alpha \circ \phi \circ \alpha$. Then $\psi \circ \psi = \psi, \psi|_{\alpha(E)} = id_{\alpha(E)}$ and $\psi(B(H)) = \alpha(E)$.

Proof. It is an easy compution.

THEOREM 2.8. Let $*: B(H) \to B(H)$ be the map defined by $*(x) = x^*$ Then * is an injectivity preserving map.

Proof. Let $E \subset B(H)$ be an injective operator space. By Theorem 2. 1, there is an *E*-projection ϕ with $\phi(B(H)) = E$. We denote $*(E) = E^*$. Let $\phi^* = * \circ \phi \circ *$. Then by Lemma 2. 7, $\phi^* \circ \phi^* = \phi^*, \phi^*(x) = x$ for all $x \in E^*$ and $\phi^*(B(H)) = E^*$. Hence to complete the proof, we must show that ϕ^* is completely contractive. Let $\sum_{i,j=1}^n x_{ij} \otimes E_{ij} \in M_n(B(H))$ and $\xi = (\xi_1, \dots, \xi_n)^t$, $\eta = (\eta_1, \dots, \eta_n)^t \in H^n$. Then $< \sum_{i,j}^n x_{ij}^* \otimes E_{ij} \xi \mid \eta > = < \xi \mid \sum_{i,j=1}^n x_{ij} \otimes E_{ji} \eta > = < \sum_{i,j=1}^n x_{ij} \otimes E_{ji} \eta \mid \xi >$. Hence $\|\sum_{i,j=1}^n x_{ij}^* \otimes E_{ij}\| = \|\sum_{i,j=1}^n x_{ji} \otimes E_{ij}\|$. Therefore

$$\|\phi_{n}^{*}(\sum_{i,j=1}^{n} x_{ij} \otimes E_{ij})\| = \|\sum_{i,j=1}^{n} \phi^{*}(x_{ij}) \otimes E_{ij}\|$$
$$= \|\sum_{i,j}^{n} \phi(x_{ij}^{*}) \otimes E_{ji}\| = \|\phi_{n}(\sum_{i,j=1}^{n} x_{ij}^{*} \otimes E_{ji})\|$$
$$\leq \|\sum_{i,j=1}^{n} x_{ij}^{*} \otimes E_{ji}\| = \|\sum_{i,j=1}^{n} x_{ij} \otimes E_{ij}\|.$$

Hence ϕ^* is completely contractive.

REMARK 2.9. $*: M_2 \to M_2$ is not 2-injective since $*_2(aE_{11} + bE_{12} + cE_{14}) = \overline{a}E_{11} + \overline{b}E_{21} + \overline{c}E_{23}$. Hence $*: B(H) \to B(H)$ is not 2-injective whenever dim $H \geq 2$.

REMARK 2.10. Let A be a C^* -algebra. Since A can be embedded in B(H) for some Hilbert space H, the map * on A is an injectivity preserving map.

COROLLARY 2.11. Let $\phi : B(H) \to B(H)$ be a conjugate linear, *preserving bijection with $\phi(xy) = \phi(y)\phi(x)$. Then ϕ is an injectivity preserving map.

Proof. Since $* \circ \phi$ is a *-automorphism on $B(H), \phi = * \circ (* \circ \phi)$ is an injectivity preserving map.

THEOREM 2.12. Let $\{e_i\}$ be an orthonormal basis for a Hilbert space H and θ the transpose map with respect to this basis. Then θ is an injectivity preserving map.

Proof. Let $E \subset B(H)$ be an injective operator space. By Theorem 2. 1, there is an E-projection ϕ with $\phi(B(H)) = E$. Define $\phi^t(x) : B(H) \to$

B(H) by $\phi^t(x) = \theta(\phi(\theta(x)))$. Then by Lemma 2. 7, $\phi^t \circ \phi^t = \phi^t, \phi^t(x) = x$ for $x \in \theta(E)$ and $\phi^t(B(H)) = \theta(E)$. Hence to complete the proof, we must show that ϕ^t is completely contractive. Let $\sum_{i,j=1}^n x_{ij} \otimes E_{ij} \in M_n(B(H))$ and $\xi = (\xi_1, \cdots, \xi_n)^t, \eta = \eta_1, \cdots, \eta_n)^t \in H^n$. Then

$$<\sum_{i,j=1}^{n} \theta(x_{ij}) \otimes E_{ij}\xi \mid \eta > = \sum_{i,j=1}^{n} < \theta(x_{ij})\xi_{j} \mid \eta_{i} >$$
$$=\sum_{i,j=1}^{n} < x_{ij}\overline{\eta_{i}} \mid \overline{\xi_{j}} > = <\sum_{i,j=1}^{n} x_{ij} \otimes E_{ji}\overline{\eta} \mid \overline{\xi} >,$$

where $\overline{\eta} = (\overline{\eta}_1, \cdots, \overline{\eta}_n)^t$ and $\overline{\xi} = (\overline{\xi}_1, \cdots, \overline{\xi}_n)^t$. Hence $\|\sum_{i,j=1}^n \theta(x_{ij}) \otimes E_{ij}\| = \|\sum_{i,j=1}^n x_{ij} \otimes E_{ji}\|$. Therefore

$$\|\phi_{n}^{t}\left(\sum_{i,j=1}^{n} x_{ij} \otimes E_{ij}\right)\| = \|\sum_{i,j=1}^{n} \phi^{t}(x_{ij}) \otimes E_{ij}\|$$
$$= \|\sum_{i,j=1}^{n} \phi(\theta(x_{ji})) \otimes E_{ij}\| = \|\phi_{n}\left(\sum_{i,j=1}^{n} \theta(x_{ji}) \otimes E_{ij}\right)\|$$
$$\leq \|\sum_{i,j=1}^{n} \theta(x_{ji} \otimes E_{ij})\| = \|\sum_{i,j=1}^{n} x_{ij} \otimes E_{ij}\|.$$

COROLLARY 2.13. Let $\phi : B(H) \to B(H)$ be a linear *-preserving bijection with $\phi(xy) = \phi(y)\phi(x)$. Then ϕ is an injectivity preserving map.

Proof. The same as the proof of Corollaey 2.11.

COROLLARY 2.14. Let $\{e_i\}_{i \in I}$ be an orthonormal basis for a Hilbert space H. Let τ be a map defined by $\langle \tau(x)\xi \mid \eta \rangle = \langle \overline{\eta} \mid \overline{\xi} \rangle$. Then τ is completely injective.

Proof. By elementary caculation, $\tau = * \circ \theta (= \theta \circ *)$. Hence τ is an injectivity preserving map. It is easy to show that the map $\tau_n :$ $M_n(B(H)) \to M_n(B(H))$ is the map $\tau : B(H \otimes C^n) \to B(H \otimes C^n)$ with basis $\{e_i \otimes E_k : i \in I, 1 \le k \le n\}$. Hence τ is completely injective.

Let $H = C^2$ with basis $\{(1,0), (0,1)\}$. Then $\theta : M_2 \to M_2$ is not 2-injective since

$$\theta_2(aE_{11}+bE_{12}+cE_{14})=aE_{11}+bE_{21}+cE_{23}.$$

Let *H* be a Hilbert space and $\alpha = \{e_i\}_{i \in I}$ and $\beta = \{f_i\}_{i \in I}$ be two orthonormal basis for *H*. Let *U* be the unitary operator with $Ue_i = f_i$ and $\theta_{\alpha}, \theta_{\beta}$ be the transpose maps with respect to the bases α and β . Then

$$egin{aligned} &< heta_lpha(x)e_i \mid e_j > = < xe_j \mid e_i > \ = < xU^*f_j \mid U^*f_i > \ = < UxU^*f_j \mid f_i > \ = < heta_eta(UxU^*)f_i \mid f_j > \ = < heta_eta(UxU^*)Ue_i \mid Ue_j > \ = < U^* heta_eta(UxU^*)Ue_i \mid e_j > . \end{aligned}$$

Hence $\theta_{\alpha}(x) = U^* \theta_{\beta}(UxU^*)U$. Therefore θ_{α} is n-injective if and only if θ_{β} is n-injective. Since $\theta: M_2 \to M_2$ is not 2-injective, $\theta: B(H) \to B(H)$ is not 2-injective whenever dim $H \ge 2$.

If dim $H = 1, \theta = id$. Hence θ is completely injective. Since $\theta = *\circ\tau, *$ is 2-injective if and only if dim $H \leq 1$. Hence we have shown the following theorem.

THEOREM 2.15. Let H be a Hilbert space with basis $\alpha = \{e_i\}$. Then the following are equivalent:

- (1) The map $*: B(H) \to B(H)$ is 2-injective.
- (2) The map $*: B(H) \to B(H)$ is completely injective.
- (3) dim $H \leq 1$.
- (4) The transpose map θ_{α} is 2-injective.
- (5) The transpose map θ_{α} is completely injective.

COROLLARY 2.16. Let $\phi : B(H) \to B(H)$ be a conjugate linear, *preserving bijection with $\phi(xy) = \phi(y)\phi(x)$ and $\psi : B(H) \to B(H)$ be a linear, *-preserving bijection with $\psi(xy) = \psi(y)\psi(x)$. Then the following are equivalent:

(1) ϕ is 2-injective.

61

- (2) ϕ is completely injective.
- (3) dim $H \leq 1$.
- (4) ψ is 2-injective.
- (5) ψ is completely injective.

THEOREM 2.17. Let $E \subset B(H), F \subset B(K)$ be operator spaces and $\phi: E \to F$ be (n+1)-injective. Then ϕ is n-injective.

Proof. Let L be an injective operator space contained in $M_n(E)$. We denote $L \oplus 0 = \{x \oplus 0 : x \in L, 0 \in B(H)\} \subset M_{n+1}(E)$. Then $L \oplus 0$ is injective. Since $\phi_{n+1}(L \oplus 0) = \phi_n(L) \oplus 0$ is injective, $\phi_n(L)$ is injective.

3. Extremely injective spaces

DEFINITION 3.1.. An operator space E is called (finitely) extremely injective if its (finite dimensional) closed subspaces are injective.

THEOREM 3.2. Let $p \in B(H)$ be a rank 1 projection in B(H). Then B(H)p is extremely injective.

Proof. Choose a unit vector η in the range of p. For each $x, y \in B(H)$, define $\phi : B(H)p \to H$ by $\phi(xp) = x\eta$ and $\langle xp | yp \rangle = \langle x\eta | y\eta \rangle$, where $\langle x\eta | y\eta \rangle$ is the inner product in H. Then $(B(H)p, \langle | \rangle)$ is a Hilbert space and ϕ is an isometric isomorphism. Let E be a closed subspace of B(H)p. Then $\phi(E)$ is a closed subspace of H. Hence there is the projection $q \in B(H)$ with $\phi(E) = qH$. Therefore E = qB(H)p and E is injective.

COROLLARY 3.3. Let $p \in B(H)$ be a rank 1 projection. Then pB(H) is extremely injective.

Proof. Since $pB(H) = (B(H)p)^*$ and * is an injectivity preserving map, pB(H) is extremely injective.

LEMMA 3.4. Let $x = (x_{ij}) \in M_n$ with $x_{1i} = 0$ $(1 \le i \le n)$, $E = \text{Span}\{E_{11}M_n, x\}$ and $\phi : M_n \to E$ be an *E*-projection. Then for $i \ge 2, \phi(E_{ij}) = b_{ij}x$ for some $b_{ij} \in C$.

Proof. For $i \ge 2$, put $\phi(E_{ij}) = \sum_{l=1}^{n} a_l E_{1l} + b_{ij} x$ for some $a_l, b_{ij} \in C$. Since $\phi(E_{1k}) = E_{1k}, \phi(E_{ij} + mE_{1k}) = \sum_{l=1}^{n} b_l E_{1l} + b_{ij} x$, where $b_l = a_l$ for $l \neq k$ and $b_k = a_k + m$. By elementry caculation, $||E_{ij} + mE_{1k}|| \leq \sqrt{1+m^2}$ and $||\phi(E_{ij} + mE_{1k})|| = ||\sum_{l=1}^n b_l E_{1l} + b_{ij} x|| \geq ||b_k|| = ||a_k + m||$. This implies $\sqrt{1+m^2} \geq ||a_k + m||$ for each $m \in C$. Hence $a_k = 0$ and $\phi(E_{ij}) = b_{ij} x$.

THEOREM 3.5. Let $E_{11}M_n \subset E \subset M_n$ and dim E = n + 1. Then E is not injective.

Proof. We can choose $x = (x_{ij}) \in E$ with ||x|| = 1 and $x_{1i} = 0$ for $1 \leq i \leq n$. Suppose E is injective. Then there is an E-projection $\phi: M_n \to E$.

Case 1.

There exist $i, j(i \neq j)$ such that $xE_{ii} \neq 0, xE_{jj} \neq 0$. By Lemma 3.4, $\phi(E_{kl}) = b_{kl}$ for $2 \leq k \leq n, 1 \leq l \leq n$. For $l \neq i, ||E_{kl} + E_{1i}|| = 1$ and $||\phi(E_{kl} + E_{1i})|| = ||E_{1i} + b_{kl}x|| \geq ||E_{1i} + b_{kl}xE_{ii}|| = \sqrt{1 + |b_{kl}|^2 ||xE_{ii}||^2}$. Hence $b_{kl} = 0$. By the same way, $b_{kl} = 0$ for $l \neq j$. Hence $b_{kl} = 0$ for $2 \leq k \leq n, 1 \leq l \leq n$ and $\phi(x) = 0$. It is a contradiction.

Case 2. There is only one *i* such that $xE_{ii} \neq 0$. We may assume i = 1 and $x_{21} \neq 0$. By Lemma 3.4, $\phi(E_{22}) = b_{22}x$. Since $\phi(E_{11} + E_{22}) = E_{11} + b_{22}x$, $||E_{11} + E_{22}|| = 1$ and $||E_{11} + b_{22}x|| = \sqrt{1 + |b_{22}|^2}$, $b_{22} = 0$. Hence $\phi(E_{22}) = 0$. We have

$$\begin{aligned} \|E_{11} + x_{21}E_{12} - E_{22} + x\|^2 \\ = \|(E_{11} + x_{21}E_{12} - E_{22} + x)^*(E_{11} + x_{21}E_{12} - E_{22} + x)\| \\ = \|\begin{pmatrix} 2 & 0 \\ 0 & 1 + |x_{21}|^2 \end{pmatrix}\| = 2. \end{aligned}$$

Since $\phi(E_{11} + x_{21}E_{12} - E_{22} + x) = E_{11} + x_{21}E_{12} + x$,

$$\begin{aligned} &\|\phi(E_{11}+x_{21}E_{12}-E_{22}+x)\|^2 \\ &= \|(E_{11}+x_{21}E_{12}+x)^*(E_{11}+x_{21}E_{12}+x)\| \\ &= \|\begin{pmatrix}2 & x_{21} \\ x_{21} & |x_{21}|^2\end{pmatrix}\| > 2 + \frac{1}{2}|x_{21}|^2. \end{aligned}$$

Hence ϕ is not contractive and it is a contradiction. Therefore E is not injective.

63

Theorem 3.5 implies that $E_{11}M_n$ is a maximal extremely injective operator subspace of M_n .

COROLLARY 3.6. Let $p \in B(H)$ be a rank 1 projection. Then pB(H) is a maximal extremely injective operator subspace of B(H).

PROPOSITION 3.7. Let $\sum_{l=1}^{n} |a_{kl}| \leq 1$ for $1 \leq k \leq m$ and $E = \{\sum_{k=1}^{n} b_k \ (E_{kk} + \sum_{l=1}^{m} a_{kl}E_{n+ln+l}) : b_1, \ldots, b_n \in C\}$. Then E is injective.

Proof. Define $\phi: M_{n+m} \to E(C^{n+m} \subset M_{n+m})$ with $\phi(E_{kk}) = E_{kk} + \sum_{k=1}^{m} a_{kl}E_{n+kn+k}$ for $1 \leq k \leq n$, and $\phi(E_{kl}) = 0$ for otherwise. Then $\phi \circ \phi = \phi$ and $\phi|_E = id$, and $\phi(B) = \sum_{k=1}^{n} b_{kk}\phi(E_{kk})$ for an (n+m) matrix $B = (b_{ij})$. Hence $\|\phi(B)\| = \max\{|b_{kk}|: 1 \leq k \leq n\} \leq \|B\|, \|\phi\| = 1$. Since $E \subset C^{n+m}, \|\phi\|_{cb} = \|\phi\| = 1([4], \text{ Theorem3. 8.})$. Therefore E is injective.

PROPOSITION 3.8. Let $0 < a_1 \le a_2 \le \cdots \le a_n$ be fixed and $E = \{\sum_{k=1}^n b_k(E_{kk} + a_k E_{n+1n+1}) : b_1, b_2, \ldots, b_n \in C\}$. Then E is injective if and only if $\sum_{k=1}^n a_k \le 1$ or $1 + a_1 + \cdots + a_{n-1} \le a_n$.

Proof. (\Leftarrow) Case 1. $\sum_{k=1}^{n} a_k \leq 1$. By Proposition 3.7, E is injective. Case 2. $1 + a_1 + \cdots + a_{n-1} \leq a_n$. By elementary caculation, $E = \{b_n(\frac{1}{a_n}E_{nn} + E_{n+1n+1}) + \sum_{k=1}^{n-1} b_k(E_{kk} - \frac{a_k}{a_n}E_{nn}) : b_1, \dots, b_n \in C\}$, and E is injective.

 $(\Rightarrow) \text{ Let } E \text{ be injective and } 1 + a_1 + \dots + a_{n-1} > a_n. \text{ Since } E \text{ is injective, there is an } E\text{-projection } \phi : M_{n+1} \to M_{n+1} \text{ with } \phi(M_{n+1}) = E.$ Hence there are complex numbers c_{ij} for $1 \le i, j \le n+1$ such that $\phi(E_{kk}) = \sum_{i=1}^{n} c_{ki}(E_{ii} + a_iE_{n+1n+1}) \text{ for } 1 \le k \le n+1. \text{ Since } \phi(E_{kk} + a_kE_{n+1n+1}) = E_{kk} + a_kE_{n+1n+1} \text{ for } 1 \le k \le n, \phi(E_{n+1n+1}) = \frac{1}{a_k}(E_{kk} + a_kE_{n+1n+1}) = E_{kk} + a_kE_{n+1n+1} \text{ for } 1 \le k \le n, \phi(E_{n+1n+1}) = \frac{1}{a_k}(E_{kk} + a_kE_{n+1n+1} - \sum_{i=1}^{n} c_{ki}(E_{ii} + a_iE_{n+1n+1})) \text{ for } 1 \le k \le n, \text{ and } c_{n+1k} = \frac{1-c_{kk}}{a_k} = \frac{-c_{lk}}{a_l} \text{ for } 1 \le l, k(l \ne k) \le n. \text{ Since } |c_{kk}| \le 1 \text{ and } a_kc_{n+1k} = 1 - c_{kk}, \text{Re } c_{n+1k} \ge 0. \text{ Since } E_{kk}\phi(2E_{kk} + 2E_{n+1n+1} - I) = (2c_{kk} + 2c_{n+1k} - \sum_{i=1}^{n-1} c_{ik})E_{kk} = \{1 + (1 - 2a_k + \sum_{i=1}^{n} a_i)c_{n+1k}\}E_{kk}, \text{Re } (1 - 2a_k + \sum_{i=1}^{n} a_i)c_{n+1k}\}E_{kk}, \text{Re } (1 - 2a_k + \sum_{i=1}^{n} a_i)c_{n+1k} \le 0 \text{ for } 1 \le k \le n. \text{ Since } 1 - 2a_k + \sum_{i=1}^{n} a_i > 0 \text{ for } 1 \le k \le n, \text{ Re } c_{n+1k} = 0 \text{ for } 1 \le k \le n. \text{ Hence } c_{kk} = 1 \text{ for } 1 \le k \le n \text{ and } c_{kl} = 0 \text{ for otherwise. Then } \phi(I)E_{n+1n+1} = \sum_{k=1}^{n} a_kE_{n+1n+1}. \text{ Therefore } \sum_{k=1}^{n} a_k \le 1.$ Proposition 3.8 implies that for a positive inter $n \ C^*$ -algebra C^n is extremely injective if and only if $n \leq 2$.

COROLLARY 3.9. Let A be a C*-algebra. Then A is extremely injective if and only if dim $A \leq 2$.

Proof. (\Leftarrow) Clear.

 (\Rightarrow) Case 1. $3 \leq \dim A < \infty$.

Since dim $A < \infty$, A is decomposed into the direct sum $A = \bigoplus_{k=1}^{n} A_k$, where each A_k is isomorphic to the algebra of $n_k \times n_k$ -matrices ([7], Theorem 1.11.2.) Hence A is not extremely injective.

Case 2. dim A is infinite.

Since A is infinite dimensional C^{*}-algebra, there is a positive element x with infinite spectrum ([3], Exersise 6.14.). Choose $\lambda_1, \lambda_2, \lambda_3 \in Sp(x)$ with $0 < \lambda_1 < \lambda_2 < \lambda_3$. Put $\lambda_0 = 0$ and $\lambda_4 = 1 + \lambda_3$. Define $f_i(i = 1, 2, 3,) : [0, \infty) \to [0, 1]$ with

$$f_{i}(\lambda) = \begin{cases} \frac{2\lambda - \lambda_{i-1} - \lambda_{i}}{\lambda_{i} - \lambda_{i-1}} \text{ for } \lambda_{i-1} + \lambda_{i} \leq 2\lambda \leq 2\lambda_{i}, \\ \frac{2\lambda - \lambda_{i} - \lambda_{i+1}}{\lambda_{i} - \lambda_{i+1}} \text{ for } 2\lambda_{i} \leq 2\lambda \leq \lambda_{i} + \lambda_{i+1}, \\ 0 & \text{otherwise} \end{cases}$$

Then $f_i(x) \in A$, $f_i(x)f_j(x) = 0$ for $i \neq j$ and $||af_1(x) + bf_2(x) + cf_3(x)|| = \max \{|a|, |b|, |c|\}$. Hence, by the same way in the proof of Proposition 3.8, $E = \{af_1(x) + bf_2(x) - (a+b)f_3(x) : a, b \in C\} \subset A$ is not injective. Therefore A is not extremely injective.

THEOREM 3.10. Let $E \subset B(H)$ be an operator space such that dim E is at most countable. Then the following are equivalent:

- (1) E is extremely injective.
- (2) E is injective and for each operator space F and any linear map $\phi: F \to E, \phi$ is an injectivity preserving map.
- (3) E is injective and for each operator space F of E, and any linear map $\phi: F \to E, \phi$ is an injectivity preserving map.
- (4) E is injective and for any linear map $\phi : E \to E$ is an injectivity preserving map.

Proof. $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$. Clear.

 $(4) \Rightarrow (1)$. Let $F \subset E$ be a subspace. Choose a basis $\{x_i\}_{i \in I}$ of F and a basis $\{x_j\}_{j \in J}$ of E with $I \subset J$. Define a linear map $\phi : E \to E$ by $\phi(x_i) = x_i$ for $i \in I$ and $\phi(x_i) = 0$ for $i \in J \setminus I$. Hence $F = \phi(E)$ is injective.

For operator spaces E and F, the set of all injectivity preserving linear maps $\phi : E \to F$ will be denoted by IP(E,F). And #IP(E,F)denotes the supremum of all dimensions of subspaces of IP(E,F). We set IP(E) = IP(E,E). In general, IP(E,F) is not a vector space. If F is extremely injective or dim $E \leq 1$, then IP(E,F) is a vector space but the converse is not known. For an operator space E, I(E) denotes the set of all extremely injective subspace of E. And #I(E) denotes the supremum of all dimensions of subspaces of I(E).

Let E and F be finite dimensional operator spaces, let $F_0 \subset F$ be an extremely injective subspace, let $\{e_1, e_2, ..., e_n\}$ be a basis for E, and let $\{f_1, f_2, ..., f_k\}$ be a basis for F_0 . For $1 \leq i \leq n, 1 \leq j \leq k$, define $\phi_{ij} : E \to F$ by $\phi_{ij}(e_l) = \delta_{il}f_j$. Then $\{\phi_{ij} : 1 \leq i \leq n, 1 \leq j \leq k\}$ is linearly independent and $\text{Span}\{\phi_{ij} : 1 \leq i \leq n, 1 \leq j] \leq k\} \subset IP(E, F)$. Hence dim $E \cdot \#I(F) \leq \#IP(E, F) \leq \dim E \cdot \dim F$. In particular, $\#IP(E, F) = \dim E \cdot \dim F$ whenever F is extremely injective. Since $E_{11}M_n$ is extremely injective, $\#I(M_n) \geq n$ and $\#IP(M_n) \geq n^3$.

4. Injective elements in C*-algebras

For a C^* -algebra A and $x, y \in A$, let L_x and R_x be a linear map defined by $L_x y = xy$ and $R_x y = yx$.

DEFINITION 4.1.. For a C^* -algebra A, an element $x \in A$ is called left (resp. right) injective if L_x (resp. R_x) is an injectivity preserving map. An element $x \in A$ is injective if x is left and right injective.

Obviously a unitary element $x \in A$ is injective. Since $L_x E = (R_x \cdot E^*)^*$ and *-operation is an injectivity preserving map, x is left injective if and only if x^* is right injective.

LEMMA 4.2. Let
$$x = \begin{pmatrix} 1 & 0 \\ a & b \end{pmatrix} \in M_2$$
 and $ab \neq 0$ Then x is not left

injective.

Proof. Put $E = \{ \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} : \alpha, \beta \in \mathbf{C} \}$. Then E is injective. Suppose x is left injective. Then

$$L_x E = \operatorname{Span}\left\{ \begin{pmatrix} 1 & 0 \\ a & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$
 is injective.

Hence there is an $L_x E$ -projection $\phi : M_2 \to L_x E$. Put $\phi \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \alpha \begin{pmatrix} 1 & 0 \\ a & 0 \end{pmatrix} + \beta \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. Since $\phi \begin{pmatrix} 1 & 0 \\ 0 & \pm 1 \end{pmatrix} = \begin{pmatrix} \alpha & 0 \\ \alpha a & \beta \pm 1 \end{pmatrix}$ and $\| \begin{pmatrix} \alpha & 0 \\ \alpha a & \beta \pm 1 \end{pmatrix} \| \leq 1, \alpha = \beta = 0$. Since $\phi \begin{pmatrix} 0 & 0 \\ a & 0 \end{pmatrix} = \phi \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \phi \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \phi \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \phi \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \phi \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \phi \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \phi \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \phi \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \phi \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \phi \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \phi \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \phi \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \phi \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \phi \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \phi \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \phi \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \phi \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \phi \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \phi$

LEMMA 4.3. Let $x = \begin{pmatrix} 1 & a \\ 0 & b \end{pmatrix} \in M_2$ and $ab \neq 0$. Then x is not left injective.

Proof. By the same method in the proof of Lemma 4.2, it is trivial.

LEMMA 4.4. Let $x = \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix} \in M_2$ and |a| > 1. Then x is not left injective.

Proof. Put $E = \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} : a, b \in C \right\}$. Then E is injective. Suppose x is left injective. Then $L_x E = \text{Span} \left\{ \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ a & 0 \end{pmatrix} \right\}$ is injective. Hence there is an $L_x E$ -projection $\phi : M_2 \to L_x E$. Put $\phi(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}) = \alpha \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix} + \beta \begin{pmatrix} 0 & 1 \\ a & 0 \end{pmatrix}$. Since $\phi(\begin{pmatrix} k+1 & 0 \\ 0 & ka \end{pmatrix}) = k\phi(\begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix}) + \phi(\begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix}) = (k + \alpha) \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix} + \beta \begin{pmatrix} 0 & 1 \\ a & 0 \end{pmatrix}$, $|ka| \ge |(k + \alpha)a|$ for

sufficiently large $k \in \mathbb{C}$. Hence $\alpha = 0$. Since $\phi \begin{pmatrix} 1 & k \\ ka & 0 \end{pmatrix} = (\beta + k) \begin{pmatrix} 0 & 1 \\ a & 0 \end{pmatrix}$ for all $k \in \mathbb{C}$, $\beta = 0$. Hence $\phi \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Similarly $\phi \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Therefore $\phi \begin{pmatrix} 0 & 0 \\ 0 & a \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix}$ and $\phi \begin{pmatrix} 0 & 0 \\ a & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ a & 0 \end{pmatrix}$. Then $\phi \begin{pmatrix} 0 & 0 \\ a & a \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ a & a \end{pmatrix}$. Since $\| \begin{pmatrix} 0 & 0 \\ a & a \end{pmatrix} \| = \sqrt{2}|a|$ and $\| \begin{pmatrix} 1 & 1 \\ a & a \end{pmatrix} \| = \sqrt{2}(1 + |a|^2)$, ϕ is not contractive. It is a contradiction. Therefore x is not left injective.

COROLLARY 4.5. Let $x = \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix} \in M_2$ and 0 < |a| < 1. Then x is not left injective.

Proof. Since $\begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, x is not left injective.

COROLLARY 4.6. Let $x = \begin{pmatrix} 1 & 0 \\ a & b \end{pmatrix}$ or $\begin{pmatrix} 1 & a \\ 0 & b \end{pmatrix} \in M_2$ and $b \neq 0$. Then x is left injective if and only if a = 0 and |b| = 1.

Proof. (\Leftarrow) Since a = 0, |b| = 1, x is unitary and x is injective.

 (\Rightarrow) By Lemma 4.2 and Lemma 4.3, a = 0. By Lemma 4.4 and Corollary 4.5, |b| = 1.

LEMMA 4.7. $E = \{ \begin{pmatrix} a & b \\ c & a \end{pmatrix} : a, b, c \in \mathbf{C} \}$ is not injective.

Proof. Suppose E is injective. Then there is an E-projection $\phi: M_2 \to M_2$ with $\phi(M_2) = E$. Put $\phi\begin{pmatrix} 1 & 0\\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a & b\\ c & a \end{pmatrix}$. Since $\phi\begin{pmatrix} 1 & 0\\ k & 0 \end{pmatrix} = \begin{pmatrix} a & b\\ c+k & a \end{pmatrix}$ and $|c+k| \leq \sqrt{1+|k|^2}$ for all $k \in \mathbb{C}$, c = 0. Similarly b = 0 and $\phi\begin{pmatrix} 0 & 0\\ 0 & 1 \end{pmatrix} = \begin{pmatrix} d & 0\\ 0 & d \end{pmatrix}$ with a + d = 1. Since ϕ is unital contraction, ϕ is completely positive ([4], Proposition 2. 11). Since ϕ is

completely positive if and only if
$$\begin{pmatrix} \phi \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} & \phi \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \\ \phi \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} & \phi \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ \phi \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix}$$
 is positive.
([4], Theorem 3. 12). Thus
$$\begin{pmatrix} a & 0 & 0 & 1 \\ 0 & a & 0 & 0 \\ 1 & 0 & 0 & 1-a \end{pmatrix}$$
 is positive. But
$$< \begin{pmatrix} a & 0 & 0 & 1 \\ 0 & a & 0 & 0 \\ 1 & 0 & 0 & 1-a \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix} | \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix} > = -1$$

Therefore E is not injective.

LEMMA 4.8. Let
$$x = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in M_3$$
. Then x is not left injective.

Proof. Put $E = \{ \begin{pmatrix} c & a & b \\ b & c & a \end{pmatrix} : a, b, c \in C \}$. Since E is a commutative C*-algebra with dim E = 3, E is injective. By Lemma 4.7, xEx is

not injective. Hence x is not left injective.

LEMMA 4.9. Let $x = \sum_{i=1}^{n} \lambda_i E_{ii} \in M_n$ with $\lambda_1 = 1$ and $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0$. Then x is left injective if and only if $\lambda_i = 1$ for $1 \le i \le n$ or $\lambda_i = 0$ for $2 \leq i \leq n$.

Proof. (\Leftarrow) Since x = I or x is a projection of rank 1, x is injective. (\Rightarrow) Suppose $\lambda_2 \neq 0$. Since x is left injective, $\begin{pmatrix} 1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $\begin{pmatrix} \lambda_2 & 0 \\ 0 & \lambda_3 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$ is left injective. By Corollary 4.6 $\lambda_2 = 1$ and $\lambda_3 = 1$ or 0. By Lemma 4.8, $\lambda_3 = 1$. Similarly $\lambda_k = 1$ for $1 \le k \le n$.

COROLLARY 4.10. Let $x \in B(H)$ be a non-zero projection. Then x is injective if and only if x = I or rank x = 1.

THEOREM 4.11. Let $x \in M_n$ with ||x|| = 1. Then the following are equivalent:

- (1) x is injective
- (2) x is left injective
- (3) x is right injective
- (4) x is unitary or rank of x is 1.

Proof. (1) \Rightarrow (2) trivial.

 $(2) \Rightarrow (4)$ Since $x \in M_n$ and ||x|| = 1, there are unitary matrices U and V, diagonal matrix $D = \sum_{k=1}^n \lambda_k E_{kk}$ with $1 = \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0$ with $x = UVDV^*$. Since x is left injective, D is left injective. Hence by Lemma 4.9, D = I or $D = E_{11}$. Therefore x is unitary or rank x = 1.

 $(4) \Rightarrow (1)$ For rank x = 1, there are unitary matrices U and V such that $x = UE_{11}V$. Hence if rank x = 1, x is injective.

(3) \Leftrightarrow (4) Since x is left injective if and only if x^* is right injective and rank $x = \operatorname{rank} x^*$, it is obvious.

LEMMA 4.12. Let *H* be a separable Hilbert space and $x \in B(H)$ be invertible, $\{e_n\}_{n=1}^{\infty}$ be an orthonormal basis for *H*. Then there is an invertable operator $y \in B(H)$ such that xy is unitary in B(H), $\langle ye_k | e_n \rangle = 0$ for k < n and $\langle ye_n | e_n \rangle > 0$.

Proof. Since x is invertible, $\{xe_n\}_{n=1}^{\infty}$ forms a basis for H. Let $xe_n = \beta_n$ and $\alpha_1, \dots, \alpha_n$ be the vectors obtained by the Gram-Schmidt process. Then for each $n \in N$, $\{\alpha_1, \dots, \alpha_n\}$ is an orthonormal basis for the subspace spanned by $\{\beta_1, \dots, \beta_n\}$ and

$$\alpha_n = \beta_n - \sum_{k=1}^{n-1} \frac{\langle \beta_n \mid \alpha_k \rangle}{\|\alpha_k\|^2} \alpha_k.$$

Hence, for each *n* there exist unique scalars c_{nk} such that $\alpha_n = \beta_n - \sum_{k=1}^{n-1} c_{kn}\beta_k$. Let *U* be the unitary operator with $U(e_n) = \frac{\alpha_n}{\|\alpha_n\|'}$, and *y* be the operator defined by

$$y(e_n) = \frac{1}{\|\alpha_n\|} e_n - \frac{1}{\|\alpha_n\|} (c_{1n}e_1 + \dots + c_{n-1n}e_{n-1}).$$

Then $xy(e_n) = \frac{1}{\|\alpha_n\|} \beta_n - \frac{1}{\|\alpha_n\|} (c_{1n}\beta_1 + \dots + c_{n-1n}\beta_{n-1}) = \frac{\alpha_n}{\|\alpha_n\|}$. Hence $U = xy, x^{-1}U = y \in B(H), < ye_k | e_n) = 0$ for k < n and $< ye_n | e_n > = \frac{1}{\|\alpha_n\|} > 0$.

LEMMA 4.13. Let *H* be a separable Hilbert space and $\{e_n\}_{n=1}^{\infty}$ be an orthonormal basis for *H*. Let $x \in B(H)$ be invertible with $\langle xe_k | e_n \rangle = 0$ for $k < n, \langle xe_n | e_n \rangle > 0$, ||x|| = 1 and x is left injective. Then x = I.

Proof. Put p_k be the projection with Ran $p_k = \langle e_k \rangle$, and $E_k = \{ap_1+bp_k : a, b \in \mathbb{C}\}$ for k > 1. Then E_k is injective and xE_k is injective. By Corollary 4.6, $\langle xe_1|e_1 \rangle = \langle xe_k|e_k \rangle$ and $\langle xe_1|e_k \rangle = 0$ for $1 \neq k$. Similary $\langle xe_n|e_k \rangle = 0$ for $k \neq n$. Thus $x = \langle xe_1|e_1 \rangle I = I$.

THEOREM 4.14. Let H be a separable Hilbert space, and $x \in B(H)$ be invertible with ||x|| = 1. Then the following are equivalent:

x is injective
x is left injective
x is right injective
x is unitary.

Proof. $(1) \Rightarrow (2)$ Obvious.

 $(2)\Rightarrow(4)$ by Lemma 4.12, there is an invertible operator $y \in B(H)$ such that xy is unitary in B(H), $\langle ye_k | e_n \rangle = 0$ for k < n and $\langle ye_n | e_n \rangle > 0$ for $n \in N$. Obviously $\langle y^{-1}e_k | e_n \rangle = 0$ for k < n and $\langle y^{-1}e_n | e_n \rangle > 0$ for $n \in N$. Since $(xy)^*xy = I, y^{-1} = (xy)^*x$ and y^{-1} is left injective with $||y^{-1}|| = 1$. Hence by Lemma 4.13, $y^{-1} = I$ and x is unitary

 $(4) \Rightarrow (1)$ trivial.

Since x is left injective if and only if x * is right injective, $(3) \Leftrightarrow (4)$ is trivial.

THEOREM 4.15. Let H be a Hilbert space and $x \in B(H)$ be an isometry. Then x is left injective.

Proof. Since x is an isometry, $xx^* = p$ is a projection and xH = pH is closed. Hence there is a unitary $v: xH \longrightarrow H$. Define $U: xH \oplus xH^{\perp} \oplus$

 $xH\oplus xH^{\perp}\longrightarrow xH\oplus xH^{\perp}\oplus xH\oplus xH^{\perp}$ with

$$U = egin{pmatrix} pv & 0 & 0 & 0 \ (I-p)v & 0 & 0 & 0 \ 0 & 0 & xp & x(I-p) \ 0 & I & 0 & 0 \end{pmatrix}$$

Then U is unitary in $B(H \oplus H)$ and U is injective. Let $N \subset B(H)$ be injective. Then $\begin{pmatrix} 0 & 0 \\ 0 & N \end{pmatrix}$ is injective in $B(H \oplus H)$. Since $U \begin{pmatrix} 0 & 0 \\ 0 & N \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & xN \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & xN \end{pmatrix}$ is injective and xM is injective. Hence x is left injective.

REMARK 4.16. Let x be an isometry but not unitary. Since xx^* is a projection with rank $p = \infty$ and $p \neq I$, p is not left injective. Hence x^* is not left injective, that is x is not right injective.

REMARK 4.17. Let A be a C^{*}-algebra. Then A has a unital imbedding in B(H). Hence an isometry $x \in A$ is left injective.

PROPOSITION 4.18. Let H be an infinite dimensional Hilbert space and $x \in B(H)$ with finite rank. Then the following are equivalent:

- (1) x is injective.
- (2) x is left injective.
- (3) x is right injective.
- (4) rank x = 0 or 1.

Proof. $(1)(\Rightarrow)(2)$ Obvious.

 $(2) \Rightarrow (4)$ Suppose rank $x = k \geq 2$. Obviously rank $x^* = k$. Let $\{\alpha_1, ..., \alpha_k\} \subset \ker x^{\perp}$ and $\{\beta_1, ..., \beta_k\} \subset \operatorname{Ran} x$ be orthonormal bases respectly, $K = \operatorname{Span} \{\alpha_1, ..., \alpha_k, \beta_1, ..., \beta_k\}$ and $p \in B(H)$ be the projection with Ran p = K. Then pxp = x. Let q be a projection with $p \leq q$ and rank q = k + 1. Then qxq = pxp and $qxq : qH \to qH$ is not invertible and rank $qxq = k \geq 2$. Hence qxq is not left injective. Therefore x is not left injective.

 $(4) \Rightarrow (1)$ Since rank x = 0 or 1, Ran x and Ran x^* are extremely injective. Hence x is injective. Since x is left injective if and only if x^* is right injective, $(3) \Leftrightarrow (4)$ is trivial.

References

- M. D. Choi and E. G. Effros, *Injectivity and Operator Spaces*, J. Functional Analysis 24(1977), 156-209.
- M. Hamana, Injective Envelope of C*-algebra, J. Math. Soc. Japan 31(1979), 181-197.
- R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras 1, Academic Press, New York, 1983.
- 4. V. I. Paulsen, Completely Bounded Maps and Dilations, John Wiley & Sons, Inc. , New York 1986.
- 5. Z. J. Ruan, On Matricially Normed Spaces Associated with Operator Algebras, Ph. D. thesis, University of California, Los Angeles (1987).
- 6. D. Y. Shin, S. G. Lee and S. J. Cho, On Minimal E-projection of operator Spaces, Comm. Korean Math. Soc. 4 (1989), No. 2, 349-356.
- 7. M. Takesaki, Theory of Operator Algebras 1, Springer-Verlag, New York, (1979).

⁺Department of Mathematics Seoul National University Seoul 151-742, Korea

⁺⁺Department of Mathematics Chonnam National University Kwangju 500-757, Korea

 $\mathbf{72}$