
Comm. Korean Math. Soc. 5 (1990), No. 1, pp. 49"-'53

A REMARK ON THE
HARDY-LITTLEWOOD-SOBOLEV-THEOREM

E. G. KWON

1. In the n-dimensional Euclidean space En, the maximal function
Mf(x) of an integrable function f(x) is defined by

Mf(x) = sup (Bt )) [ If(y)ldy,
r>O m x, r JB(x,r)

where m(B(x, r )) denotes the n-dimensional volume of the ball B(x, r) =
{y E En; Ix - yl < r} and dy = dy1 dY2·· ·dYn. Also the Riesz potentials
are defined for f (x) and a > 0 by

IOtf(x) = _(1) [ lyl-n+Ot f(x - y)dy, x E En
I a JEn

with a constant I(a) = R20t r(~);~~12). See [1. p.117].
The Hardy-Littlewood-Sobolev theorem (of fractional integration)

says that if f(x) E LP(En), 1 < p < 00, and 0 < a < n, 1jq = 1jp-ajn
then

I\IOtfl\q :::; Ap,ql\fl\p·

Here IIfll p denotes the usual LP(En) norm of f(x) and Ap,q denotes a
constant depending only on p and q (and n) [1. p.119]. Compared with
the Bessel potentials, it is known that the Riesz potentials leads to less
favourable behavior as Ixl -t 00 [1. p.131]. Also if f(x) E V(En) and
f( x) is continuous in a deleted neighborhood of 0 then by a successive
use of the intermediate value theorem one verifies that
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which tends to 0 as Ixl -t o. Our question on this point is that how
much the Lq behavior of Iaf is affected by the decreasing rapidity of
f(x) as Ixl -t 00 or as Ix\-t o.

THEOREM. Let 1 < P < 00, 0 < S ::::; 00, and 0 < a < f3 < n. Suppose
that f(x) E V(En) and

FfJ(x) = esssup Ix - ylPlf(x - y)1 E L 8 (En
),

y

then

(1)

where

(2) f1 = ajf3 and Ijq = (1- fJ)jp + f1js.

COROLLARY. Let 0 < a < f3 < n, 1 < p < 00, q(l- J) = p, f(x) E

V(En) and IxIPlf(x)1 be essentially bounded. Then Iaf E Lq(En).

2. For the proof of Theorem we let

E = {x j Mf(x) < 00 and Fp(x) < oo}

and

t(x,f) = [Fp(x)jMf(x)p/P.

Then we divide IIIafll; into two parts;

(3) IIIaf": = f IIaf(x)lqdxJEn

= [ f + f ] IIaf(x)lqdx
J2Ixl5.t(x,/) 12/xl>t(x,/)

=(I) + (II).
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First, to estimate (I) fix x E E such that 21xl :S t = t(x,J). Then since

Ix - yl 2': ¥ if Iyl > t in this case, we have

(4)

( lyl-n+a<lf(x - y)ldy :S FIJ(x) ( lyl-n+a<lx - yl-lJdy
J'yl>t J'yl>t

:S2IJ FIJ(x) ( lyl-n+a<-lJdy
J'YI>t

=21J({3 - a)-lwta<-IJFp(x).

Here w is the volume of the unit sphere sn-l = {( E En : 1(1 = 1}. On
the other hand, if we temporarily set

n(r) = n(r,x) = rn- 1
( If(x - r()ldu((),

Jsn-l

where du is the element of volume on sn-l, then by use of the integration
by parts we obtain

(5)

{ lyl-n+a<lf(x - y)ldy
J1yl5.t

_it r-n+a<n(r)dr

= rn+a< t n(r)dr + (n - a) t r-n+a<-l [ ( If(x - y)ldY] dr
Jo Jo J1yl<r

::;a-1nVta<Mf(x),

where V is the volume of the unit ball {x; Ixl < 1}.
Combining (4) and (5), we can majorize (I) ;

(6) (1):S A;,p ( Mf(x)q(l-O) Fp(x)qodx,
J21:c15.t(:c,f)

h A _I [n V + 2
f1 w ]were a<,{3 - ')'(a<) a ({3-a<)'
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3. Next, it is not difficult to see from [1. p.1l8] that

1I l-n+O'I - 1-(3d = ,(o}y(n - 13) I 10'-(3
Y x Y Y ( (.1) x .

~ ,n+a-~

Thus,

(7) (II) = ,(a)-q r [r IYI-n+O'lf(x - y)\dy] qdx
J2lxl>t JEn

::; ,(a)-q r F(3(x)q [f IYI-n+O'lx - yl-(3dy] qdx
J2lxl>t JEn

= ,(n - f3)q,(n + a - f3)-q r F(3(x)qlxl-q«(3-O')dx
J2l x l>t

::; B~ (3 f Mf(x)q(1-6) F(3(x) q6dx,, JEn

where BO',(3 = 2(3-0',(n - /3h(n + a - /3)-1.
Therefore combining (6), (7), and (1),

where CO',(3 = AO',(3 + BO',(3. Applying Holder's inequality we finally
obtain

(8)

Now the required result follows from the Maximal theorem [1. p.5].

4. Let us see that our exponents condition (2) on q and fj are appro
priate. For the purpose assume (1) and change f( x) with its dilation
defined by Tvf(x) = f(vx), v> O. Noting that

IIIO'(Tvf)lIq = v-~-O'IIIO'fllq,

II Tvfllp = v-~ 11 flip ,
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[1. p.118] and

sup Ix - yl,slrllf(x - y)1 = v-,sF,s(l-'X) = v-,sTIIF,s(x),
y

we have by (1),

for all v > O. Thus we should have

53

(8) n [1-8 8]- + a = -- + - n + (38.
q p s

IT (8) holds independently of n, then (8) is equivalent to (2).
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