A REMARK ON THE HARDY-LITTLEWOOD-SOBOLEV-THEOREM

E. G. Kwon

1. In the n-dimensional Euclidean space E^{n}, the maximal function $M f(x)$ of an integrable function $f(x)$ is defined by

$$
M f(x)=\sup _{r>0} \frac{1}{m(B(x, r))} \int_{B(x, r)}|f(y)| d y
$$

where $m(B(x, r))$ denotes the n-dimensional volume of the ball $B(x, r)=$ $\left\{y \in E^{n} ;|x-y|<r\right\}$ and $d y=d y_{1} d y_{2} \cdots d y_{n}$. Also the Riesz potentials are defined for $f(x)$ and $\alpha>0$ by

$$
I_{\alpha} f(x)=\frac{1}{\gamma(\alpha)} \int_{E^{n}}|y|^{-n+\alpha} f(x-y) d y, \quad x \in E^{n}
$$

with a constant $\gamma(\alpha)=\sqrt{\pi^{n}} 2^{\alpha} \frac{\Gamma(\alpha / 2)}{\Gamma(n / 2-\alpha / 2)}$. See [1. p.117].
The Hardy-Littlewood-Sobolev theorem (of fractional integration) says that if $f(x) \in L^{p}\left(E^{n}\right), 1<p<\infty$, and $0<\alpha<n, 1 / q=1 / p-\alpha / n$ then

$$
\left\|I_{\alpha} f\right\|_{q} \leq A_{p, q}\|f\|_{p}
$$

Here $\|f\|_{p}$ denotes the usual $L^{p}\left(E^{n}\right)$ norm of $f(x)$ and $A_{p, q}$ denotes a constant depending only on p and q (and n) [1. p.119]. Compared with the Bessel potentials, it is known that the Riesz potentials leads to less favourable behavior as $|x| \rightarrow \infty$ [1. p.131]. Also if $f(x) \in L^{p}\left(E^{n}\right)$ and $f(x)$ is continuous in a deleted neighborhood of 0 then by a successive use of the intermediate value theorem one verifies that

$$
|x|^{n}|f(x)|^{p} \sim \int_{|x|}^{2|x|} \cdots \int_{|x|}^{2|x|}|f(y)|^{p} d y_{1} \cdots d y_{n}
$$

which tends to 0 as $|x| \rightarrow 0$. Our question on this point is that how much the L^{q} behavior of $I_{\alpha} f$ is affected by the decreasing rapidity of $f(x)$ as $|x| \rightarrow \infty$ or as $|x| \rightarrow 0$.

Theorem. Let $1<p<\infty, 0<s \leq \infty$, and $0<\alpha<\beta<n$. Suppose that $f(x) \in L^{p}\left(E^{n}\right)$ and

$$
F_{\beta}(x)=e s s \sup _{y}|x-y|^{\beta}|f(x-y)| \in L^{s}\left(E^{n}\right)
$$

then

$$
\begin{equation*}
\left\|I_{\alpha} f\right\|_{q} \leq C_{\alpha, \beta, p}\|f\|_{p}^{1-\delta}\left\|F_{\beta}\right\|_{s}^{\delta} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta=\alpha / \beta \text { and } 1 / q=(1-\delta) / p+\delta / s \tag{2}
\end{equation*}
$$

Corollary. Let $0<\alpha<\beta<n, 1<p<\infty, q\left(1-\frac{\alpha}{\beta}\right)=p, f(x) \in$ $L^{p}\left(E^{n}\right)$ and $|x|^{\beta}|f(x)|$ be essentially bounded. Then $I_{\alpha} f \in L^{q}\left(E^{n}\right)$.
2. For the proof of Theorem we let

$$
E=\left\{x ; M f(x)<\infty \text { and } F_{\beta}(x)<\infty\right\}
$$

and

$$
t(x, f)=\left[F_{\beta}(x) / M f(x)\right]^{1 / \beta} .
$$

Then we divide $\left\|I_{\alpha} f\right\|_{q}^{q}$ into two parts;

$$
\begin{align*}
\left\|I_{\alpha} f\right\|_{q}^{q} & =\int_{E_{n}}\left|I_{\alpha} f(x)\right|^{q} d x \tag{3}\\
& =\left[\int_{2|x| \leq t(x, f)}+\int_{2|x|>t(x, f)}\right]\left|I_{\alpha} f(x)\right|^{q} d x \\
& =(I)+(I I) .
\end{align*}
$$

First, to estimate (I) fix $x \in E$ such that $2|x| \leq t=t(x, f)$. Then since $|x-y| \geq \frac{|y|}{2}$ if $|y|>t$ in this case, we have
(4)

$$
\begin{aligned}
\int_{|y|>t}|y|^{-n+\alpha}|f(x-y)| d y & \leq F_{\beta}(x) \int_{|y|>t}|y|^{-n+\alpha}|x-y|^{-\beta} d y \\
& \leq 2^{\beta} F_{\beta}(x) \int_{|y|>t}|y|^{-n+\alpha-\beta} d y \\
& =2^{\beta}(\beta-\alpha)^{-1} w t^{\alpha-\beta} F_{\beta}(x)
\end{aligned}
$$

Here w is the volume of the unit sphere $S^{n-1}=\left\{\zeta \in E^{n}:|\zeta|=1\right\}$. On the other hand, if we temporarily set

$$
\Omega(r)=\Omega(r, x)=r^{n-1} \int_{S^{n-1}}|f(x-r \zeta)| d \sigma(\zeta)
$$

where $d \sigma$ is the element of volume on S^{n-1}, then by use of the integration by parts we obtain

$$
\begin{align*}
& \int_{|y| \leq t}|y|^{-n+\alpha}|f(x-y)| d y \tag{5}\\
= & \int_{0}^{t} r^{-n+\alpha} \Omega(r) d r \\
= & t^{-n+\alpha} \int_{0}^{t} \Omega(r) d r+(n-\alpha) \int_{0}^{t} r^{-n+\alpha-1}\left[\int_{|y|<r}|f(x-y)| d y\right] d r \\
\leq & \alpha^{-1} n V t^{\alpha} M f(x),
\end{align*}
$$

where V is the volume of the unit ball $\{x ;|x|<1\}$.
Combining (4) and (5), we can majorize (I) ;

$$
\begin{equation*}
(I) \leq A_{\alpha, \beta}^{q} \int_{2|x| \leq t(x, f)} M f(x)^{q(1-\delta)} F_{\beta}(x)^{q \delta} d x \tag{6}
\end{equation*}
$$

where $A_{\alpha, \beta}=\frac{1}{\gamma(\alpha)}\left[\frac{n V}{\alpha}+\frac{2^{\beta} w}{(\beta-\alpha)}\right]$.
3. Next, it is not difficult to see from [1. p.118] that

$$
\int_{E^{n}}|y|^{-n+\alpha}|x-y|^{-\beta} d y=\frac{\gamma(\alpha) \gamma(n-\beta)}{\gamma(n+\alpha-\beta)}|x|^{\alpha-\beta}
$$

Thus,

$$
\begin{align*}
(I I) & =\gamma(\alpha)^{-q} \int_{2|x|>t}\left[\int_{E^{n}}|y|^{-n+\alpha}|f(x-y)| d y\right]^{q} d x \tag{7}\\
& \leq \gamma(\alpha)^{-q} \int_{2|x|>t} F_{\beta}(x)^{q}\left[\int_{E^{n}}|y|^{-n+\alpha}|x-y|^{-\beta} d y\right]^{q} d x \\
& =\gamma(n-\beta)^{q} \gamma(n+\alpha-\beta)^{-q} \int_{2|x|>t} F_{\beta}(x)^{q}|x|^{-q(\beta-\alpha)} d x \\
& \leq B_{\alpha, \beta}^{q} \int_{E^{n}} M f(x)^{q(1-\delta)} F_{\beta}(x)^{q \delta} d x
\end{align*}
$$

where $B_{\alpha, \beta}=2^{\beta-\alpha} \gamma(n-\beta) \gamma(n+\alpha-\beta)^{-1}$.
Therefore combining (6), (7), and (1),

$$
\int_{E^{n}}\left|I_{\alpha} f(x)\right|^{q} d x \leq C_{\alpha, \beta}^{q} \int_{E^{n}} M f(x)^{q(1-\delta)} F_{\beta}(x)^{q \delta} d x
$$

where $C_{\alpha, \beta}=A_{\alpha, \beta}+B_{\alpha, \beta}$. Applying Hölder's inequality we finally obtain

$$
\begin{equation*}
\left\|I_{\alpha} f\right\|_{q} \leq C_{\alpha, \beta}\|M f\|_{p}^{(1-\delta)}\left\|F_{\beta}\right\|_{s}^{\delta} \tag{8}
\end{equation*}
$$

Now the required result follows from the Maximal theorem [1. p.5].
4. Let us see that our exponents condition (2) on q and δ are appropriate. For the purpose assume (1) and change $f(x)$ with its dilation defined by $\tau_{\nu} f(x)=f(\nu x), \nu>0$. Noting that

$$
\begin{gathered}
\left\|I_{\alpha}\left(\tau_{\nu} f\right)\right\|_{q}=\nu^{-\frac{n}{q}-\alpha}\left\|I_{\alpha} f\right\|_{q} \\
\left\|\tau_{\nu} f\right\|_{p}=\nu^{-\frac{n}{p}}\|f\|_{p}
\end{gathered}
$$

[1. p.118] and

$$
\sup _{y}|x-y|^{\beta}\left|\tau_{\nu} f(x-y)\right|=\nu^{-\beta} F_{\beta}(\nu x)=\nu^{-\beta} \tau_{\nu} F_{\beta}(x)
$$

we have by (1),

$$
\nu^{-\frac{n}{q}-\alpha}\left\|I_{\alpha} f\right\|_{q} \leq C_{\alpha, \beta, p} \nu^{-\frac{n(1-\delta)}{p}-\frac{n \delta}{z}-\beta s}\|f\|_{p}^{1-\delta}\left\|F_{\beta}\right\|_{s}^{\delta}
$$

for all $\nu>0$. Thus we should have

$$
\begin{equation*}
\frac{n}{q}+\alpha=\left[\frac{1-\delta}{p}+\frac{\delta}{s}\right] n+\beta \delta \tag{8}
\end{equation*}
$$

If (8) holds independently of n, then (8) is equivalent to (2).

References

1. E.M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, NJ, 1970.

Department of Mathematics Education
Andong National University
Andong 760-749, Korea

