Comm. Korean Math. Soc. 5 (1990), No. 1, pp. 37~48

TOPOLOGICAL MV-SEMIGROUPS

JU-YOUNG KIM

In [2], Chae investigated basic theory of binary set-valued topological algebra and in particular, the properties of set-valued multiplications on an interval.

In this paper, topological multivalued-semigroups are defined and obtained results similar to those in [2].

1. Multifunctions

A multifunction $f : X \to Y$ is a correspondence from X to Y with f(x) a nonempty subset of Y for each $x \in X$. We will denote the graph of f, i.e., $\{(x,y) : x \in X \text{ and } y \in f(x)\}$, by G(f).

If $A \subset X$ and $B \subset Y$, we use the notation $f(A) = \bigcup \{f(x) : x \in A\}$, $f^{-1}(B) = \{x \in X : f(x) \cap B \neq \emptyset\}$ and $f^{[-1]}(B) = \{x \in X : f(x) \subset B\}$. We will denote the closure of a subset K of a topological space by \overline{K} .

We will say that a multifunction $f: X \to Y$ has closed (connected) [compact] point images if f(x) is closed (connected)[compact] in Y for each $x \in X$. f is said to be a closed multifunction if f(A) is closed in Y for all closed sets $A \subset X$.

Note. Let $f: X \to Y$ be a multifunction. Then the induced f^{-1} : $\mathcal{P}(Y) \to \mathcal{P}(X)$ preserves the elementary set operations. Precisely,

(1) $f^{-1}(\bigcup_{\alpha} B_{\alpha}) = \bigcup_{\alpha} f^{-1}(B_{\alpha})$ (2) $f^{-1}(\bigcap_{\alpha} B_{\alpha}) \subset \bigcap_{\alpha} f^{-1}(B_{\alpha})$ For the induced map $f : \mathcal{P}(X) \to \mathcal{P}(Y);$ (1) $f(\bigcup_{\alpha} A_{\alpha}) = \bigcup_{\alpha} f(A_{\alpha})$ (2) $f(\bigcap_{\alpha} A_{\alpha}) \subset \bigcap_{\alpha} f(A_{\alpha})$

For the combined action of f and f^{-1} , it is simple to veryfy

Received July 10, 1989.

THEOREM 1.1. If $f: X \to Y$ is a multifunction, then: (1) For each $A \subset X$, $f^{-1}[f(A)] \supset A$ and $f^{[-1]}[f(A)] \supset A$ (2) $X - f^{-1}(K) = f^{[-1]}(Y - K)$ for each $K \subset Y$ (3) $f(f^{[-1]}(B)) \subset B$ for each $B \subset Y$.

Given $f: X \to Y$ and $g: Y \to Z$ are multifunctions, their composition $g \circ f: X \to Z$ is defined as the map $x \mapsto g(f(x))$. Then $g \circ f$ is also a multifunction.

We can clearly compose the induced maps f^{-1} , g^{-1} and we have

PROPOSITION 1.2. Let $f: X \to Y$ and $g: Y \to Z$ be multifunctions. Then $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Given an $f : X \to Y$ multifunction and a subset $A \subset X$, the f considered only on A is called the restriction of f to A, is written $f \mid A$, and can alternatively be defined as $f \mid A = f \cap (A \times Y)$.

2. Upper semi-continuous multifunctions

DEFINITION 2.1. If X and Y are topological spaces and $f: X \to Y$ is a multifunction we will say that f has a closed graph if G(f) is a closed subset of the product space $X \times Y$. If X and Y are topological spaces a multifunction $f: X \to Y$ is said to be upper semi-continuous at $x \in X$ if for each W open about f(x) in Y there is a V open about x in X with $f(V) \subset W$: f is said to be upper semi-continuous if f is upper semi-continuous at each $x \in X$.

EXAMPLE 2.2. Let $I_u = [0, 1]$ be the real unit interval with the usual topology. Define

$$f(x) = \left\{egin{array}{cc} (0,x] & ext{if} \ \ 0 < x \leq 1 \ \{0\} & ext{if} \ \ x = 0 \end{array}
ight.$$

Then f is upper semi-continuous.

The elementary properties are

THEOREM 2.3. (1) [9] (composition) If $f: X \to Y$ and $g: Y \to Z$ are upper semi-continuous, so also is $g \cdot f: X \to Z$.

(2) (restriction of domain) If $f : X \to Y$ is upper semi-continuous and $A \subset X$ is taken with the subspace topology, then $f \mid A : A \to Y$ is upper semi-continuous.

(3) (Restriction of range) If $f: X \to Y$ is upper semi-continuous and f(X) is taken with the subspace topology, then $f: X \to f(X)$ is upper semi-continuous.

The following lemma is a criterion for the upper semi-continuity of multifunctions.

LEMMA 2.4. Let X, Y be topological spaces, and $f : X \to Y$ a multifunction. The following statements are equivalent.

(1) f is upper semi-continuous.

(2) $f^{-1}(K)$ is closed in X whenever K is closed in Y.

(3) $f^{[-1]}(G)$ is open in X whenever G is open in Y.

(4) $\overline{f^{-1}(B)} \subset f^{-1}(\overline{B})$ for every B Y.

(5) f^{-1} is a closed multifunction on f(X) where $f^{-1}(y) = \{x \in X : y \in f(x)\}$.

Proof. (1) \Leftrightarrow (2) [9].

 $(2) \Rightarrow (4)$: Let $B \subset Y$. Then $f^{-1}(B) \subset f^{-1}(\overline{B})$. By (2), $f^{-1}(\overline{B})$ is closed in X. Hence $\overline{f^{-1}(B)} \subset f^{-1}(\overline{B})$.

 $(4) \Rightarrow (2)$: Let K be closed in Y. Then, by $(4), \overline{f^{-1}(K)} \subset f^{-1}(\overline{K}) = f^{-1}(K)$. Hence $f^{-1}(K)$ is closed in X.

 $(2) \Leftrightarrow (3)$: It is clear from theorem 1.1. (2).

 $(2) \Rightarrow (5)$: If F is closed in f(X), then $F = f(X) \cap K$ for some closed subset K of Y. Since $f^{-1}(F) = f^{-1}(K)$ and $f^{-1}(K)$ is closed in X by $(2), f^{-1}(F)$ is closed in X.

 $(5) \Rightarrow (2)$: If K is closed in Y, then $K \cap f(X)$ is closed in f(X). Since $f^{-1}(K) = f^{-1}(K \cap f(X))$ and $f^{-1}(K \cap f(X))$ is closed in X by $(5), f^{-1}(K)$ is closed in X.

REMARKS. Suppose that X and Y are topological spaces and f is a function from X into Y. Then f is continuous if and only if $f(\overline{A}) \subset \overline{f(A)}$

for all $A \subset X$ [8]. The following examples show that this is not true if f is an upper semi-continuous multifunction.

EXAMPLE 2.5.

(1) Let X = Y = [0, 1] be the real unit interval with the usual topology and define f by : f(x) = (1/2)x if $0 \le x < 1/2$, f(1/2) = [1/4, 3/4]and f(x) = (1/2)(x + 1) if $1/2 < x \le 1$. If A = [1/4, 1/2), then $f(\overline{A}) = [1/8, 3/4]$ and $\overline{f(A)} = [1/8, 1/4]$, i.e., $f(\overline{A}) \supseteq \overline{f(A)}$.

(2) Let X = Y = [0, 1] and define f by: f(x) = [0, x] for $0 \le x < 1$ and $f(1) = \{0\}$. Then $f(\overline{A}) \subset \overline{f(A)}$ for all $A \subset X$. But f is not upper semi-continuous because $f^{-1}([1/2, 1]) = [1/2, 1)$.

Compactness or connectedness is not in general preserved by upper semi-continuous multifunctions [9].

THEOREM 2.6 [9]. Let $f: X \to Y$ be upper semi-continuous. If f(x) is connected for each $x \in X$ and if $C \subset X$ is connected, then f(C) is connected.

THEOREM 2.7. [9]. Let $f : X \to Y$ be an upper semi-continuous multifunction. If f has compact point images, then f(K) is compact for any compact subset K of X.

PROPOSITION 2.8. Let $f: X \to Y$ be a function. Define $\overline{f}: X \to Y$ via $\overline{f}(x) = \{f(x)\}$. Then f is upper semi-continuous if and only if f is continuous.

Proof. Let $A \subset Y$. Then $\{x \in X : \overline{f}(x) \cap A \neq \emptyset\} = f^{-1}(A)$. Hence, by lemma 2.4., \overline{f} is upper semi-continuous if and only if f is continuous.

THEOREM 2.9. [10]. If X is a topological space and the multifunction $f: X \to X$ has a closed graph, then $\{x \in X : x \in f(x)\}$ is closed in X.

THEOREM 2.10. [4]. If $f : X \to Y$ is an upper semi-continuous multifunction with closed point images and Y a regular space, then f has a closed graph.

40

COROLLARY 2.11. If X is a regular space and the upper semi-continuous multifunction $f: X \to X$ has closed point images, then $\{x \in X : x \in f(x)\}$ is closed in X.

THEOREM 2.12. Let $\{Y_{\alpha} : \alpha \in A\}$ be any family of topological spaces, and $f : X \to \prod_{\alpha} Y_{\alpha}$ a multifunction. Then f is upper semi-continuous if and only if $\overline{p}_{\beta} \circ f$ is upper semi-continuous for each $\beta \in A$ where $\overline{p}_{\beta}(y) = \{p_{\beta}(y)\}$ for each $y \in \prod_{\alpha} Y_{\alpha}$.

Proof. Let f be upper semi-continuous; since p is upper semi-continuous, so also is $\overline{p}_{\beta} \circ f$.

Conversely, assume each $\overline{p}_{\beta} \circ f$ upper semi-continuous. If W is an open set containing f(x), then $(\overline{p}_{\beta} \circ f)(x) \subset \overline{p}_{\beta}(W)$ and $\overline{p}_{\beta}(W)$ is open in Y_{β} . Since $p_{\beta} \circ f$ is upper semi-continuous, there exists U_{β} such that $x \in U_{\beta}, (\overline{p}_{\beta} \circ f)(U_{\beta}) \subset \overline{p}_{\beta}(W), U_{\beta}$ is open in X. But $p_{\alpha}(W) = Y$ for all but at most finitely many α , say $\alpha_1, \ldots, \alpha_n$. Put $U = \bigcap_{i=1}^n U_{\alpha_i}$. Then $f(U) \subset W$ and hence f is upper semi-continuous at $x \in X$.

3. Topological MV-semigroup

DEFINITION 3.1. A topological MV-semigroup is a nonempty Hausdorff space S togethere with an upper semi-continuous multiplication $S \times S \rightarrow S$ (whose valued at (x, y) will be denoted by xy) satisfying (xy)z = x(yz) for all $x, y, z \in S$. AB is defined to be the union $\cup \{ab : a \in A, b \in B\}$ for $A, B \subset S$.

The condition that the multiplication on S is upper semi-continuous is equivalent to the condition that for each $x, y \in S$ and each open set W in S with $xy \subset W$, there exist open sets U and V in S such that $x \in U, y \in V$ and $UV \subset W$.

EXAMPLE 3.2.

(1) Any space X is a topological MV-semigroup under the multiplication $xy = \{x, y\}$ for each $x, y \in X$

(2) Let X = [0, 1] be the real unit closed interval with the usual topol-

ogy. Then X is a topological MV-semigroup under the multiplication

$$xy = \begin{cases} (0, \min\{x, y\}] & \text{if } x \neq 0 \text{ and } y \neq 0 \\ \{0\} & \text{if } x = 0 \text{ or } y = 0 \end{cases}$$

(3) Let X be as in (2). Then X is a topological MV-semigroup under the multiplication

$$xy = \begin{cases} (0, \text{ the usual product } x \text{ and } y] & \text{if } x \neq 0 \text{ and } y \neq 0 \\ \{0\} & \text{if } x = 0 \text{ or } y = 0 \end{cases}$$

REMARKS. It will be observed that no differentiation is made between x and $\{x\}$ if it is not convenient to do so and will not readily lead to confusion.

PROPOSITION 3.3. Let A and B be subsets of a topological MV-semigroup S.

(a) If the multiplication of S has compact point images, then AB is compact for compact subsets $A, B \subset S$.

(b) If the multiplication of S has connected point images, then AB is connected for connected subsets $A, B \subset S$.

THEOREM 3.4. Let A and B be compact subsets of a topological MVsemigroup S. If AB is contained in an open subset W of S, then there exist open subsets U and V of S such that $A \subset U$, $B \subset V$ and $UV \subset W$.

Proof. Since $AB \subset W$, $ab \subset W$ for each $a \in A$ and each $b \in B$, there exist open sets M and N in S such that $a \in M$, $b \in N$, and $MN \subset W$. Since B is compact, for a fixed $a \in A$, there are open sets M_1, \dots, M_n in S containing a and corresponding open sets N_1, \dots, N_n in S such that $B \subset Q = N_1 \cup \dots \cup N_n$. Let $P = M_1 \cap \dots \cap M_n$. Then P is open in S, Q is open in S, $a \in P$, $B \subset Q$, and $PQ \subset W$. Since A is compact, there exist open sets P_1, \dots, P_m in S and corresponding Q_1, \dots, Q_m open in S such that $B \subset V = Q_1 \cap \dots \cap Q_m$ and $A \subset U = P_1 \cup \dots \cup P_m$. It follows that U and V are the required open sets.

COROLLARY 3.5. Let A be a compact subset of a topological MV-semigroup and let $x \in S$. If Ax[xA] is contained in an open subset V

of S, there exsits an open subset U of S such that $x \in U$ and $AU \subset V[UA \subset V]$.

Notations. For subsets A and B of a topological MV-semigroup S, it is convenient to wirte

$$A^{[-1]}B = \{x \in S : Ax \subset B\}, \quad A^{(-1)}B = \{x \in S : Ax \cap B \neq \emptyset\}$$
$$BA^{[-1]} = \{x \in S : xA \subset B\}, \quad BA^{(-1)} = \{x \in S : xA \cap B \neq \emptyset\}.$$

In the case where S is a multi-mob, various forms of the proof of the following theorem have been given in [2].

THEOREM 3.6. Let A and B be subsets of a topological MV- semigroup S. Then

(1) If A is compact and if B is open, then $A^{[-1]}B$ is open.

(2) If A is compact and if B is closed, then $A^{(-1)}B$ is closed.

(3) If A is compact, then $\{x \in S : B \subset Ax\}$ is closed.

Proof. (1) If $x \in A^{[-1]}B$, then $Ax \subset B$. Since A is compact and since B is open, by corollary 3.5., there exists an open subset V of S such that $x \in V$ and $AV \subset B$, i.e., $V \subset A^{[-1]}B$. Therefore $A^{[-1]}B$ is open in S. (2) and (3) may be proved by observing that $A^{[-1]}(S-B) = S - A^{(-1)}B$ and $\{x \in S : B \subset Ax\} = \cap \{A^{(-1)}b : b \in B\}$ respectively.

DEFINITION 3.7. Let S be a topological MV-semigroup.

An element f of S is called a multi-idempotent if and only if $f \in f^2$. An element u of S is called a left unit if and only if $x \in ux$ for each x in S.

An element S of S is called a left scalar if and only if sx is a singleton for each x in S.

An element u of S is called a left scalar unit if and only if u is a left scalar and a left unit, i.e., ux = x for each element x in S.

In each definition, above, right and two-sided elements are defined analogously.

THEOREM 3.8. If a topological MV-semigroup S is regular space and xy is closed in S for every $x, y \in S$, then the set E of all multiidempotents of S is closed.

Proof. Suppose there is an element x in $\overline{E} - E$, i.e., $x \in \overline{E}$ and $x \notin x^2$. Since S is regular, there exist open subsets U and V of S such that $x \in U$, $x^2 \in V$, and $U \cap V = \emptyset$. Since $x^2 \subset V$, by theorem 3.4., there exist open subsets V_1 and V_2 of S such that $x \in V_1 \cap V_2$ and $V_1 V_2 \subset V$. Therefore $V_1 V_2 \cap U = \emptyset$. Let $W = V_1 \cap V_2 \cap U$. Then $x \in W = W^0$ and $W^2 \cap W = \emptyset$. Since $x \in \overline{E}$, $W \cap E \neq \emptyset$, i.e., there is an element e in W such that $e \in e^2$. Then $e \in W \cap W^2 \neq \emptyset$, which is a contradiction.

4. Subsemigroups and ideals

Convention. Throughout this section, S with denote a topological MV-semigroup and E will denote the set of all multi-idempotents of S.

DEFINITION 4.1. A nonempty subset A of S is called a subsemigroup of S if and only if $A^2 \subset A$.

The intersection of a family of subsemigroups of S is a subsemigroup of S if it is nonempty.

DEFINITION 4.2. A nonempty subset A of S is said to be a left (right, two-sided) ideal of S if and only if $SA \subset A(AS \subset A, AS \cup SA \subset A)$.

Note that the union and the intersection (if it is nonempty) of any collection of left [right, two-sided] ideals of S is again a left [right, two-sided] ideal of S.

LEMMA 4.3. Let $A \subset S$ and let $\{A_{\lambda} : \lambda \in \Lambda\}$ be a family of subsets of S. Then $A(\cup \{A_{\lambda} : \lambda \in \Lambda\}) = \cup \{AA_{\lambda} : \lambda \in \Lambda\}, A(\cap \{A_{\lambda} : \lambda \in \Lambda\}) \subset \cap \{AA_{\lambda} : \lambda \in \Lambda\}.$

PROPOSITION 4.4. (AB)C = A(BC) for each $A, B, C \subset S$.

Proof. Let A, B and C be subsets of S. If $x \in (AB)C$, then there is an element y in AB and an element c in C such that $x \in yc$. Since $y \in AB$, there is an element a in A and an element b in B such that $y \in ab$. Then $x \in yc \subset (ab)c = a(bc) \subset A(BC)$, and $(AB)C \subset A(BC)$. Similarly, $(AB)C \subset A(BC)$ holds.

44

THEOREM 4.5. If S is compact and xy is compact for each $x, y \in S$, then each left [right, two-sided] ideal of S contains a minimal left [right, two-sided] ideal which is closed.

Proof. Let L be a left ideal of S and let \mathcal{L} be the collection of all closed left ideals of S which are contained in L. If $a \in L$, then $Sa \subset SL \subset L$ and $S(Sa) = (SS)a \subset Sa$. It follows that Sa is a left ideal of S contained in L. Since S is compact, Sa is compact and hence closed in S. And it belongs to \mathcal{L} . Therefore, \mathcal{L} is nonempty. \mathcal{L} is partially ordered by set inclusion. Let \mathcal{L}_0 be a chain in \mathcal{L} . Since \mathcal{L}_0 is a collection of closed subsets of the compact space S with finite intersection property, $\cap \mathcal{L}_0 \neq \emptyset$. By the proceeding note, $\cap \mathcal{L}_0 \in \mathcal{L}$. Therefore every chain in \mathcal{L} is lower bounded. By Zorn's lemma, there is a minimal element \mathcal{L}_0 in \mathcal{L} . Now let \mathcal{L}_1 be a left ideal of S and $Sb \subset \mathcal{L}_1 \subset \mathcal{L}_0$. Hence $\mathcal{L}_1 = \mathcal{L}_0$, i.e., \mathcal{L}_0 is a minimal left ideal of S and is closed. Similar arguments hold for right and two sided ideals.

THEOREM 4.6. The minimal ideal of S is unique.

Proof. Let K_1 and K_2 be minimal ideals of S. Then $K_1 \cap K_2$ is an ideal of S since $\emptyset \neq K_1 K_2 \subset K_1 \cap K_2$. Since K_1 and K_2 are minimal, $K_1 = K_1 \cap K_2 = K_2$.

Throughout, K will denote the minimal ideal of S.

THEOREM 4.7. Let $\mathcal{M}_L(\mathcal{M}_R)$ denote the collection of all minimal left [right] ideals of S.

(1) If $\mathcal{M}_L \neq \emptyset$ ($\mathcal{M}_R \neq \emptyset$), then S has the minimal ideal K.

(2) $L_1, L_2 \in \mathcal{M}_L$ and $L_1 \cap L_2 \neq \emptyset$ imply $L_1 = L_2$.

 $R_1, R_2 \in \mathcal{M}_R \text{ and } R_1 \cap R_2 \neq \emptyset \text{ imply } R_1 = R_2.$

(3) $\cup \mathcal{M}_L \subset K$ and $\cup \mathcal{M}_R \subset K$.

Proof. (1) Let $L \in \mathcal{M}_L$ and let I be an ideal of S, then $S(IL) = (SI)L \subset IL$ and hence IL is a left ideal of S. Since $IL \subset SL \subset L \in \mathcal{M}_L$, IL = L. Therefore, $L = IL \subset IS \subset I$, i.e., all minimal left ideals are contained in each ideal of S. Hence $\emptyset \neq \bigcup \mathcal{M}_L \subset \cap \{I : IS \cup SI \subset I\} = K$. (2) and (3) are clear.

REMARKS. Suppose S is a topological semigroup. Then the minimal ideal of S is the union of all minimal left [right] ideals of S. The following examples show that these are not true if S is a topological MV-semigroup.

EXAMPLE 4.8. (1) Let S = [a, b]. Then S is a topological MVsemigroup under the multiplication xy = [a, b) if $a \leq y < b$ and xy = [a, b] if y = b. In S, [a, b) is the only minimal left ideal of S. On the
other hand, the only minimal right ideal of S is S itself. Therefore $\cup \mathcal{M}_L = [a, b) \subset K = S$.

By routine arguements, one may obtain

PROPOSITION 4.9. Let L(R, K) be a minimal left [right, two-sided] ideal of S. Then L = Sa(R = aS, K = SaS] for each $a \in L$ $[a \in R, a \in K]$

THEOREM 4.10. If S is connected, xy is connected for each x, y in S and S has a left unit, then each ideal of S is connected.

Proof. Let J be an ideal of S. Since S has a left unit, $x \in Sx$ and Sx is connected for each $x \in S$. Since $J = \bigcup \{x : x \in J\} \subset \bigcup \{Sx : x \in J\}$ and since $Sx \subset SJ \subset J$ for each $x \in J$, $J = \bigcup \{Sx : x \in J\}$. Let $y_0 \in J$. Then $y_0S \subset J$ and hence $J = (\bigcup \{Sx : x \in J\}) \cup y_0S$. Since y_0S is connected and since $y_0x \subset Sx \cap y_0S$ for each $x \in J$, J is connected.

DEFINITION 4.11. For each subset A of S, $J_0(A)$ will denote the union of all ideals of S contained in A. If A contains no ideals of S, then $J_0(A) = \emptyset$. If $J_0(A)$ is nonempty, then it is clearly the unique largest ideal of S contained in A. $R_0(A)$ and $L_0(A)$ are defined analogously.

THEOREM 4.12. Let A be a subset of S. If A is open and if S is compact, then $J_0(A)$, $L_0(A)$, and $R_0(A)$ are open.

Proof. If $x \in J_0(A)$, then $Sx \subset SJ_0(A) \subset J_0(A) \subset A$. Since S is compact and A is open, by using theorem 3.4., there are an open subset U of S such that $x \in U$ and $SU \subset A$. Again, since $xS \subset A$,

46

there is an open subset V of S such that $x \in V$ and $VS \subset A$. Now, since $SxS \subset A$, there is an open subset W of S such that $x \in W$ and $SWS \subset A$. Let $M = U \cap V \cap W \cap A$. Then M is an open subset of S containing x. By lemma 4.3., $M \cup MS \cup SM \cup SMS$ is an ideal of S. Since $M \cup MS \cup SM \cup SMS \subset A \cup VS \cup SU \cup SWS \subset A$, $M \cup MS \cup SM \cup SMS \subset J_0(A)$. Therefore, $J_0(A)$ is open. Similar arguments hold for $L_0(A)$ and $R_0(A)$.

THEOREM 4.13. Suppose S is compact. Then each proper ideal of S is contained in a maximal proper ideal of S and each maximal proper ideal is open.

Proof. Let J be a proper ideal of S and let $a \in S - J$. Since S is compact and $S - \{a\}$ is open, by theorem 4.12., $J_0(S - \{a\})$ is a proper open ideal of S containing J. Therefore it is sufficient to consider only open proper ideals. Let \mathcal{B} be the set of all proper open ideals of S containing J. Then \mathcal{B} is nonempty. \mathcal{B} is partially ordered by set inclusion. Since $J_0(S - \{a\}) \in \mathcal{B}$, by the Hausdorff Maximal Principle, there exists a maximal chain \mathcal{C} in \mathcal{B} containing J. If M is not proper, i.e., M = S, then, \mathcal{C} is an open cover of S. Since S is compact, there exist $M_1, \ldots, M_n \in \mathcal{C}$ such that $M_1 \subset M_2 \subset \cdots \subset M_n$ and $S \subset \cup \{M_j : j = 1, \ldots, n\}$, and hence $S = M_n$ which contradicts the fact that M_n is a proper ideal of S. Therefore M is a maximal proper open ideal of S containing J.

References

- 1. Carruth, J.H. Hildebrant, J.A. and Koch, R.J., The theory of topological semigroups, MARCEL DEKKER, INC. New York and Basel, 1983.
- 2. Chae, Y., Topological Multigroups, Doctoral Dissertation, University of Flori-da, 1970.
- 3. Dugundji, J., Topology, Allyn and Bacon, Inc., Boston, 1967.
- 4. Fuller, R.V., Relations among continuous and various non-continuous functions.
- 5. Howie, J.M., An introduction to semigroup theory, Academic Press Inc. London, 1976.
- 6. Joseph, J.E., Multifunctions and graphs, Pacific J. Math., 79(1978), 509-529.

- 7. Joseph, J.E., Multifunctions and cluster sets, Pro. Amer. Math. Soc. 74(1979), 329-337.
- 8. Kelly, J.L., General topology, Princeton Univ. Press, Princeton, New Jersey, 1955.
- Smithson, R.E., Multifunctions, Nieuw Archief Voor Wiskunde, (3) 20(1972) 31– 53.
- Smithson, R.E., Subcontinuity for multifunctions, Pacific J. Math., 61(1975) 283-288.

Department of Mathematics Education Hyosung Women's University Hayang 713–900, Korea