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TOPOLOGICAL MV-SEMIGROUPS

Ju-YOUNG KIM

In [2], Chae investigated basic theory of binary set-valued topological
algebra and in particular, the properties of set-valued multiplications on
an interval.

In this paper, topological multivalued-semigroups are defined and ob­
tained results similar to those in [2].

1. Multifunctions

A multifunction I : X ~ Y is a correspondence from X to Y with
I(x) a nonempty subset of Y for each x EX. We will denote the graph
of I, Le., ((x,y): x E X and yE I(x)}, by G(f).

If A C X and BeY, we use the notation I(A) = U{I(x) : x EA},
1-1 (B) = {x EX: I(x) n B =1= 0} and I[-I](B) = {x EX: f(x) cB}.
We will denote the closure of a subset K of a topological space by K.

We will say that a multifunction I : X ~ Y has closed (connected)
[compact] point images if I(x) is closed (connected)[compact] in Y for
each x EX. I is said to be a closed multifunction if I(A) is closed in Y
for all closed sets A eX.

Note. Let I : X ~ Y be a multifunetion. Then the induced I-I :
P(Y) ~ P(X) preserves the elementary set operations. Precisely,

(1) I- 1(UO/BO/) = UO/I- 1(BO/)
(2) I- 1(nO/BO/) c nO/I-1(BO/)
For the induced map I : P(X) ~ P(Y);
(1) I(UO/AO/) = UO/I(AO/)
(2) I(naAO/) c nO/I(AO/)

For the combined action of I and 1-1, it is simple to veryfy
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THEOREM 1.1. H f : X --t Y is a multifunction, then:
(1) For each A c X, f-l[f(A)] :J A and f[-I] [I(A)] :J A
(2) X - f-l(K) = f[-I](y - K) for each KeY
(3) fU[-I](B» c B for each BeY.

Given f : X -+ Y and 9 : Y --t Z are multifunctions, their composition
go f : X --t Z is defined as the map x ~ g(f(x». Then go f is also a
multifunction.

We can clearly compose the induced maps f-I, g-1 and we have

PROPOSITION 1.2. Let f : X -+ Y and 9 : Y --t Z be multifunctions.
Then (g 0 f)-I = f- 1 0 g-l.

Given an f : X -+ Y multifunction and a subset A eX, the f
considered only on A is called the restriction of f to A, is written f IA,
and can alternatively be defined as f IA = f n (A X Y).

2. Upper semi-continuous multifunetions

DEFINITION 2.1. H X and Y are topological spaces and f : X -+ Y is
a multifunction we will say that f has a closed graph if G(f) is a closed
subset of the product space X x Y. H X and Y are topological spaces a
multifunction f : X -+ Y is said to be upper semi-continuous at x E X
if for each W open about f(x) in Y there is a V open about x in X
with fey) c W : f is said to be upper semi-continuous if f is upper
semi-continuous at each x EX.

EXAMPLE 2.2. Let 1.,. = [0,1] be the real unit interval with the usual
topology. Define

f(x) = { (O,x]
{O}

Then f is upper semi-continuous.

The elementary properties are

ifO<x:::;l

if x = 0
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THEOREM 2.3. (1) [9) (composition) H f : X ~ Y and 9 : Y ~ Z are
upper semi-continuous, so also is 9 . f : X ~ Z.

(2) (restriction of domain) H f : X ~ Y is upper semi-continuous and
A C X is taken with the subspace topology, then f IA : A ~ Y is upper
semi-continuous.

(3) (Restriction of range) If f : X ~ Y is upper semi-continuous and
f(X) is taken with the subspace topology, then f : X ~ f(X) is upper
semi-continuous.

The following lemma is a criterion for the upper semi-continuity of
multifunetions.

LEMMA 2.4. Let X, Y be topological spaces, and f : X ~ Y a
multifunction. The following statements are equivalent.

(1) f is upper semi-continuous.
(2) f-l(K) is closed in X whenever K is closed in Y.
(3) fr-ll(G) is open in X whenever G is open in Y.
(4) f-l(B) C f-l(B) for every B Y.
(5) f- l is a closed multifunction on f(X) where f-l(y) = {x EX:

yE f(x)}.

Proof. (1) ~ (2) [9].
(2) =?- (4) : Let B C Y. Then f-l(B) C f-l(B). By (2), f-l(B) is

closed in X. Hence f-l(B) C f-l(B).

(4) =?- (2) : Let K be closed in Y. Then, by (4), f-l(K) C f-l(K) =
f-l(K). Hence f-l(K) is closed in X.

(2) ~ (3) : It is clear from theorem 1.1. (2).
(2) =?- (5) : If F is closed in f(X), then F = f(X) nK for some closed

subset K of Y. Since f-l(F) = f-l(K) and f-l(K) is closed in X by
(2), f-l(F) is closed in X.

(5) =?- (2) : If K is closed in Y, then K n f(X) is closed in f(X).
Since f-l(K) = f-l(K n f(X» and f-l(K n f(X» is closed in X by
(5), f-l(K) is closed in X.

REMARKS. Suppose that X and Y are topological spaces and f is a
function from X into Y. Then f is continuous ifand only if f(A) c f(A)
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for all A c X [8]. Tbe following examples sbow tbat this is not true if f
is an upper semi-continuous multifunction.

EXAMPLE 2.5.
(1) Let X = Y = [0,1] be tbe real unit interval witb tbe usual topology

and define f by : f( x) = (1/2)x if 0 :::; x < 1/2, f(1/2) = [1/4, 3/4]
and f(x) = (1/2)(x + 1) if 1/2 < x :::; 1. H A = [1/4, 1/2), tben
f(A) = [1/8, 3/4] and f(A) = [1/8, 1/4J, i.~e., f(A) ~ f(A).

(2) Let X = Y = [0,1] and define f by: f(x) = [0, x] for 0 ~ x < 1
and f(1) = {O}. Tben f(A) C f(A) for all A c X. But f is not upper
semi-continuous because f-I([1/2, 1]) = [1/2, 1).

Compactness or conneetedness is not in general preserved by upper
semi-continuous multifunctions [9].

THEOREM 2.6 [9]. Let f: X --+ Y be upper semi-continuous. H f(x)
is connected for each x E X and if G c X is connected, tben f(G) is
connected.

THEOREM 2.7. [9]. Let f : X --+ Y be an upper semi-continuous
multifunction. H f bas compact point images, tben f(K) is compact for
any compact subset K of X.

PROPOSITION 2.8. Let f: X --+ Y be a function. Define I: X --+ Y
via 1(x) = {f(x)}. Tben f is upper semi-continuous if and only if f is
continuous.

Proof. Let A C Y. Then {x EX: lex) n A =1= 0} = f-I(A). Hence,
by lemma 2.4., 1 is upper semi-continuous if and only if f is continuous.

THEOREM 2.9. [10]. H X is a topological space and tbe multifunction
f : X --+ X bas a closed grapb, tben {x EX: x E f(x)} is closed in X.

THEOREM 2.10. [4]. H f : X --+ Y is an upper semi-continuous
multifunction witb closed point images and Y a regular space, tben f
bas a closed grapb.
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COROLLARY 2.11. H X is a regltl.1ar space and the upper semi-conti­
nuous multifunetion I : X -+ X has closed point images, then {x EX:
x E I(x)} is closed in X.

THEOREM 2.12. Let {Yo : a E A} be any family of topological spaces,
and I : X -+ TI a Yo a multifunction. Then I is upper semi-eontinuous
if and only if Pp 0 I is upper semi-eontinuous for each f1 E A where
pp(y) = {pp(y)} for each y E IIoYo'

Proof. Let I be upper semi-continuous since p is upper seIlli­
continuous, so also is Pp 0 I.

Conversely, assume each Pp 0 f upper semi-continuous. If W is an
open set containing I(x), then (pp 0 f)(x) C pp(W) and pp(W) is open
in Yp. Since Pp 0 I is upper semi-continuous, there exists Up such that
x E Up, (pp 0 f)(Up) C pp(W), Up is open in X. But Pa(W) = Y for

n

all but at most finitely many a, say at, ... ,an' Put U = nUo;' Then
i==l

feU) C W and hence I is upper semi-continuous at x EX.

3. Topological MV-semigroup

DEFINITION 3.1. A topological MV-semigroup is a nonempty Haus­
dorff space S togethere with an upper semi-continuous multiplication
S x S -+ S (whose valued at (x, y) will be denoted by xy) satisfy­
ing (xy)z = x(yz) for all x, y, z E S. AB is defined to be the union
U{ab: a E A, bE B} for A,B cS.

The condition that the multiplication on S is upper semi-continuous
is equivalent to the condition that for each x, yES and each open set
W in S with xy c W, there exist open sets U and V in S such that
x E U, yE V and UV C W.

EXAMPLE 3.2.
(1) Any space X is a topological MV-semigroup under the multipli­

cation xy = {x, y} for each x, y E X
(2) Let X = [0,1] be the real unit closed interval with the usual topo1-



42 Ju-Young Kim

ogy. Then X is a topological MV-semigroup under the multiplication

x = { (O,min{x,y}]
y {O}

if x # 0 and y # 0

ifx=O ory=O

(3) Let X be as in (2). Then X is a topological MV-semigroup under
the multiplication

x = { (0, the usual product x and y]
y {O}

if x # 0 and y =f 0

ifx = 0 or y = 0

REMARKS. It will be observed that no differentiation is made between
x and {x} if it is not convenient to do so and will not readily lead to
confusion.

PROPOSITION 3.3. Let A and B be subsets of a topological MV­
semigroup 5.

(a) H the multiplication of 5 has compact point images, then AB is
compact for compact subsets A, B c 5.

(b) H the multiplication of 5 has connected point images, then AB is
connected for connected subsets A, B c 5.

THEOREM 3.4. Let A and B be compact subsets ofa topological MV­
semigroup 5. H AB is contained in an open subset W of 5, then there
exist open subsets U and V of 5 such that A C U, B c V and UV C W

Proof. Since AB C W, ab C W for each a E A and each b E B, there
exist open sets M and N in 5 such that a E M, bEN, and MN C W.
Since B is compact, for a fixed a E A, there are open sets M I , ... ,Mn in
5 containing a and corresponding open sets NI,'" ,Nn in 5 such that
B C Q = NI U ... U N n . Let P = M I n .. , n M n . Then P is open in 5,
Q is open in 5, a E P, B C Q, and PQ C lIV. Since A is compact, there
exist open sets PI,'" ,Pm in 5 and corresponding QI,'" ,Qm open in
5 such that B C V = QI n··· n Qm and A C U = PI U ... U Pm. It
follows that U and V are the required open sets.

COROLLARY 3.5. Let A be a compact subset of a topological MV­
semigroup and let x E 5. H Ax[xA] is contained in an open subset V
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of 5, there exsits an open subset U of 5 such that x E U and AU C
V[UA CV].

Notations. For subsets A and B of a topological MV-semigroup 5,
it is convenient to wirte

AI-l]B = {x E 5: Ax CB}, A(-l) B = {x E 5: Ax n B i= 0}

BA[-l] = {x E 5 : xA CB}, BA(-l) = {x E 5: xA n B i= 0}.

In the case where 5 is a multi-mob, various forms of the proof of the
following theorem have been given in [2].

THEOREM 3.6. Let A and B be subsets of a topological MV - semi-
group 5. Then

(1) If A is compact and if B is open, then AI-l]B is open.
(2) If A is compact and if B is closed, then A (-1)B is closed.
(3) IfA is compact, then {x E 5 : B C Ax} is closed.

Proof. (1) If x E AI-l]B, then Ax c B. Since A is compact and since
B is open, by corollary 3.5., there exists an open subset V of 5 such that
x E V and AV C B, i.e., V C AI-l]B. Therefore AI-l]B is open in 5.
(2) and (3) may be proved by observing that AI-l](5 -B) = 5 - A(-l) B
and {x E 5: B C Ax} = n{A(-l)b: bE B} respectively.

DEFINITION 3.7. Let S be a topological J"W"V -semigroup.
An element f of 5 is called a multi-idempotent if and only if f E p.
An element u of 5 is called a left unit if and only if x E ux for each x

in 5.
An element 5 of 5 is called a left scalar if and only if sx is a singleton

for each x in 5.
An element u of 5 is called a left scalar unit if and only if u is a left

scalar and a left unit, i.e., ux = x for each element x in 5.
In each definition, above, right and two-sided elements are defined

analogously.

THEOREM 3.8. If a topological MV-semigroup 5 is regular space
and xy is closed in 5 for evezy x, y E 5, then the set E of all multi­
idempotents of 5 is closed.
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Proof. Suppose there is an element x in E - E, i.e., x E E and x f/. x 2
•

Since S is regular, there exist open subsets U and V of S such that
x E U, x 2 E V, and Un V = 0. Since x 2 C V, by theorem 3.4., there
exist open subsets VI and V2 of S such that x E VI n V2 and VI V2 CV.
Therefore VI V2 nu = 0. Let W = Vi n Vi nU. Then x E W = WO and
w2 n W = 0. Since x E E, W nE 1= 0, i.e., there is an element e in W
such that e E e2 . Then e E W n W 2 =f 0, which is a contradiction.

4. Subsemigroups and ideals

Convention. Throughout this section, S with denote a topological
MV-semigroup and E will denote the set of all multi-idempotents of S.

DEFINITION 4.1. A nonempty subset A of S is called a subsemigroup
of S if and only if A 2 CA.

The intersection of a family of subsemigroups of S is a subsemigroup
of S if it is nonempty.

DEFINITION 4.2. A nonempty subset A ofS is said to be a left (right,
twcrsided) ideal of S if and only if SA c A(AS c A, AS U SA CA).

Note that the union and the intersection (if it is nonempty) of any
collection of left [right, twcrsided] ideals of S is again a left [right, twcr
sided) ideal of S.

LEMMA 4.3. Let A C S and let {A~ : .A E A} be a family of subsets
of S. Then A(U{A~:.AEA}) = U{AA~:.A E A}, A(n{A~:.A EA}) c
n{AA~ : .A EA}.

PROPOSITION 4.4. (AB)C = A(BC) for each A,B,C C S.

Proof. Let A, B and C be subsets of S. IT x E (AB)C, then there
is an element y in AB and an element e in C such that x E ye. Since
y E AB, there is an element a in A and an element b in B such that
y E ab. Then x E ye C (ab)c = a(bc) C A(BC), and (AB)C C A(BC).
Similarly, (AB)C C A(BC) holds.
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THEOREM 4.5. H S is compact and xy is compact for each x, YES,
then eacb left [right, two-sided] ideal of S contains a minimal left [rigbt,
two-sided] ideal whicb is closed.

Proof. Let L be a left ideal of S and let £ be the collection of all
closed left ideals of S which are contained in L. If a E L, then Sa C
SL eLand S(Sa) = (SS)a C Sa. It follows that Sa is a left ideal of S
contained in L. Since S is compact, Sa is compact and hence closed in S.
And it belongs to £.. Therefore, £. is nonempty. £. is partially ordered
by set inclusion. Let £.0 be a chain in £.. Since £.0 is a collection of
closed subsets of the compact space S with finite intersection property,
n£.o =f: 0. By the proceding note, n£.o E £.. Therefore every chain in £
is lower bounded. By Zom's lemma, there is a minimal element L o in £..
Now let L1 be a left ideal of S which is contained in Lo and let bE L1 .

Then Sb is a closed left ideal of S and Sb C L1 C Lo. Hence L1 = Lo,
i.e., Lo is a minimal left ideal of S and is closed. Similar arguments hold
for right and two sided ideals.

THEOREM 4.6. Tbe minimal ideal of S is unique.

Proof. Let K 1 and K 2 be minimal ideals of S. Then K 1 n K 2 is an
ideal of S since 0 =f K 1 K 2 C K 1 n K 2 • Since K 1 and K 2 are minimal,
K 1 = K 1 n K 2 = K 2 •

Throughout, K will denote the minimal ideal of S.

THEOREM 4.7. Let M L(M R) denote the collection of all minimal left
[rigbt] ideals of S.

(1) H ML =f: 0 (MR =f 0), tben S bas tbe minimal ideal K.
(2) L1, L2 E M L and L1 n L2 =f: 0 imply L1 = L2 ·

RI, R 2 E MR and RI n R 2 =f: 0 imply RI = R 2 •

(3) UML C K and UMR C K.

Proof. (1) Let L E ML and let I be an ideal of S, then S(IL) =
(S1)L elL and hence IL is a left ideal of S. Since IL C SL C L E ML,
IL = L. Therefore, L = IL C IS c I, i.e., all minimal left ideals are
contained in each ideal of S. Hence 0 =f: UML C n{I : ISUSI C I} = K.
(2) and (3) are clear.
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REMARKS. Suppose S is a topological semigroup. Then the mini­
mal ideal of S is the union of all minimal left [rigbt] ideals of S. The
following examples show that these are not true if S is a topological
MV-semigroup.

EXAMPLE 4.8. (1) Let S = [a, b]. Then S is a topological MV­
semigroup under tbe multiplication xy = [a, b) if a ~ y < b and xy =
[a,b] ify = b. In S, [a,b) is the only minimal left ideal of S. On tbe
other band, the only minimal rigbt ideal of S is S itseH. Therefore
UML = [a, b) C K = S.

#

By routine arguements, one may obtain

PROPOSITION 4.9. Let L(R, K) be a minimal left [right, two-sided]
ideal of S. Tben L = Sa(R = as, K = SaS] for eacb a E L [a E R, a E
K]

THEOREM 4.10. If S is connected, xy is connected for each x, y in S
and S has a left unit, then each ideal of S is connected.

Proof. Let J be an ideal of S. Since S ha.,> a left unit, x E Sx and Sx
is connected for each x E S. Since J = U{:r : x E J} c U{Sx : x E J}
and since Sx C SJ c J for each x E J, J = U{Sx : x E J}. Let Yo E J.
Then yoS C J and hence J = (U{Sx : x E J}) U yoS. Since yoS is
connected and since YoX C Sx n yoS for each x E J, J is connected.

DEFINITION 4.11. For each subset A ofS, Jo(A) will denote the union
of all ideals of S contained in A. If A contains no ideals of S, then
Jo(A) = 0. If Jo(A) is nonempty, then it is clearly the unique largest
ideal of S contained in A. Ro(A) and Lo(A) are defined analogously.

THEOREM 4.12. Let A be a subset of S. If A is open and if S is
compact, then Jo(A), Lo(A), and Ro(A) are open.

Proof. If x E Jo(A), then Sx C SJo(A) c Jo(A) c A. Since S
is compact and A is open, by using theorem 3.4., there are an open
subset U of S such that x E U and SU C A. Again, since xS C A,
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there is an open subset V of 5 such that x E V and V 5 c A. Now,
since 5x5 c A, there is an open subset W of 5 such that x E W and
SWSeA. Let M = U n V n W n A. Then M is an open subset
of 5 containing x. By lemma 4.3., MU M5 U 5M U 5MS is an ideal
of 5. Since M U MS U 5M U 5MSc A U V 5 U 5U U 5W5 c A,
MU M5 U 5M U 5M5 c Jo(A). Therefore, Jo(A) is open. Similar
arguments hold for Lo(A) and Ro(A).

THEOREM 4.13. 5uppose 5 is compact. Then each proper ideal of 5
is contained in a maximal proper ideal of S and each maximal proper
ideal is open.

Proof. Let J be a proper ideal of 5 and let a E 5 - J. Since 5
is compact and 5 - {a} is open, by theorem 4.12., Jo(5 - {a}) is a
proper open ideal of 5 containing J. Therefore it is sufficient to consider
only open proper ideals. Let 5 be the set of all proper open ideals of
S containing J. Then 5 is nonempty. 5 is partially ordered by set
inclusion. Since Jo(5 - {a}) E 5, by the Hausdorff Maximal Principle,
there exists a maximal chain C in 5 containing Jo(5 - {a}). Let M = UC.
Then M is a maximal open ideal of S containing J. IT M is not proper,
i.e., M = 5, then, C is an open cover of 5. Since 5 is compact, there
exist M1 , ... ,Mn E C such that M1 C M 2 C '" C Mn and 5 C U{Mj :
j = 1, ... 1 n} 1 and hence S = Mn which contradicts the fact that M n is
a proper ideal of S. Therefore M is a maximal proper open ideal of 5
containing J.
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