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TOPOLOGICAL MV-SEMIGROUPS

Ju-YouNGg KIM

In [2], Chae investigated basic theory of binary set—-valued topological
algebra and in particular, the properties of set—valued multiplications on
an interval.

In this paper, topological multivalued—semigroups are defined and ob-
tained results similar to those in [2].

1. Multifunctions

A multifunction f : X — Y is a correspondence from X to Y with
f(z) a nonempty subset of ¥ for each x € X. We will denote the graph
of f,ie., {(z,y): = € X and y € f(2)}, by G().

If AC X and B C Y, we use the notation f(A) = U{f(z) : ¢ € A},
fAB)={ze€X:f(z)NB#0}and fI7N(B)={z € X: f(z) C B}.
We will denote the closure of a subset K of a topological space by K.

We will say that a multifunction f : X — Y has closed (connected)
[compact] point images if f(z) is closed (connected)[compact] in Y for
each z € X. f is said to be a closed multifunction if f(A) is closed in ¥’
for all closed sets A C X.

Note. Let f : X — Y be a multifunction. Then the induced f~1 :
P(Y') — P(X) preserves the elementary set operations. Precisely,

(1) f7HUaBo) = Uaf~Y(Ba)

(2) f71(NaBs) CNof~Y(Ba)

For the induced map f : P(X) — P(Y);

(1) f(UaAa) = Uaf(Aa)

(2) £(NeAa) C Naf(Aa)

For the combined action of f and f™!, it is simple to veryfy
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THEOREM 1.1. If f: X — Y is a multifunction, then:
(1) Foreach A C X, f7Y[f(A)] D A and fI-U[f(A)] D A
(2) X - fYK)=f"YY -K) foreach KCY

(3) f(fI7(B)) C B foreach BC Y.

Given f: X — Y and ¢ : Y — Z are multifunctions, their composition
gof:X — Z is defined as the map = +— g¢(f(z)). Then go f is also a

multifunction.
We can clearly compose the induced maps f~1, ¢~ and we have

PROPOSITION 1.2. Let f: X — Y and g:Y — Z be multifunctions.
Then (go f)™ ' = flog™L

Given an f : X — Y multifunction and a subset A C X, the f
considered only on A is called the restriction of f to A, is written f| A,
and can alternatively be defined as f[A= fN (A xY).

2. Upper semi—continuous multifunctions

DEFINITION 2.1. If X andY are topological spacesand f : X — Y is
a multifunction we will say that f has a closed graph if G(f) is a closed
subset of the product space X x Y. If X and Y are topological spaces a
multifunction f : X —'Y is said to be upper semi—-continuous at r € X
if for each W open about f(z) in Y there is a V open about z in X
with f(V) C W : f is said to be upper semi—continuous if f is upper
semi—continuous at each z € X.

EXAMPLE 2.2. Let I, = [0,1] be the real unit interval with the usual
topology. Define

0,2] if0<z<1

f(””):{{()} ifz=0

Then f is upper semi—continuous.

The elementary properties are



Topological MV-semigroups 39

THEOREM 2.3. (1) [9] (composition)If f: X - Y andg:Y — Z are
upper semi—continuous, so alsoisg- f: X — Z.

(2) (restriction of domain) If f : X — Y is upper semi—continuous and
A C X is taken with the subspace topology, then f|A: A — Y is upper
semi—continuous.

(3) (Restriction of range) If f : X — Y is upper semi~continuous and
f(X) is taken with the subspace topology, then f : X — f(X) is upper

semi—continuous.

The following lemma is a criterion for the upper semi-continuity of
multifunctions.

LEMMA 2.4. Let X, Y be topological spaces, and f : X — Y a
multifunction. The following statements are equivalent.

(1) f is upper semi—continuous.

(2) f~Y(K) is closed in X whenever K is closed in Y.

(3) fI=U(G) is open in X whenever G is open in Y.

(4) f~Y(B)C f~Y(B) forevery BY.

(5) f~! is a closed multifunction on f(X) where f~}(y) = {z € X :
y € f(=)}-

Proof. (1) & (2) [9].

(2) = (4) : Let BC Y. Then f~Y(B) C f~*(B). By (2), f1(B) is
closed in X. Hence f~1(B) C f~}(B).

(4) = (2) : Let K be closed in Y. Then, by (4), f~1(K) C f~1(K) =
fY(K). Hence f71(K) is closed in X.

(2) < (3) : It is clear from theorem 1.1. (2).

(2) = (5) : i Fisclosed in f(X), then F = f(X)NK for some closed
subset K of Y. Since f~!(F) = f~!(K) and f~(K) is closed in X by
(2), f7(F) is closed in X.

(5) = (2) : H K is closed in Y, then K N f(X) is closed in f(X).
Since f~Y(K) = f~YK N f(X)) and f~1(K N f(X)) is closed in X by
(5), f7Y(K) is closed in X.

REMARKS. Suppose that X and Y are topological spaces and f is a
function from X into Y. Then f is continuous if and only if f(A) C f(A)
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for all A C X [8]. The following examples show that this is not true if f
is an upper semi—continuous multifunction.

EXAMPLE 2.5.

(1) Let X =Y = [0, 1] be the real unit interval with the usual topology
and define f by : f(z) = (1/2)z if 0 < z < 1/2, f(1/2) = [1/4, 3/4]
and f(z) = (1/2)(z +1) if 1/2 <z < 1. K A = [1/4, 1/2), then
f(A) = (1/8, 3/4] and f(A4) = [1/8, 1/4], i.e., f(4) 2 F(4).

(2) Let X =Y = [0,1] and define f by: f(z) = [0,z] for 0 <z <1
and f(1) = {0}. Then f(A) C f(A) for all A C X. But f is not upper
semi—continuous because f~([1/2, 1]) = [1/2, 1).

Compactness or connectedness is not in general preserved by upper
semi—continuous multifunctions [9].

THEOREM 2.6 [9]. Let f: X — Y be upper semi—continuous. If f(z)
is connected for each ¢ € X and if C C X is connected, then f(C) is
connected.

THEOREM 2.7. [9]. Let f : X — Y be an upper semi—continuous
multifunction. If f has compact point images, then f(K) is compact for
any compact subset K of X.

PROPOSITION 2.8. Let f: X — Y be a function. Define f: X »Y
via f(z) = {f(z)}. Then f is upper semi—continuous if and only if f is
continuous.

Proof. Let ACY. Then {z € X : f(z)N A # 0} = f~*(A). Hence,

by lemma 2.4., f is upper semi—continuous if and only if f is continuous.

THEOREM 2.9. [10]. K X is a topological space and the multifunction
f:X — X has a closed graph, then {z € X : z € f(z)} is closed in X.

THEOREM 2.10. [4]. If f : X — Y is an upper semi—continuous
multifunction with closed point images and Y a regular space, then f
has a closed graph.
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COROLLARY 2.11. If X is a regular space and the upper semi-conti-
nuous multifunction f : X — X has closed point images, then {z € X :
z € f(z)} is closed in X.

THEOREM 2.12. Let {Y, : a € A} be any family of topological spaces,
and f : X — N,Y, a multifunction. Then f is upper semi-continuous
if and only if Bg o f is upper semi—continuous for each B € A where
Ps(y) = {ps(y)} for each y € 1, Y,.

Proof. Let f be upper semi-continuous ; since p is upper semi-
continuous, so also is Pg o f.

Conversely, assume each Psz o f upper semi—continuous. If W is an
open set containing f(z), then (Bg o f)(z) C Bg(W) and pg(W) is open
in Y. Since pg o f is upper semi-continuous, there exists Ug such that
z € Ug, (Pgo f)(Up) C Pg(W), Ug is open in X. But po(W) =Y for

n

all but at most finitely many «, say a;,...,a,. Put U = ﬂ Uys;. Then
=1

f(U) C W and hence f is upper semi-continuous at z € X.

3. Topological MV—semigroup

DEFINITION 3.1. A topological MV —semigroup is a nonempty Haus-
dorff space S togethere with an upper semi—continuous multiplication
S xS — S (whose valued at (z,y) will be denoted by zy) satisfy-
ing (zy)z = z(yz) for all z,y,2 € S. AB is defined to be the union
U{ab:a € A, be B} for A,B CS.

The condition that the multiplication on S is upper semi-continuous
1s equivalent to the condition that for each z,y € S and each open set
W in § with zy C W, there exist open sets U and V in § such that
zelU,yeVand UV CW.

EXAMPLE 3.2.

(1) Any space X is a topological MV —semigroup under the multipli-
cation zy = {z,y} for each z,y € X

(2) Let X = [0,1] be the real unit closed interval with the usual topol-
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ogy. Then X is a topological MV —semigroup under the multiplication

o { (Oamm{l‘,y}] 1f:1:7é0 a,ndy?é()
. {0} ifz=0o0ry=0

(3) Let X be as in (2). Then X is a topological MV -semigroup under
the multiplication

(0, the usual product ¢ andy] ifz#0andy #0
Ty =
v {0} ifz=00ry=0

REMARKS. It will be observed that no differentiation is made between
z and {z} if it is not convenient to do so and will not readily lead to
confusion.

PROPOSITION 3.3. Let A and B be subsets of a topological MV -
semigroup S.

(a) If the multiplication of S has compact point images, then AB is
compact for compact subsets A,B C S.

(b) If the multiplication of S has connected point images, then AB is
connected for connected subsets A,B C S.

THEOREM 3.4. Let A and B be compact subsets of a topological MV -
semigroup S. If AB is contained in an open subset W of S, then there
exist open subsets U and V of S suchthat AC U, BCV andUV C W.

Proof. Since AB C W, ab C W for each a € A and each b € B, there
exist open sets M and N in S such that a € M,b€ N,and MN C W.
Since B is compact, for a fixed a € A, there are open sets M;,--- , M, in
S containing a and corresponding open sets Ny,--- , N, in S such that
BC@Q=N,U---UN,,.Let P=M;N---NM,. Then P is open in S,
Qisopenin S,a € P, B C @, and PQ C W. Since A is compact, there
exist open sets P;,--- , Py, in S and corresponding @Q1,--- ,@m open in
Ssuchthat BCV=Q1nN---NQrnand ACU =P U---UP,. It
follows that U and V are the required open sets.

COROLLARY 3.5. Let A be a compact subset of a topological MV -
semigroup and let z € S. If Az[rA] is contained in an open subset V
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of S, there exsits an open subset U of S such that z € U and AU C
VIUA CV].

Notations. For subsets A and B of a topological MV-semigroup S,
it i1s convenient to wirte

AUB={zeS:4zc B}, ACVB={zeS:AzNB+0}
BA-U ={zeS:z2AC B}, BACY ={zeS:2ANB #9}.

In the case where S is a multi-mob, various forms of the proof of the
following theorem have been given in {2].

THEOREM 3.6. Let A and B be subsets of a topological MV — semi-
group S. Then

(1) If A is compact and if B is open, then A= B is open.

(2) If A is compact and if B is closed, then A" B is closed.

(3) If A is compact, then {z € S : B C Az} is closed.

Proof. (1) If z € A7 B, then Az C B. Since A is compact and since
B is open, by corollary 3.5., there exists an open subset V of S such that
£ €V and AV C B, ie., V C AI-UB. Therefore AI"1B is open in S.
(2) and (3) may be proved by observing that Al=(§—B)=S—AC-VB
and {z € S: B C Az} = N{A("Yb: b € B} respectively.

DEFINITION 3.7. Let S be a topological MV -semigroup.

An element f of S is called a multi-idempotent if and only if f € f2.

An element u of S is called a left unit if and only if z € ux for each z
inS.

An element S of S is called a left scalar if and only if sz is a singleton
for each z in S.

An element u of S is called a left scalar unit if and only if u is a left
scalar and a left unit, i.e., uz = z for each element = in S.

In each definition, above, right and two-sided elements are defined
analogously.

THEOREM 3.8. If a topological MV -semigroup S is regular space
and zy is closed in S for every z,y € S, then the set E of all multi-
idempotents of S is closed.
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Proof. Suppose there is an element z in E — E, i.e., z € E and z ¢ z?.
Since S is regular, there exist open subsets U and V of S such that
zeU 2z2€V,and UNV = 0. Since z2 C V, by theorem 3.4., there
exist open subsets V; and V5 of S such that z € VNV, and Vo C V.
Therefore ViVoNU =0. Let W =V;NVoNU. Then z € W = W and
W2NW = 0. Since z € E, WN E # §, i.e., there is an element e in W
such that e € . Then e € W N W2 # @, which is a contradiction.

4. Subsemigroups and ideals

Convention. Throughout this section, S with denote a topological
MYV -semigroup and E will denote the set of all multi-idempotents of S.

DEFINITION 4.1. A nonempty subset A of S is called a subsemigroup
of S if and only if A2 C A.

The intersection of a family of subsemigroups of S is a subsemigroup
of S if it is nonempty.

DEFINITION 4.2. A nonempty subset A of S is said to be a left (right,
two—sided) ideal of S if and only if SA C A(AS C A, ASUSA C A).

Note that the union and the intersection (if it is nonempty) of any
collection of left [right, two—sided] ideals of S is again a left [right, two—
sided] ideal of S.

LEMMA 4.3. Let A C S and let {Ax : A € A} be a family of subsets
of S. Then A(U{Ax: A€ A}) =U{44\: A€ A}, A(N{Ar: A €A} C
ﬂ{AA)‘ T A€ A}.

PROPOSITION 4.4. (AB)C = A(BC) for each A,B,C C S.

Proof. Let A, B and C be subsets of S. If = € (AB)C, then there
is an element y in AB and an element ¢ in C such that z € yc. Since
y € AB, there is an element a in A and an element b in B such that
y € ab. Then z € yc C (ab)c = a(be) C A(BC), and (AB)C C A(BC).
Similarly, (AB)C C A(BC) holds.
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THEOREM 4.5. If S is compact and zy is compact for each z,y € S,
then each left [right, two—sided] ideal of S contains a minimal left [right,
two-sided] ideal which is closed.

Proof. Let L be a left ideal of S and let £ be the collection of all
closed left ideals of S which are contained in L. If a € L, then Sa C
SL C L and S(Sa) = (5S5)a C Sa. It follows that Sa is a left ideal of S
contained in L. Since S is compact, Sa is compact and hence closed in S.
And it belongs to £. Therefore, £ is nonempty. L is partially ordered
by set inclusion. Let £y be a chain in £. Since Ly is a collection of
closed subsets of the compact space S with finite intersection property,
NLy # §. By the proceding note, NLy € L. Therefore every chain in £
is lower bounded. By Zorn’s lemma, there is a minimal element Lo in L.
Now let L, be a left ideal of S which is contained in Ly and let b € L;.
Then Sb is a closed left ideal of S and Sb C Ly C Lo. Hence Ly = Ly,
i.e., Ly is a minimal left ideal of S and is closed. Similar arguments hold
for right and two sided ideals.

THEOREM 4.6. The minimal ideal of S is unique.

Proof. Let K; and K3 be minimal ideals of S. Then K; N K5 is an
ideal of S since § # K; K, C K; N K,. Since K; and K, are minimal,
Kl =Kan2 =K2.

Throughout, K will denote the minimal ideal of S.

THEOREM 4.7. Let M (M Rg) denote the collection of all minimal left
[right] ideals of S.
(1) My # 0 (Mg #0), then S has the minimal ideal K.
(2) Ly, Ly € My and Ly N L, # @ imply L, = L,.
Rl, R2 € MR and R] N R2 7é @ mely R] = R2.
(3) UM C K and UMp C K.

Proof. (1) Let L € My, and let I be an ideal of S, then S(IL) =
(SI)L C IL and hence IL is a left ideal of S. Since IL C SL C L € My,
IL = L. Therefore, L = IL C IS C I, i.e., all minimal left ideals are
contained in each ideal of S. Hence § 2 UM Cc N{I: ISUSI C I} =K.
(2) and (3) are clear.
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REMARKS. Suppose S is a topological semigroup. Then the mini-
mal ideal of S is the union of all minimal left [right] ideals of S. The
following examples show that these are not true if S is a topological
MYV —semigroup.

EXAMPLE 4.8. (1) Let S = [a,b]. Then S is a topological MV -
semigroup under the multiplication zy = [¢,b) ifa £ y < b and zy =
la,b] if y = b. In S, [a,b) is the only minimal left ideal of S. On the
other hand, the only minimal right ideal of S is S itself. Therefore
UMy = [a,b) g K=2S.

By routine arguements, one may obtain

PROPOSITION 4.9. Let L(R,K) be a minimal left [right, two—sided]
ideal of S. Then L = Sa(R = aS, K = SaS| foreacha€ L[a € R, a €
K]

THEOREM 4.10. If S is connected, zy is connected for each z,y in S
and S has a left unit, then each ideal of S is connected.

Proof. Let J be an ideal of S. Since S has a left unit, z € Sz and Sz
is connected for each z € S. Since J =U{z:2 € J} CU{Sz :z € J}
and since Sz C SJ C Jforeachz € J, J =U{Sz:z € J}. Let yo € J.
Then yoS C J and hence J = (U{Sz : = € J})U yoS. Since yS is
connected and since Yoz C Sz Ny, S for each z € J, J is connected.

DEFINITION 4.11. For each subset A of S, Jo(A) will denote the union
of all ideals of S contained in A. If A contains no ideals of S, then
Jo(A) = 0. If Jo(A) is nonempty, then it is clearly the unique largest
ideal of S contained in A. Ro(A) and Lo(A) are defined analogously.

THEOREM 4.12. Let A be a subset of S. If A is open and if S is
compact, then Jo(A), Lo(A), and Ro(A) are open.

Proof. I ¢ € Jo(A), then Sz C SJp(4) C Jo(A) C A. Since S
is compact and A 1s open, by using theorem 3.4., there are an open
subset U of S such that z € U and SU C A. Again, since zS C A,
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there is an open subset V of S such that z € V and VS C A. Now,
since SzS C A, there is an open subset W of S such that £ € W and
SWS C A Let M =UNVNWNA. Then M is an open subset
of S containing z. By lemma 4.3., M UMSUSM U SMS is an ideal
of S. Since MUMSUSMUSMS Cc AUVSUSUUSWS C A,
MUMSUSMUSMS C Jo(A). Therefore, Jo(A) is open. Similar
arguments hold for Lo(A) and Ro(A).

THEOREM 4.13. Suppose S is compact. Then each proper ideal of S
is contained in a maximal proper ideal of S and each maximal proper
ideal is open.

Proof. Let J be a proper ideal of S and let a € S — J. Since S
is compact and S — {a} is open, by theorem 4.12., Jo(S — {a}) is a
proper open ideal of S containing J. Therefore it is sufficient to consider
only open proper ideals. Let B be the set of all proper open ideals of
S containing J. Then B is nonempty. B is partially ordered by set
inclusion. Since Jo(S — {a}) € B, by the Hausdorff Maximal Principle,
there exists a maximal chain C in B containing Jo(S—{a}). Let M = UC.
Then M is a maximal open ideal of S containing J. If M is not proper,
1.e., M = S, then, C is an open cover of 5. Since S is compact, there
exist My,..., M, € C such that M; C My C --- C M, and S C U{M; :
7 =1,...,n}, and hence S = M, which contradicts the fact that M, is
a proper ideal of S. Therefore M is a maximal proper open ideal of S
containing J.
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