ON CERTAIN CLASS OF MEROMORPHIC FUNCTIONS WITH POSITIVE COEFFICIENTS

Nak Eun Cho and Sang Hun Lee

1. Introduction

Let \sum_{p} denote the class of functions of the form

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{n=p}^{\infty} a_{n} z^{n}, \quad\left(a_{n} \geq 0 ; p \in N=\{1,2, \ldots\}\right) \tag{1.1}
\end{equation*}
$$

which are analytic and univalent in $D=\{z: 0<|z|<1\}$ with a simple pole at the origin with residue 1 there.

A function $f(z)$ in \sum_{p} is said to be a member of $\sum_{p}(A, B)$ if it satisfies

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}+1\right|<\left|A+B \frac{z f^{\prime}(z)}{f(z)}\right| \tag{1.2}
\end{equation*}
$$

for $-1 \leq A<B \leq 1,0<B \leq 1$ and $z \in D$.
In particular, the class $\sum_{1}(-1,1)$ was studied by Padmanabhan [5] and the class $\sum_{1}(A, B)$ when $A=\beta(2 \alpha-I)$ and $B=\beta(0 \leq \alpha<1$ and $0<\beta \leq 1$) were studied by Mogra, reddy, and Juneja [4].

The aim of the present paper is to investigate coefficient estimates, distortion properties and radius of convexity for the class $\sum_{p}(A, B)$. Furthermore, it is shown that the class $\sum_{p}(A, B)$ is closed under convex linear combinations, convolutions and integral transforms.

2. Coefficient estimates

Received June 9, 1989

Theorem 1. Let $f(z)=\frac{1}{z}+\sum_{n=p}^{\infty} a_{n} z^{n}, a_{n} \geq 0$, be regular in D. Then $f(z)$ is in the class $\sum_{p}(A, B)$ if and only if

$$
\begin{equation*}
\sum_{n=p}^{\infty}\{(n+1)+(A+B n)\} a_{n} \leq B-A \tag{2.1}
\end{equation*}
$$

for $-1 \leq A<B \leq 1$ and $0<B \leq 1$.
Proof. Suppose that $f(z)=\frac{1}{z}+\sum_{n=p}^{\infty} a_{n} z^{n}, a_{n} \geq 0$, is in $\sum_{p}(A, B)$. Then

$$
\left|\frac{\frac{z f^{\prime}(z)}{f(z)}+1}{A+B \frac{z f^{\prime}(z)}{f(z)}}\right|=\left|\frac{\sum_{n=p}^{\infty}(n+1) a_{n} z^{n}}{(B-A) \frac{1}{z}-\sum_{n=p}^{\infty}(A+B n) a_{n} z^{n}}\right|<1
$$

for all $z \in D$. Since $\operatorname{Re}(z) \leq|z|$ for all z, we have

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\sum_{n=p}^{\infty}(n+1) a_{n} z^{n}}{(B-A) \frac{1}{z}-\sum_{n=p}^{\infty}(A+B n) a_{n} z^{n}}\right\}<1,(z \in D) \tag{2.2}
\end{equation*}
$$

Now choose the values of z on real axis so that $\frac{z f^{\prime}(z)}{f(z)}$ is real. Upon clearing the denominator in (2.2) and letting $z \rightarrow 1$ through positive values, we obtain

$$
\sum_{n=p}^{\infty}\{(n+1)+(A+B n)\} a_{n} \leq B-A
$$

Conversely, suppose that (2.1) holds for all admissible values of A and B. Then we have

$$
\begin{aligned}
H\left(f, f^{\prime}\right) & =\left|z f^{\prime}(z)+f(z)\right|-\left|A f(z)+B z f^{\prime}(z)\right| \\
& =\left|\sum_{n=p}^{\infty}(n+1) a_{n} z^{n}\right|-\left|(B-A) \frac{1}{z}-\sum_{n=p}^{\infty}(A+B n) a_{n} z^{n}\right|
\end{aligned}
$$

or

$$
\begin{aligned}
& |z| H\left(f, f^{\prime}\right) \\
\leq & \sum_{n=p}^{\infty}(n+1) a_{n}|z|^{n+1}-(B-A)+\sum_{n=p}^{\infty}(A+B n) a_{n}|z|^{n+1} \\
= & \sum_{n=p}^{\infty}\{(n+1)+(A+B n)\} a_{n}|z|^{n+1}-(B-A) .
\end{aligned}
$$

Since the above inequality holds for all $r=|z|, 0<r<1$, letting $r \rightarrow 1$, we have

$$
\sum_{n=p}^{\infty}\{(n+1)+(A+B n)\} a_{n} \leq B-A
$$

by (2.1). Hence it follows that $f(z)$ is in the class $\sum_{p}(A, B)$.
Corollary. If the function $f(z)=\frac{1}{z}+\sum_{n=p}^{\infty} a_{n} z^{n}$ is in the class $\sum_{p}(A, B)$, then we have

$$
\begin{equation*}
a_{n} \leq \frac{B-A}{(n+1)+(A+B n)}, \quad(n \geq p) \tag{2.3}
\end{equation*}
$$

The result is sharp for the function

$$
\begin{equation*}
f_{n}(z)=\frac{1}{z}+\frac{B-A}{(n+1)+(A+B n)} z^{n}, \quad(n \geq p) . \tag{2.4}
\end{equation*}
$$

3. Distortion properties and radius of convexity

Theorem 2. If the function $f(z) \frac{1}{z}+\sum_{n=p}^{\infty} a_{n} z^{n}$ is in the class $\sum_{p}(A, B)$, then we have

$$
\frac{1}{|z|}-\frac{B-A}{(p+1)+A+B p}|z|^{p} \leq|f(z)| \leq \frac{1}{|z|}+\frac{B-A}{(p+1)+A+B p}|z|^{p} .
$$

The result is sharp.
Proof. Suppose that $f(z)$ is in $\sum_{p}(A, B)$. By Theorem 1, we have

$$
\sum_{n=p}^{\infty} a_{n} \leq \frac{B-A}{(p+1)+A+B p}
$$

Thus

$$
\begin{aligned}
|f(z)| & \leq \frac{1}{|z|}+|z|^{p} \sum_{n=p}^{\infty} a_{n} \\
& \leq \frac{1}{|z|}+\frac{B-A}{(p+1)+A+B p}|z|^{p}
\end{aligned}
$$

Also,

$$
\begin{aligned}
|f(z)| & \geq \frac{1}{|z|}-|z|^{p} \sum_{n=p}^{\infty} a_{n} \\
& \geq \frac{1}{|z|}-\frac{B-A}{(p+1)+A+B p}|z|^{p}
\end{aligned}
$$

The result is sharp for the function

$$
f(z)=\frac{1}{z}+\frac{B-A}{(p+1)+A+B p} z^{p} .
$$

Theorem 3. If the function $f(z)=\frac{1}{z}+\sum_{n=p}^{\infty} a_{n} z^{n}$ is in the class $\sum_{p}(A, B)$, then $f(z)$ is meromorphically convex of order $\delta(0 \leq \delta<1)$ in $|z|<r=r(A, B, \delta)$, where

$$
r(A, B, \delta)=\inf _{n \geq p}\left\{\frac{(1-\delta)(n+1)+(A+B n)}{(B-A) n(n+2-\delta)}\right\}^{\frac{1}{n+1}}
$$

The result is sharp.
Proof. Let $f(z)$ is in $\sum_{p}^{*}(A, B)$. Then, by Theorem 1, we have

$$
\begin{equation*}
\sum_{n=p}^{\infty} \frac{(n+1)+(A+B n)}{B-A} a_{n} \leq 1 \tag{3.1}
\end{equation*}
$$

It is sufficient to show that

$$
\left|2+\frac{2 f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1-\delta
$$

for $|z| \leq r(A, B, \delta)$, where $r(A, B, \delta)$ is as specified in the statement of the theorem. Then

$$
\begin{aligned}
\left|2+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| & =\left|\frac{\sum_{n=p}^{\infty} n(n+1) a_{n} z^{n-1}}{-\frac{1}{z^{2}}-\sum_{n=p}^{\infty} n a_{n} z^{n-1}}\right| \\
& \leq \frac{\sum_{n=p}^{\infty} n(n+1) a_{n}|z|^{n+1}}{1-\sum_{n=p}^{\infty} n a_{n}|z|^{n+1}}
\end{aligned}
$$

This will be bounded by $1-\delta$ if

$$
\begin{equation*}
\sum_{n=p}^{\infty} \frac{n(n+2-\delta)}{1-\delta} a_{n}|z|^{n+1} \leq 1 \tag{3.2}
\end{equation*}
$$

By (3.1), it follows that (3.2) is true if

$$
\frac{n(n+2-\delta)}{1-\delta}|z|^{n+1} \leq \frac{(n+1)+(A+B n)}{B-A}, \quad(n \geq p)
$$

or

$$
\begin{equation*}
|z| \leq\left\{\frac{(1-\delta)\{(n+1)+(A+B n)\}}{(B-A) n(n+2-\delta)}\right\}^{\frac{1}{n+1}}, \quad(n \geq p) \tag{3.3}
\end{equation*}
$$

Setting $|z|=r(A, B, \delta)$ in (3.3), the result follows. The result is sharp for the function

$$
\begin{equation*}
f_{n}(z)=\frac{1}{z}+\frac{B-A}{(n+1)+(A+B n)} z^{n},(n \geq p) \tag{3.4}
\end{equation*}
$$

REMARK. A function $f(z) \in \sum_{p}$ is said to be meromorphically convex of order $\delta(0 \leq \delta<1)$ if

$$
\operatorname{Re}\left\{-\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}>\delta, \quad(z \in D)
$$

4. Convex linear combinations and convolution properties

Theorem 4. Let $f_{0}(z)=\frac{1}{z}$ and

$$
f_{n}(z)=\frac{1}{z}+\frac{B-A}{(n+1)+(A+B n)} z^{n}, \quad(n \geq p) .
$$

Then $f(z)=\frac{1}{z}+\sum_{n=p}^{\infty} a_{n} z^{n}$ is in the class $\sum_{p}(A, B)$ if and only if it can be expressed in the form

$$
f(z)=\lambda_{0} f_{0}(z)+\sum_{n=p}^{\infty} \lambda_{n} f_{n}(z),
$$

where $\lambda_{0} \geq 0, \lambda_{n} \geq 0(n \geq p)$ and $\lambda_{0}+\sum_{n=p}^{\infty} \lambda_{n}=1$.
Proof. Let $f(z)=\lambda_{0} f_{0}(z)+\sum_{n=p}^{\infty} \lambda_{n} f_{n}(z)$ with $\lambda_{0} \geq 0, \lambda_{n} \geq 0(n \geq p)$ and $\lambda_{0}+\sum_{n=p}^{\infty} \lambda_{n}=1$. Then

$$
\begin{aligned}
f(z) & =\lambda_{0} f_{0}(z)+\sum_{n=p}^{\infty} \lambda_{n} f_{n}(z) \\
& =\frac{1}{z}+\sum_{n=p}^{\infty} \lambda_{n} \frac{B-A}{(n+1)+(A+B n)} z^{n} .
\end{aligned}
$$

Since

$$
\begin{aligned}
\sum_{n=p}^{\infty} \frac{(n+1)+(A+B n)}{B-A} \lambda_{n} \frac{B-A}{(n+1)+(A+B n)} & =\sum_{n=p}^{\infty} \lambda_{n} \\
& =1-\lambda_{0} \leq 1,
\end{aligned}
$$

by Theorem $1, f(z)$ is in the class $\sum_{p}(A, B)$.
Conversely, suppose that the function $f(z)$ is in the class $\sum_{p}(A, B)$. Since

$$
a_{n} \leq \frac{B-A}{(n+1)+(A+B n)}, \quad(n \geq p)
$$

setting

$$
\lambda_{n}=\frac{(n+1)+(A+B n)}{B-A} a_{n}, \quad(n \geq p),
$$

and

$$
\lambda_{0}=1-\sum_{n=p}^{\infty} \lambda_{n},
$$

it follows that $f(z)=\lambda_{0} f_{0}(z)+\sum_{n=p}^{\infty} \lambda_{n} f_{n}(z)$. This completes the proof of the theorem.

For the functions $f(z)=\frac{1}{z}+\sum_{n=p}^{\infty} a_{n} z^{n}$ and $g(z)=\frac{1}{z}+\sum_{n=p}^{\infty} b_{n} z^{n}$ belonging to \sum_{p}, we denote by $(f * g)(z)$ the convolution of $f(z)$ and $g(z)$, or

$$
(f * g)(z)=\frac{1}{z}+\sum_{n=p}^{\infty} a_{n} b_{n} z^{n} .
$$

Theorem 5. If the functions $f(z)=\frac{1}{z}+\sum_{n=p}^{\infty} a_{n} z^{n}$ and $g(z)=\frac{1}{z}+$ $\sum_{n=p}^{\infty} b_{n} z^{n}$ are in the class $\sum_{p}(A, B)$, then $(f * g)(z)=\frac{1}{z}+\sum_{n=p}^{\infty} a_{n} b_{n} z^{n}$ is in the class $\sum_{p}(A, B)$.

Proof. Suppose that $f(z)$ and $g(z)$ are in $\sum_{p}(A, B)$. By Theorem 1, we have

$$
\sum_{n=p}^{\infty} \frac{(n+1)+(A+B n)}{B-A} a_{n} \leq 1
$$

and

$$
\sum_{n=p}^{\infty} \frac{(n+1)+(A+B n)}{B-A} b_{n} \leq 1
$$

Since $f(z)$ and $g(z)$ are regular in D, so is $(f * g)(z)$. Furthermore,

$$
\begin{aligned}
& \sum_{n=p}^{\infty} \frac{(n+1)+(A+B n)}{B-A} a_{n} b_{n} \\
\leq & \sum_{n=p}^{\infty}\left\{\frac{(n+1)+(A+B n)}{B-A}\right\}^{2} a_{n} b_{n} \\
\leq & {\left[\sum_{n=p}^{\infty}\left\{\frac{(n+1)+(A+B n)}{B-A}\right\} a_{n}\right]\left[\sum_{n=p}^{\infty}\left\{\frac{(n+1)+(A+B n)}{B-A}\right\} b_{n}\right] } \\
\leq & 1 .
\end{aligned}
$$

Hence by Theorem $1,(f * g)(z)$ is in the class $\sum_{p}(A, B)$.

5. Integral transforms

In this sectionwe consider integral transforms of functions in $\sum_{p}(A, B)$ of the type considered by Bajpai [1] and Goel and Sohi [3].

Theorem 6. If the function $f(z)=\frac{1}{z}+\sum_{n=p}^{\infty} a_{n} z^{n}$ is in the class $\sum_{p}(A, B)$, then the integral transforms

$$
F_{c}(z)=c \int_{0}^{1} u^{c} f(u z) d u, \quad(0<c<\infty)
$$

are in the class $\sum_{p}(A, B)$.

Proof. Suppose that $f(z)=\frac{1}{z}+\sum_{n=p}^{\infty} a_{n} z^{n}$ is in $\sum_{p}(A, B)$. Then we have

$$
F_{c}(z)=c \int_{0}^{1} u^{c} f(u z) d u=\frac{1}{z}+\sum_{n=p}^{\infty} \frac{c a_{n}}{n+c+1} z^{n}
$$

Since

$$
\begin{aligned}
\sum_{n=p}^{\infty} \frac{(n+1)+(A+B n)}{B-A} \frac{c a_{n}}{n+c+1} & \leq \sum_{n=p}^{\infty} \frac{(n+1)+(A+B n)}{B-A} a_{n} \\
& \leq 1
\end{aligned}
$$

by Theorem 1 , it follows that $F_{c}(z)$ is in the class $\sum_{p}(A, B)$.

References

1. S.K. Bajpai, A note on a class of meromorphic univalent functions, RevRoumanie Math. Pures Appl., 22(1977), 259-297.
2. V.P. Gupta and I. Ahmad, Certain classes of functions univalent in the unit disk(II), Bull. Inst. Math. Acad. Sinica, 7(1979), 7-13.
3. R.M. Goel and N.S. Sohi, On a class of meromorphic functions, Glasnik Matematicki, 17(1981), 19-28.
4. M.L. Mogra, T.R. Reddy and O.P. Juneja, Meromorphic univalent functions with positive coefficients, Bull. Austral. Math. Soc., 32(1985), 161-176.
5. K.S. Padmanabhan, On certain classes of starlike functions in the unit disk, J. Indian Math. Soc., 32(1968), 89-103.
6. Ch. Pommerenke, On meromorphic starlike functions, Pacific J. Math., 13(1963), 221-235.
7. M.S. Robertson, Convolution of schlicht functions, Proc. Amer. Math. Soc., 13(1962), 585-589.
8. H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51(1975), 109-116.

Department of Applied Mathematics
National Fisheries University of Pusan
Pusan 608-737, Korea
Department of Mathematics
Kyungpook National University
Taegu 702-701, Korea

