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ON NONLINEAR FILTERING PROBLEM FOR AN
OBLIQUE REFLECTING BROWNIAN MOTION*

Jar Heur Kiv, Ki Sik Ha anxo Done Gun Park

1. Introduction

There are two different approaches to the nonlinear filtering probl-
em. The first approach is the innovations approach combined with
representation theorems for continuous and discontinuous martingales
as stochastic integral (see Fujisaki-Kallianpur-Kunita [1]). The second
approach is focussed on the unnormalized conditional density equation,
which is a stochastic partial differential equation so called Duncan-
Mortensen-Zakai (for short, DMZ) equation (see Zakai [6]).

The aim of this paper is to derive DMZ equation corresponding to
a Brownian motion with oblique reflecting boundary condition on an
orthant,

In Section 2 we will formulate the problem and fix notations. In
Section 3 we will give the proofs of our results. For general introd-
uction to the nonlinear filtering problem theory see [3], [4] and their
references.

2. Formulation of the problem

The problem we dicuss is as follows. Let us consider a probability
space (Q, &, P) with a reference family (&,),so. Let D={z=(§, z,)
ER*é€ R, 1,eR" and 2,>0}, D={z& R"|z,=0} and D=DU
oD. Consider a process X,= (X,!, -+, X,*), as the signal process, defined
by

XII.:Ii+Bti+J;ﬁi(Xs)d¢sy i=1,2,--,n—1,
X »=z"+B*+¢,
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where B,= (B}, -+, B,*) is an n—dimensional &,—adapted Brownian mo-
tion, X,=(X,, X,*) and ¢, is the local time of X, at 0, ie., @, is
continuous F,~adapted process satisfying ¢y=0 and

@2 6= Ton (X) d=| 1 (") d,

for all t=[0, o0) and B; i=1,2,---,z—1, are bounded measurable
function on 8D with bounded derivative of first order. Here I, is the
indicate function of the set A. This process X, is called an oblique
reflecting Brownian motion on the orthant D. This process is one of a
few examples of processes corresponding to non-symmetric Dirichlet
spaces (see J.H. Kim [2]). And consider a d-dimensional process
Y,, as the observation process of X,, defined by

2.3) dY,=h(X,)dt-+-dW,

where W, is a d—dimensional Brownian motion independent with B,
and & : R*—R? is bounded measurable. Let @, be the o—field generated
by the observation {Y,|0<s<¢} up to time £. The goal of nonlinear
filtering problem theory is to study the conditional expection

7, (f) =E[f (X)) |4.]
taken with respect to the probability P, for suitable real valued fun-
ction f. This is because z,(f) is the best estimate, in quadratic mean
sense, of f(X,) given the observations @, This estimate depends, in
general, nonlinearly on the observations, and it is called the nonlinear
Silter.

3. DMZ equation for an oblique reflecting Brownian motion

In this section, we derive DMZ equation corresponding to the filter-
ing problem by the signal process X, defined by (2.1) and the obser-
vation process Y, defined by (2. 3).

Lemma 3.1.  The differential operator (L, D(L)) corresponding to
the process defined by (2.1) is given by

x 52
L=—%—Z%(in the sense of Schwartz distribution),
i=1 5
3.1

D (L) = (weCe (D) L2+ T, fi-2%=0 on 9D}

z

Proof. By Ito’s formula, for any f&Cy2(D), we have
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FX)—fx) =5 [ 2L xpapi++ 3 [ 2L x)as

xll

(s of af
S CIC SRCAe SEI RS j L) as.
Thus, for any f&Cs2(D) such that
Lof— Bf +Z}3, af -=0 on 9D,
we have
T § _ 32f
Lf(x) —1}3}  ELA(X) —f(Xo) | Xp=z]= ; > (2).

The proof is complete.

For fe®@ (L), define

(3.2 o) =m(Ha
where
(3.3) a=exp(| m WY, — L[ |z, m 1%s).

Using Lemma 3.1 and the same way as Theorem B and C in [3],
we have the following theorem.

Tueorem 3.2. Let (L, D(L)) be the differential operator defined
by (8.1). Then p, defined by (3.2) is a solution of the following sto-
chastic partial differential equation which is called a Zakai equation.

0 () =0+ p (L) ds+ | p.(hf)aY..

Now we define (¢, ) on [0,00) XD by
(3.9 0N =] f@atx)dz

a(¢, z) is called an unnormalized conditional density of X, given @, on
D. Since {s]X,€06D} has Lebesgue measure zero, unnormalized cond-
itional density on 2D is zero.

Tueorem 3.3. The unnormalized conditional density o(t, x) defined
by (3.4) is a solution of the following stochastic partial differential
equation which is called a DMZ equation:

do(t, ) =Lo(t, x)dt+ho(t, x)dY, on D

(3.5) Ly (¢, x) =0 on 0D.

Proof. For any f€D(L), by Theorem 3.2,
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[ s@e Daz=a(H)+[o.Lds+[ o, p)ay,

D 0 0
—ao(f) +j:jD Lf(2)a(s, 2) dxds+j‘J (kF) (2) 6 (s, 2)dzd Y,
=ao(f) +Jtl 5 > 2 f(a:) o(s, x) d.m's—l—j j (fR) (x)a(s, z)dzdY,
—¢o(F) _;.j [ 5 af(x) 90 (s, z) ;. +Z A0

211 D Ox; ox; ap  Ox;

6 (6 0)eide )l +[f (B @ats 2)dzay,

=oo(H)+[)| ~ 55 ML 26D o [ SED o, (6, 00) a1
+II (fh) (x)o(s, z)dxd Y,

=N+ | 35 f@ LoD dat [ HED o, ¢, 0)a¢
+5[ r&0 -@‘Z-(La(i’—“)le,-ds]ds+ Nl Df(x) h@)o (s ) ded¥,

=aN+[|[ f@ Lot det| FED o6, ¢ 0)ae

+_[an ¢ 0 -a—o'—(—sla-i%)&dfilds-f-ﬁjpf ()h(2)o (s, z)dzd Y,

where ¢;=(0, ---, 0, i, 0, ---,0) is n—dimensional unit vector. Hence

[ f@dotade=[ f@Lo@aazt| YED 4, ¢ 0))a

D D aD z,
+[ F@Dr@ o Davde+| 5& 0 22EED) g
D aD ZLn
From this, we have do(¢, 2) =Lo (¢, z) +h(z)o (¢, £)d Y, and
(3.6) oG, (¢ 0)=22E50) -
By (3.6) and the same argument as above, we have
Tae2EE0) o

Thus. Ly (¢, z) =0 on dD. The proof is complete.

The following remark is due to J.H. Kim [2, Section 6]. This
result will be used to establish the uniqueness of solution of stochastic
partial differential equation (3.5).

Remark 3.4. We define the Sobolev space
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H(D) = {ue L*(D) I%ELZ(D), i=1,2, -, n}.

Equipped with the norm

lul mrpy = lulzay + ezl L2
where
_ (]| Ou )%
lulle(D)*(;‘:"‘x ox; lL2y/ °
Let a(.,.) be the bilinear form corresponding to L defined by (3.1),

i e.,

a(u, v) = (—2Lu, v) L2a», %, vEH(D).
Then we have, for u,ve H!(D),
awoy=3[ 4 T pie)oce, 002450 ge

p Ox; 0x; T0&
and this is a nonsymmetric Dirichlet form on D. For some ay>0 and
any a>ay, there exists a constant K=K (a) >0 such that

a(u, v) +a(u, v) L2y = Ky w30
for every uc H1(D).

Now we establish the uniqueness of the solution of (3.5).

TueoreM 3.5. The unnormalized conditional density o(t,z) defined
by (3.4) is the unique solution of (3.5) with an initial condition o (0,
z)=04(z) EH(D).

Proof. We define a new probability P, which is equivalent to P
on each &, by
4P| _ [t _1r 2
a5, mexp(=[[raY.—F[ 1) 1%s).
Then, under P, the observation process Y, is a Brownian motion (see
Lemma 2.1 in [4]). And, by Remark 3.4, we have
d d
2(—Lu,u) 2yt (Of'f‘gllhk]iz(m) || 3oy 2K || g1 +k§lhku|12.’w)
for any u€M?2(0, T ; H1(D)), where
M2(0, T ; H'(D)) = {uc L2((0, T) XQ—H (D)) |4 (2) is F,-adapted a.
e. in (0, T)}.
Thus, by the same way as Theorem 2.3 of Chapter I in E. Pardoux
[5], the equation (8.5) with above initial condition has the unique

solution. From Theorem 3.4, we see that o(¢, ) is the unique so-
lution of (3.5). The proof is complete.
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