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ON NONLINEAR FILTERING PROBLEM FOR AN
OBLIQUE REFLECTING BROWNIAN MOTION*

] AI HEUI KIM, KI SIK HA AND DONG GUN PARK

1. Introduction

There are two different approaches to the nonlinear filtering probl­
em. The first approach is the innovations approach combined with
representation theorems for continuous and discontinuous martingales
as stochastic integral (see Fujisaki-Kallianpur-Kunita [lJ). The second
approach is focussed on the unnormalized conditional density equation,
which is a stochastic partial differential equation so called Duncan­
Mortensen-Zakai (for short, DMZ) equation (see Zakai [6J).

The aim of this paper is to derive DMZ equation corresponding to
a Brownian motion with oblique reflecting boundary condition on an
orthant.

In Section 2 we will formulate the problem and fix notations. In
Section 3 we will give the proofs of our results. For general introd­
uction to the nonlinear filtering problem theory see [3J, [4J and their
references.

2. Formulation of the problem

The problem we dicuss is as follows. Let us consider a probability
space (Q, ;], P) with a reference family (;]t) t<:O. Let D= {x= (~, Xn)

ERnl~ERn-I, xnERI and xn>O}, D={xERnlxn=O} and D=DU
oD. Consider a process X t= (XtI, "', Xt), as the signal process, defined
by

(2.1) 1X/=x;+B/+ I~Pi(Xs)d<Ps> i=1,2, "', n-l,

xtn=xn+Bt+<pt
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where B t = (Bl, "', B/) is an n-dimensional 6ft -adapted Brownian mo­
tion, X t = (Xt, X t") and rfJt is the local time of X t" at 0, i. e., rfJt is
continuous 6ft-adapted process satisfying rfJo=O and

(2. 2) rfJt = f: l(oDl (Xs) drfJs = f: 1(0) (Xs") drfJs

for all tE [0, 00) and f3;, i=l, 2, "', n-1, are bounded measurable
function on oD with bounded derivative of first order. Here lA is the
indicate function of the set A. This process X t is called an oblique
reflecting Brownian motion on the orthant D. This process is One of a
few examples of processes corresponding to non-symmetric Dirichlet
spaces (see J. H. Kim [2J). And consider a d-dimensional process
Yt, as the observation process of X t, defined by

(2.3) dYt=h(Xt)dt+dWt

where Wt is ad-dimensional Brownian motion independent with Bt

and h.: R"-Bd is bounded m~sur8,ble. Let (fJt be the a-field generated
by the observation {Yt I°~ s~ t} up to time t. The goal of nonlinear
filtering problem theory is to study the conditional expection

Tet(f) =E[f(Xt) !(fJtJ

taken with respect to the probability P, for suitable real valued fun­
ction f. This is because Tet (f) is the best estimate, in quadratic mean
sense, of f(Xt) given the observations (fJt. This estimate depends, in
general, nonlinearly on the observations, and it is called the nonlinear

filter.

3. DMZ equation for an oblique reflecting Brownian motion

In this section, we derive DMZ equation corresponding to the filter­
ing problem by the signal process X t defined by (2. 1) and the obser­
vation process Yt defined by (2. 3) .

LEMMA 3. 1. The differential operator (L, rJ) (L» corresponding to
the process defined by (2. 1) is given by

{

L= t~ ::;2 (in the sense of Schwartz distribution),

(3. 1) _ OU "-1 OU
rJ)(L) = {uECo2 (D) OX" +~f3i OX; =0 on oD}.

Proof. By Ito's formula, for any fEC0
2 (D), we have
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we have
. 1 1 . ()2f

Lf(x)=l~r.::tE[f(XI)-f(Xo)IXo=xJ=2~ OXi2 (x).

The proof is complete.

For fEQ)(L), define
(3.2)
where

(3.3) al=exp{S>s(h)dYs- ~ S:IJrs(h) 1
2ds}.

Using Lemma 3.1 and the same way as Theorem Band C In [3J,
we have the following theorem.

THEOREM 3.2. Let (L, Q) (L)) be the differential operator defined

by (3. 1). Then PI defined by (3. 2) is a solution of the following sto­
chastic partial differential equation which is called a Zakai equation.

PIU) =Po(f) +S>s(Lf)ds+S:Ps(hf)dYs.

~ow we define aCt, x) on [0, (0) XD by

(3.4) PIU) =JDf(x)a(t, x)dx

a (t, x) is called an unnormalized conditional density of XI given (fJt on
D. Since {s 1X s EoD} has Lebesgue measure zero, unnormalized cond­
itional density on oD is zero.

THEOREM 3.3. The unnormalized conditional density aCt, x) defined
by (3.4) is a solution of the following stochastic partial differential

equation which is called a DMZ equation:

(3.5)

Proof·

{
da(t, x) =La(t, x)dt+ha(t, x)dYt on D

Loa(t, x) =0 on oD.

For any fEQ)(L), by Theorem 3.2,
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(3.6)

By (3.6)

fD f(x) 0' (t, x)dx=O'o(f) +f:O's (Lf) ds+ f: O's(hf)dYs

=0'0 (f) +fJDLf (x)O'(s, x)dxds+fJD(hf) (x)O'(s, x)dxdY~

=0'0 (f) +f:~ ~fD 0¥X:~) O'(s, x)dxds+fJD (fh) (x)O'(s,x)dxdYs

=0'0(f) +ft[_li:f of(x) oO'(s, x) dx+ i; r of(I;, 0) .
o 2 1=1 D OXi OXi i=1J aD OXi

O'(s, (1;, O»eidl;]ds+f:JD (fh) (x)O'(s, x)dxdYs

=O'o(f) +rt[_ltf of(x) oO'(s, x) dx+ r f(l;, 0) O'(s, (1;,0» dl;]d~
Jo 2.=1 D OXi OXi J aD oXn

+f:JD (fh) (x)O'(s, x)dxdYs

=0'0 (f) +P[ltJ f(x) 020'(S~2X) dx+f of(I;, 0) deS, (1;,0) )dl;
J0 2 .=1 D ox, aD oXn

+~faDf(l;, 0) OO'(s,o~' 0» eidl;Jds+fJDf(X) h(x)O'(s, x)dxdYs

=0'0 (f) +ft[J f(x)LO'(s, x)dx+f of~l;, 0) O'(s, (I;,O»dl;
o D aD Xn

+f f(I;,O) OO'(s'a (1;,0» dl;Jds+ PJ f(x)h(x)O'(s, x)dxdYs>
aD X n Jo D

where ej= (0, ··',0,1, 0, ·",0) is n-dimensional unit vector. Hence

f f(x)dtq(t, x)dx=f f(x)L<7(t, x)dx+! of~l;, 0) O'(t, (I;,O»dl;
D D aD X n

+f f(x)h (x) O'(t, x)dYtdx+f f(I;,O) OO'(t, (1;,0» dl;.
D aD oXn

From this, we have df7(t, x) =LO'(t, x) +h(x)q(t, x)dYt and .

O'(t, (1;,0» oO'(t'o(l;, 0» o.
Xn

and the same argument as above, we have

r;1;Si (I;) oO'(t, (1;,0» =0.
i=1 OXi

Thus. LoO'(t, x) =0 on oD. The proof is complete.

The following remark is due to J. H. Kim [2, Section 6J. This
result will be used to establish the uniqueness of solution of stochastic
partial differential equation (3. 5).

REMARK 3. 4. We define the Sobolev space
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HI(D)={UEL2(D)I!u EL2(D), i=1,2,···,n}.
UXj

Equipped with the norm

luIH1(V)= luIL2(V)+ IUx IL2(D)

where

IU x IL2(V)=(±/ ~u 1

2

2 )-!.
;=1 UXj L (V)

Let a (. , .) be the bilinear form corresponding to L defined by (3. 1),
i. e.,

a(u, v) = (-2Lu, vh2<Dh u, vEHI(D).
Then we have, for u, vEHI(D),

- • f ou ov n-lf ou(~, 0)
a(u, v) -fl DOXj OXj dx- fl aDf3j(~)v(t0) O~j d~

and this is a nonsymmetric Dirichlet form on D. For some ao>O and
any a>ao, there exists a constant K=K(a»O such that

a(u, v) +a(u, v) L 2(V) ~KIlu I~I(D)

for every uEHI(D).

Now we establish the uniqueness of the solution of (3. 5).

THEOREM 3.5. The unnormalized conditional density aCt, x) defined
by (3.4) is the unique solution of (3.5) with an initial condition a(O,
x) =ao(x) EHl(D).

Proof. We define a new probability P, which is equivalent to P
on each [It, by

~~ l~t=exp{-S;h(X.)dY.-~f:lh(X.) 1
2ds}.

Then, under P, the observation process Y t is a Brownian motion (see
Lemma 2. 1 in [4J). And, by Remark 3. 4, we have

d d
2 (-Lu, u) L 2 (V) + (a+ I; IhkIhDJ) Iu Ii'(D) ~KI UIHi (V) +I; Ihku li'(D)

1=1 1=1

for any uEM2(0, T ; HI(D)), where
M2(0, T; HI(D)) = {uEL2((O, T)XQ-+Hl(D)) lu(t) is [It-adapted a.
e. in (0, T)}.

Thus, by the same way as Theorem 2. 3 of Chapter ][ in E. Pardoux
[5J, the equation (3. 5) with above initial condition has the unique
solution. From Theorem 3; 4, we see that aCt, x) is the unique so­
lution of (3. 5) . The proof is complete.
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