
J. Korean Math. Soc. 27(1990), No. 2, pp. 223-230

A MATRIX REPRESENTATION OF POSETS
AND ITS APPLICATIONS

MIN SURP RHEE

1. Introduction

Let X = {Xl> X2, "', xn} be a finite partially ordered set (a poset, for
short) with IXI =n, and let .£(X) = {Ll> L2, "', Le} denote the set of
all linear extensions of X with I.£(X) I =e. If Sn= {I, 2, "', n} is a
poset with a natural order, then L j defines a bijective map lj : X-Sm

via lj(xj) =k if the level of Xj in L j is k. Now, let p(xjlk) = ~ I{lj:

1lj(xj) =k} I and p(klxj) =- I{lj : lj(xj) =k} I. Then p(Xj Ik) =p(klxj).e
In this fashion we can associate a finite poset X with an n X n matrix
D(X) = (djk) , where djk=p(xj Ik) =p(klxj)' Then it follows from. .
I;p(Xj\k) =I; p(klxj) =1 that the matrix D(X) is a doubly-stochastic
j=1 .1=1

matrix. In this case we say that the matrix D (X) is the doubly-stochastic
matrix representation of X. In this paper we will study some proper­
ties and applications of this representation on finite posets. Specially,
we will show that every series-parallel poset is singular.

In general we use standard notations. We denote by XEBY and X+ Y
the ordinal sum and the disjoint sum of X and Y, respectively. Also,
we denote by en and!!.. a chain and an antichain with n vertices, respec­
tively. Throughout this paper we assume that every poset is finite and
nonempty.

2. Definitions and well-known results

In this section we will give some definitions and properties which
will be used later.
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DEFINITION 2. 1. A poset X is said to be N-/ree if it contains no
cover preserving subposet isomorphic to the poset with Hasse dia-

gram N
DEFINITION 2. 2. A poset is said to be series-parallel if it can be

decomposed into singletons using ordinal sum and disjoint sum.

PROPOSITION 2.3. A finite poset is series-parallel if and only if it
contains no subposet isomorphic to the poset with Hasse diagram N

Proof. The proof can be found in [9J.

From above definitions and Proposition 2. 3. we know that every
series-parallel poset is N-free.

DEFINITION 2. 4. Let x and y be vertices of a poset X. Then we
define the following numerical functions:

f1 (x) = I {y :x<y} I, ~he number of descendants of x,
f2(x) = I {y : x>y} I, the number of ancestors of x.

A poset X is said to be a family if both f1(x»f1(y) and f2(x) <
f2 (y) implies x<y for any vertices x and y in X.

PROPOSITION 2.5. If X is a. family, then it is series-parallel.

Proof. It follows from [7J.

DEFINITION 2.6. A poset X is said to be a P-graph if it can be
decomposed into antichains using only ordinal sum, and a poset X is
said to be a P-series if it can be decomposed into P-graph using only
disjoint sum.

PROPOSITION 2.7. Every P-graph is a family and every P-series is
series-parallel.

Proof. The proof follows from [7J.

3. Symmetric posets and singular posets

DEFINITION 3.1. A poset X is said to be symmetric if D(X) is sym­
metric for some relebelling of vertices of X.
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THEOREM 3. 2. If X and Y are symmetric, then so is X EB Y.

Proof. It can be easily shown from the definition of ordinal sum.

EXAMPLE 3. 3. (1) Every chain and every antichain are symmetric.
(2) A poset N with Hasse diagram N is symmetric.
(3) Every P-graph is symmetric.
(4) A poset of the form NEB···EBN is symmetric.

Now we conjecture the following:
A pout X is symmetric if and only if it is either
a P-graph or a graph of the form N8j···8jN

DEFINITION 3.4. A poset X is said to be singular if D(X) is sin­
gular. Otherwise, it is called nonsingular.

EXAMPLE 3.5. (1) Every nonempty chain is nonsingular.
(2) Every antichain n is singular if n~ 2.

THEOREM 3. 6. Let X and Y be posets. Then
(1) If X and Y are nonsingular, then so is XEB Y.
(2) If either X or Y is singular, then so is XEB Y.

Proof. The proof can be easily shown from the definition of ordinal
sum.

COROLLARY 3. 7. If X is a P-graph which is not a chain, then X is
singular.

Proof. It follows from Example 3.5 and Theorem 3.6.

PROPOSITION 3.8. The poset Cnl +Cn2 is singular.

Proof. Let Cnl = {Xl. .", xnJ and Cn2 = {xnl +1> .", x nl+n2 } be chains.
Then D (Cnl +Cn2 ) = (Pu) is an (n! +nz) X (n! +nz) matrix. Note that

nJ nl+n2

~ Pij=c and. L; Pij=l-C for all j, where O<c<l. Hence D(Cnl+
,=1 t=n 1 +1

Cn2 ) is singular, and so Cnl +Cn2 is singular.

PROPOSITION 3. 9 Let Cn be a chain with n vertices and X be a pose!
with m vertices. Then the disjoint sum Cn+X is singular.
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Proof. Let Jl(X) = {Lh L2, "', Le} be the set of all linear extensions

of X. Then note Jl(Cn+X) = UJl(Cn+Li ) and Jl(Cn+L i ) nJl(Cn+Lj)
;=1

=t/J for any distinct i and j. Let D(Cn+X) = (ajk) and D(Cn+Li ) =

(ijk) be (n+m) X (n+m) corresponding matrices. Then ajk=l±ijk.
e ;=1

Therefore it follows from Proposition 3.8 that Cn+X is singular.

THEOREM 3. 10. Let X and Y be posets. Then the disjoint sum X+
Y is singular.

Proof. It can be proved by the same fashion as the proof of Proposi­
tion 3.9.

CoROLLARY 3.11. Every disconnected poset is singular.

Proof. It follows immediately from Theprem 3. 10.

COROLLARY 3. 12. If X is a P-series not a chain, then X is singular.

Proof. It can be easily obtained from Corollary 3.7 and Corollary
3.11.

DEFINITION 3. 13. Let A be a subposet of a poset X and x be a
vertex of X. Then x is said to be a minimal upper(or maximal lower)
bound of A if x is an upper (or lower) bound of A and there is no
upper (or lower) bound which is less (or greater) than x.

THEOREM 3. 14. Every series-parallel poset not a chain is singular.

Proof. It follows from Corollary 3. 11 that we may assume that our
poset X is connected. If IX I ::;:3, then it is clear that X is singular.
Suppose that it holds for IX I<no Then we will show this theorem for
IXI =n. Let A= fah ..•, ap} be the set of all maximal vertices of X.
If IA I=1, then X = (X- A) ffiA. By induction (X- A) is singular,
and hence X is singular by Theorem 3.6. Now, we will show this
theorem for the case IA I>1 with a series of propositions.

PROPOSITION 3.15. Let A= fah .•., ap} be the set of all maximal
vertices of a connected series-parallel poset X. Then there is a maximal
lower bound of A.
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Proof. Since X is connected series-parallel, there is a maximal lower
bound of A for any maximal vertices aj and aj. Assume that it holds
for any k maximal vertices of X. Now consider it for maximal vertices
ah .", ak+l of X, and let x be a maximal lower bound of fah "', ak}'
Suppose that there is no maximal lower bound of fah "', ak+l}' Then
there are vertices y and z such that z>x, z>y and z<ak+l. Note that
(x, y) and (z, ak+l) are incomparable pairs of vertices. If z is one of
a;' s, then it contradicts the fact that X is series-parallel. Otherwise,
we have z<aj for some aj in A. This implies that X is not series­
parallel, a contradiction. Therefore Proposition 3.15 holds.

PROPOSITION 3.16. Let x be a maximal lower bound of A, where A=
fah .", ap} is the set of all maximal vertices of X. Suppose that B=
{bh ···bq} is the set of all upper covers of x, and that C= {Ch "', cr} is
the set of all maximal lower bounds of B. Then we have the following
properties:

(1) x is in C,
(2) C is an antichain,
(3) If y is a lower cover of bj for some bj, then yEC,
(4) If y is incomparable to x, then y-;;;'Cj for some Cj in C.

Proof. (1) and (2) are obvious from the hypothesis. The proof of
(3) is clear since X is series-parallel. Now, we will prove (4). Sup­
pose that y is not less than bj for some bj in B. Since y can not be
greater than bj for all bj in B, y is incomparable to bj for all bj•
Also since y is not maximal, it contradicts the fact that X is series­
parallel. Hence y<bj for some bj in B. Thus y<bj for all bj in B,
and so y is a lower bound of B. Therefore (4) holds.

PROPOSITION 3. 17. Theorem 3. 14 holds.

Proof. Let A, B, and C be the sets which are defined in Proposition
3.16. Let u be an arbitrary vertex of X. If u is incomparable to a
vertex Cj in C, then U-;;;'Cj for some Cj in C by (4) of Proposition 3.
15. Hence u -;;;, bj for all bj E B. Also, if u is comparable to a vertex
of C, then U-;;;'Cj for some Cj in C or U~Cj for all Cj in C. Thus u>Cj
for all Cj in C or u<bj for all bj in B. Now let Y= n {y : y>Cj}.
Then X = (X- Y) Efl Y. So by induction X is singular.
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COROLLARY 3. 18. Every family X not a chain is singular.

Proof. It follows from Proposition 2. 5 and Theorem 3. 13.

EXAMPLE 3. 19. If X is aN-free poset which is not a chain, it

may not be singular. Let X be a poset with Hasse diagram N .
Then X is N-free, but it is neither a series-parallel nor singular.

4. The permanent of a poset

DEFINITION 4.1. Let A=[aij] be an nXn matrix over a real number
field R. Then the permanent of A is defined by ;Ealq(I) ·a2tTCZ)···a.....Cnh
where q is a permutation. on {I, 2, ..., n} and it is denoted by perm
A If D (X) is a doubly-stochastic matrix of a poset X, then we write
perm X for perm iJ (X).

EXAMPLE 4.2. (1) perm Cn=l and perm ~=n!/nn.

(2) perm(X@Y) =permX·permY, where X and Y are finite posets.
p

(3) Let X=nl@···@np be a p-graph. Then perm X= n (nk!/nknk).
- - k=1

From a famous Van der Waerden-Egorycev theorem we get the
following theorem:

THEOREM 4.3. Let X be a poset with n elements Then n! /nns;,perm
X s;,1, where the left equality holds only if X !! and the right equality
holds only if X =Cn•

Proof. The first part "n! / nn s;, perm X, where the equality holds
only if X=n" is obtained from [6J. The last part "perm Xs;,l,
where the equality holds only if X =Cn" is easily proved by induction.

5. Entropy

DEFINITION 5.1. Let X= {Xl> •••, x n} bea poset. Then the entropy of

a vertex Xi is defined by :E aik lognaik and it is denoted by H(xi) ,
1:=1

where D(X) = [aij] and OlognO=O. In particular, a vertex Xi is called
free in a linear extension of X if H(xi) = -1 and a vertex Xi is called
fixed in a linear extension of X if H(xi) =0.
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For example, every vertex of an antichain n is free. That is, every
vertex of !!. can be placed in any position for ~ome linear extension of
!!:; Also, every vertex of a chain Cn is fixed. That is, every vertex
of Cn can be placed in only one fixed position of every linear exten­
sion of Cn'

DEFINITION 5. 2. Let X= {XI. "', Xk} be a finite poset. Then the entropy

of X is defined by l ±H(Xi) and it is denoted by H(X). In parti-
n k=l

cular, X is called free if H(X) = -1 and X is called fixed if H(X)

=0.

PROPOSITION 5. 3. Let x be a vertex of a finite poset X. Then -1:S;;
H(x)s;,O and -ls;,H(X)s;,O. In fact, H(X)=-l if and only if X
=~ and H(X) =0 if and only if X=Cn•

Proof. The proof is easily proved by a simple calculation.

EXAMPLE 5. 4. Let X be a poset with Hasse diagram X2?\.? X4 Then
Xl c! 'bX3

H(X2) =H(X3) ?:.H(XI) =H(X4). That is, the positions of X2 and X3 are
more restricted than the positions of Xl and X4 in a linear extensions
of X.

Actually in a finite poset with a small number of vertices, a vertex
x is more restricted than a vertex y if and only if H (x) >H (y) •
Now we have the following conjecture: Let x and y be vertices
of a finite poset X. Then x is more restricted than y if and only if
H(x»H(y).

EXAMPLE 5.5. Let X, Y, Z, and U be posets with following Hasse
diagrams:

X'l x'vx' X']X2 X3 0 0 0 0

Xl Xl Xl X2 x3

X=C3 Y Z U=3

Note that O=H(X»H(Y»H(Z»H(U) =-1 and 6= I.R(U) I> I.R
(Z) I> I.Q(Y) I> I.Q(X) 1=1.
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Let X and Y be posets with 3 vertices. Then from above example
we know that 11!(X) I> 11!(Y) I implies H(X) <H(Y). In fact for
any posets X and Y with a small number of vertices, if IX I= IY I
and 11!(X) I::;; ]1!(Y) I, then H(X) ~H(Y). The fact that IXI = IYI
<00 and 11!(X) I::;; 11!(Y) I imply H(X) ~H(Y) has not been known
so far.
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