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HOMOGENEOUS POLYNOMIALS SATISFYING CAUCHY
INTEGRAL EQUALITIES

] UN 800 CHOA AND HONG OH KIM

1. Introduction

Let t]Jn be the class of all holomorphic homogeneous polynomials n
on Cn normalized so that
(1.1) max {In(z) I: Izd 2+...+ IZnI2=1} =1.
For nEt]Jm if the sequence C[nm+1nJ of Cauchy integrals satisfies
(1. 2) C[nm+1nJ =rmnm, m=O, 1,2, .•.
for a sequence of positive numbers rm' then n is said to satisfy the
Cauchy integral equalities, CIE for short (See [1, 2J). Ahern and
Rudin [lJ noticed that if nE t]Jn is a monomial or the sum-of-squares
(=ZI2+"'+zn2) then it satisfies CIE and utilized this fact in their new
proof of the BMOA-pullback theorem for such n. Choe [2J made
more extensive study on CIE and asked whether there is a concrete
characterization of nE t]Jn satisfying CIE.

We observe that if n=2, the sum-of-squares

ZI
2
+ Z2

2
=2( .v\ ZI- J2 Z2) ( J2 ZI + J2 2:2)

is obtained from the monomial 2WIW2 in t]J2 by the unitary change of
variables:

(:~) =( ~2
- i 2 )(:~) .

.v2 .v2
This observation leads us to conjecture that if nE t]J2 satisfies CIE
then it can be transformed to a monomial by a unitary change of
variables. We show in this paper that the conjecture is true for nE t]J2
of degree:::;; 4. More precisely we prove
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(3.1)

THEOREM 1.1. If 1CEqJ2 of degree::=;'4 satisfies CIE then it can be
transformed to a monomial by a untary change of variables.

The proof is very technical. The CIE condition (1. 2) gives an
infinite number of nonlinear algebraic equations on the coefficients of
the homogeneous polynomial 1C. If the degree of 1C gets higher, the
equations become too complicated to handle.

The second author wishes to express his sincere gratitude to Professor
Patrick Ahern for helpful conversations during his visit to Madison
last summer.

Any unexplained notations are as in [3].

2. Known results on CIE

We summarize some known .results on .. Cill ... for q)n which .will .. be
used in the proof of Theorem 1. 1-

PROPOSITION 2.1. [1, Lemma 2.2J If 1C(Z) =baZaEqJn or 1C(Z) =ZI2+
..• +zn2 then 1C satisfies CIE.

The following two propositions show that Cill holds only for very
special polynomials in qJn.

PROPOSITION 2.2. [2,1, Remark 2.4J 1C (z) =aIzI2+ ... +anzi (ad: 0 for
every i) satisfies CIE if and only if laII =...= lanl =1.

PROPOSITION 2.3. [2, Example 3.SJ If d';2:2 and 1C(z)=aIzId + .•. +
anzi(\ad =1 for every i) satisfies CIE then d=2.

The following proposition gives a way of getting new polynomials
satisfying CIE from an old one.

PROPOSITION 2.4. [2, Lemma 3.6J If 1CEqJn satisfies CIE and U is
a unitary transformation of Cn then 1C o U also satisfies CIE.

3. Monomials and their unitary transforms

3. 1. The unitary group IfJ (2)
We observe that any unitary matrix U E 1J (2) of C2 is of the form

(
Itv! r2 Ar )

U= _.' '/--2 ' IAI = Iltl = Ivl =1, O::=;'r::=;'l,
vr - ItIlV 'V 1-r
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which can be factored as U=U",vVrU1,,,,((J)=-ji}.,), where

U",v= (~ ~) and Vr= ('VIr r
2

VI rr2)'

3.2. Monomials in qJ2 and their transforms

We note that if n(z) =blmZ1/z2mEfj)2 then

Iblml =j /~m (d=l+m)

by the normalization condition (1. 1). By the unitary transformation
corresponding to a suitable U",v the monomial n (z) =blmZ1/z2m can be
transformed to

(3.2)

The unitary matrix

transforms ni, m again to

(3.3) itl.m=j /~m (j ~ Z1- j; (J)Z2Y (j ~ %1+ j ~ (J)Z2t,

which has value 1 at (1,0) if 12:1. We list this correspondence in the
following table (3.4) for later references.
(3.4)

d I 7tl,m(l?m) I itl, m

1 I Z1 I Z1

2 Z1
2

Z1
2

2 Z 1Z 2 Z12 - ( WZ2)2

3 Z1
3 Z1

3

3 ,,; 3 Z12Z2 Z1
3

- ~Z1(WZ2)2+ }2 (WZ2)32

4 Z1
4

Z1
4

16 3
Z14_2Z12(WZ2)2+ 3 ~ 3 Z1(Wz~3- ~ (WZ~43"; 3 Z1 Z2

4Z 12Z2
2 Z14 -2z1

2 (WZ2) 2+ (WZ2) 4
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5 Z15 Z15

25./5 Z 4Z ~15- ~ZI3(WZ2)2+ ~ZI2(wZ2)3- i~ZI(WZ2)4+ ~ (WZ2)516 1 2

25./5 Z 3Z 2 Z15- ~ ZI3(WZ2) 2+5 186
ZI2(WZ2)3+ ~ ZI (WZ2) 4_ ';36 (WZ2) 56./3 1 2

4. Proof of Theorem 1. 1

PROPOSITOIN 4. 1. Any homogeneous polynomial 1C E tj)2 of degree
d21 can be transformed to 7C' of the form

7C' (Z1> Z2) =Zld+a2z1d-2zl+ .•.+adzi
by a suitable unitary change of variables. (Note that the term Zld-1z2
is missing in 7C')

.Prooj. Suppose 11C I attains its maximum at (1;':1> 1;':2) on the sphere
8 2 of C2. Choose a unitary transform U which maps (1,0) to (1;':17 1;':2)
and set

1C' (Z17 Z2) =7Co U(Z17 Z2) =zld+alz'i-lz2+ ···+adz2d.

Since 11C'1 attains its maximum 1 at (1,0) and the vector field -;,0
UZ2

is tangential to 82 at (1,0), we have
017C'1 2

0- 0 (1,0) =7t' (1, O)al=al·
Z2

This completes the proof.
We now proceed on the proof of Theorem 1. 1.

4.2. The case d=1 or d=2. By Proposition 4.1, any 1CEtj)2, of
degree 1 can be transformed, by a unitary transformation, to 1C' (z) =Z17
a monomial. By Proposition 4.1 again any 1CEtj)2 of degree 2 can be
transformed to 7C' (z) =z12+a2zl by a unitary transformation. If 1C
satisfies Cill, then either a2=O or la21 =1 by Proposition 2.2. In
either case, 1C' reduces to a monomial by a unitary transformation as
we see in the table (3. 4) .

4.3. The case d=3. Suppose 1CEtj)2 of degree 3 satisfies Cill. By
Proposition 4. 1, we may assume 1C is of the form
(4.1) 1C(Z) =zls+a2z1zl+aazl.
By another transformation corresponding to a suitable unitary matrix of
the form U1,,,,, we may assume as20. We compute C[1C27t] as follows.
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We note that
(4.2) n(;;b (;;2) 2=(;;16+ 2a2(;;14(;;22 + 2as/'::13(;;2S

+al(;;12(;;24+2a2aS(;;I(;;2s+ai(;;26,
and
(4.3) 7f(;;h (;;2) <%, OS=%IS('16+a2'14'22+aS'IS'2S)

+ 3%12%2 (,IS'2+a2'IS'2S+aS'12' 24)
+ 3Z1%22 (,14'22+a2'12

' 24+aS'l'2S)

+Z2S('IS'2s+a2'1'2s+as'i).
We use the orthogonality relations for mop.omials [3, Propositions
1. 4. 8 and 1. 4. 9J in the following computation of the Cauchy integral.
From (4.2) and (4.3), we have

(4.4) C[n27fJ (z) =5 n2(~)7f(~) d(J(~)
82 (1-<%, (;;»2

= ~(-.2) (-I)if n2(~)7f(0<z, ~>id(J(~)
1=0 J 82

=(~2) (-1)St2n2 (~) 7f (0 <z, ~>sd(J(~)

=4{(6! +2Ja 124 !2! +21a 123 !3! )z S7! 2 7! S 7! 1

(
- 3!3! 2- 2!4!) 2+3 2a2aS7r+a2 aS7! %1 Z2

( 4121 1122141 1151) 2+3 2a2~+a2 a2 7!+2a2 as 2 71 Z1Z2

(
3'31 51 6') }+ 2a37!+2Ia212as 71 +as!asI 27i %2S

= 4~t' {(30+4I a21 2+3!asI2)zIS

+3(3a2aS+2alas) Z12Z2
+3(4a2+2a2Ia212+ 10a2!asI2)ZIZ22

+ (3as+ 10 la21 2as+30 lasI2as)Z2S}.
Comparing the coefficients in the CIE condition C[n27fJ =rln, we have
the following equations from (4.1) and (4.4). Recall that as;;::O is
assumed.
(a. 0) 30+4\a21 2+3ai=7h
(a. 1) 3a2a3+2alas=0,
(a. 2) 3a2(4+2! a21 2+ 10as2) =a2iI.
(a. 3) as(3+ 10 1a21 2+30a32) =aST1.

(71)0 is another constant)
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Case 1. as=O: Suppose a2*0. We solve (a.O) and (a.2) for la21
and get Ia21 = 3. If we set a2= 3w with Iw I= 1, then

( 1 (ij) ( I)S (1)2 (ij 4
n v2' v2 = v2 +3w v2 v2 - 2v2 >1,

which is impossible for nEqJ2. Therefore a2=0 and 7r(z) =ZlS, a
monomial.
Case 2. as*O: Suppose a2=0. We solve (a.O) and (a.3) for as and
get as=1. But 7r(z) =zls+zi cannot satisfy CIE by Proposition 2.3.

We should have a2*0. From (a. 1), we have a2= ~ w with wS=-I.

Now, we solve (a.O) and (a.2) to get as= J2 .

Therefore, we have

7r(z) =ZlS+ ~ WZ1Z22+ v
I
2 %2S

=ZlS- ~ Zl(W2Z2) 2+ J2 (W2Z2)3,

which can be transformed to the monomial 3~3 Z12Z2 by a suitable

unitary transformation as we see in the table (3. 4).

4.4. The case d=4. Suppose nEqJ2 of degree 4 satisfies CIE. By
Proposition 4. 1 we may assume 7r is of the form

7r(z) =Z14+b2Z12Zi+bsZlZ2S+b4Z24.
From the CIE condition C[7r2lt] =Tl7r, we have the following equations
on the coefficients as before.
(b. 0) I40+1OIb212+5IbsI2+2(bi+2b4)b4=1\,
(b. 1) 5bsb2+2(bi+2b4)bs+5b2bsb4=O,
(b. 2) 60b2+ 12(bi+2b4)b2+30b2Ibs I2+30 (bS

2+2b2b4)b4=b27b

(b. 3) 20bs+ 20 Ib212bs+20 (bi+ 2b2b4)bs+ 140bs lb4 12=bs7b

(b. 4) 2 (bi+2b4) +5(bs2+2b2b4)b2+35IbsI2b4+140 !b412b4=b471.
(71)0 a constant)

Case 1. bs=O, b4=0 : From (b.4), b2=0; so n(z) =Zl4, a monomial.
Case 2. bs=O, b4*0: Suppose b2=0. From (b.O) and (b. 4), we
have Ib4 1=1, which is impossible by Proposition 2.3. We should have
b2*0. We may assume that b2=real by a suitable unitary transfor­
mation. We solve (b. 0), (b.2) and (b.4) for b4 and get b4=1; so
1I:(z) =Z14+b2Z12Z22+Z24. Now we have to consider CIE condition for
m=2. Comparing the coefficients of Z18 and Z16Zi in C[7rslt] =T2n2,
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we have
332+ 17b22=T2,

268+ 33b22= T2, 72>0,
from which b2= +2. Therefore we have n(z) =Z14+2zb:l+Z24, which
can he transformed to the monomial 4Z12Z22 hy a unitary transformation
as seen in the tahle (3. 4).
Case 3. b3=1=O, b2=0: From (h. 1), b4=0. We show that this case
cannot happen. We note that

n m+1(~) = (~14+b3~1~23) m+l
=b3m+1~lm+1~23m+3+ (m+ 1) b3m~lm+4~23m+ ...

and
n (~) Z:1m~23m = ~1m+4~23m+b3~1m+l~23m+3.

From the orthogonality relations for monomials [3, Propositions 1. 4. 8
and 1.4.9J, we have

Snm+l (~) n (~) ~1m~23mda (~)
82

=b mIb 12 (m+ I)! (3m+3)! + (m+1)b m (m+4)! (3m)!
3 3 (4m+5) ! 3 (4m+5)! '

and

S nm(r)r mr 3mda(r) =b m m! (3m)!
82 "''''1'''2 '" 3 (4m+1)!'

Since b3=1= 0, the CIE condition (1. 2) implies that
T = (m+1)(3m+3)(3m+2)(3m+1) Ib 12

m (4m+5) (4m+4) (4m+3) (4m+2) 3

+ (m+ 1) (m+4) (m+3) (m+2) (m+ 1)
(4m+5) (4m+4) (4m+3) (4m+2)

This is contradictory to the fact that Tm~1 as m~OO. See [1, page
135J.
Case 4. b3=1= 0, b2=1=°:We may assume b3>0 hy a unitary transfor­
mation. (h. 1) and (b. 3) then reduce respectively to
(b. 1)' 5b2+2(b22+2b4) +5b2b4=0,

(b. 3)' 20+ 20 I b2 1
2 + 20b32+40b2b4+ 140 I b4 1

2=71.
From (b.O) and (b. 3)', we should have
(4.5) blb4=real and b2b4 =real.
If we set b2=p(}) with p>O and 1(})1=1 and set t=blb4 (=real), then

(4. 6) b4=~(})2,
P

and
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(4.7) b2b4 =.!-W3 real;
p

so w3=+1. The equations (b. 0), (b. 1)', (b. 2), (b. 3)' and (b.4) then
can be written respectively as follows.

(b. 0)" 140+10p2+5bl+2t+4 t: =;fI,
p

(b. 1)" 5P+2(p2+ :~ )W3+5 ; =0,

(b. 2)" 60+ 12p2+24-;-+30bl+30b32~ w3+60 t: =710
p . p p

(b. 3)" 20+ 20p2+ 20b32+ 40.!-w3+ 140 t: =710p p

(b. 4)" 2p4+4+5bl~W3+ 10p2+35b32+ 140 t: =fI.
t t P

We consider the cases w3=1 and w3=-,-1 separately.
Subcase 1. w3=1: From (b. 1)", we have

(4.8) t=- p3(2p+5) .
5p+4

If we eliminate 71 from (b. 0)" and (b. 3)" and substitute (4.8) in
place of t, we get
(4.9) 15 (5p+4) 2b32= -20p5-460p4-1840p3+240p2+4800p+1920.
From (b. 3)", (b.4)" and (4.8), we have
(4.10) 5 (p+ 11) (5p+4) b32= -60p4_420p3_560p2+560p+320.
From (b. 0)", (b. 2)" and (4.8), we again have
(4.11)
5(5p+4) (13p-10)b32=-20pS-340p4-1000p3+1360p2+3680p+1280.

If we eliminate b3
2 either from (4.9) and (4.10) or from (4.9) and

(4.11), we have
(4.12) p6-11p5-6p4+328p3-288p2-2160p-864=O.
The equation (4.12) can be factored as
(4.13) (p+2) (p-6)3(p2+5p+2) =0.
Since p>O, p=6. (4.10) then reduces to

2890bl= -184960,
which is impossible since b3

2>0. Therefore the case w3=1 cannot
happen.
Subcase 2. w3= -1 : From (b. 1)", we have

(5p-4)t=p3(2p-5) ,
which implies 5p-4:;t:0 and
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t= p3(2p-S)
(4. 14) 5p-4 .

If we eliminate 71 and t from (b. 0)", (b. 3)" and (4.14), we have
(4.15) 15 (Sp-4)2bi=20p5-460p4+1840p3+240p2-4800p+1920.
Eliminating 71 and t from (b. 3)", (b.4)" and (4.14), we get
(4.16) S(p-ll) (5p-4)bi= -60p4+420p3_S60p2_S60p+320.
If we eliminate bi from (4. IS) and (4.16) we have
(4.17) p6+ llp5-6p4-328p3-288p2+ 2160p-864=0.
The equation (4. 17) can be factored as
(4.18) (p-2) (p+6)3(p2_S p+2) =0.
Therefore we have either p=2 or p2=Sp-2. If p2=Sp-2, then the
right hand side of (4. IS) becomes zero; so bi= 0, a contradiction.
Therefore p=2. We then have

t=-~
3'

b 2_ 64 or b - 8
3 - 27' 3 3 V 3

b4= - §-w2
•

We have then

'"(~) -~ 4+2"'~ 2~ 2+ 8 z ~ 3_ 1 ",2~ 4
" ~ --I "'-I ~2 3 V 3- 1-2 ::f'" -I

-~ 4-2~ 2(".2~ )2+ 8 ~ (",2z )3_-l(/..2~)4
--I ~I "'-2 3v3 -I'" 2 3 "'~I ,

which can be transformed to the monomial 3 ~63 Z13z2 by a suitable

unitary transformation as in the table (3. 4). This completes the proof
of the Theorem 1. 1.

Acknowledgement. The authors wish to express their sincere thanks
to the referee for pointing out numerical errors.
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