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HOMOGENEOUS POLYNOMIALS SATISFYING CAUCHY
INTEGRAL EQUALITIES

Jun Soo CHoa anp Hone On Kim

1. Introduction

Let 9, be the class of all holomorphic homogeneous polynomials =
on C* normalized so that

(1.1) max {|7(2)|:]2|24+ -+ ]|2,]2=1}=1.
For z€9,, if the sequence C[z™*1%] of Cauchy integrals satisfies
(1.2) Clzm*1z] =7u1m, m=0, 1,2,

for a sequence of positive numbers 7,, then = is said to satisfy the
Cauchy integral equalities, CIE for short (See [1,2]). Ahern and
Rudin [1] noticed that if =9, is a monomial or the sum-of-squares
(=224 ---+2,2) then it satisfies CIE and utilized this fact in their new
proof of the BMOA-pullback theorem for such z. Choe [2] made
more extensive study on CIE and asked whether there is a concrete
characterization of 7€ 9, satisfying CIE.
We observe that if =2, the sum—-of-squares
it +ep=2 e (Fretoe)

is obtained from the monomial 2w,w; in 9P, by the unitary change of
variables:

1
('wl)_ V2 V2 (21)
Wo, o 1 i Z3, :
V2 V2
This observation leads us to conjecture that if x€ 9, satisfies CIE
then it can be transformed to a monomial by a unitary change of
variables. We show in this paper that the conjecture is true for z€ 9,
of degree<4. More precisely we prove
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Tueorem 1.1. If €Dy of degree<4 satisfies CIE then it can be
transformed to a monomial by a untary change of variables.

The proof is very technical. The CIE condition (1.2) gives an
infinite number of nonlinear algebraic equations on the coefficients of
the homogeneous polynomial z. If the degree of =z gets higher, the
equations become too complicated to handle.

The second author wishes to express his sincere gratitude to Professor
Patrick Ahern for helpful conversations during his visit to Madison
last summer. S

Any unexplained notations are as in [3].

2. Known results on CIE

. 'We summarize some known results on .CIE _for 9, which will be
used in the proof of Theorem 1. 1.

PropositioN 2.1. [1, Lemma 2.2] If n(2)=b2°€ D, or w(z) =22+
«et-2,2 then & satisfies CIE.,

The following two propositions show that CIE holds only for very
special polynomials in 9,,.

Prorosition 2. 2. [2,1, Remark 2.4] 7 (z) =a12:2+ - +a,2,2(a; #0 for
every i) satisfies CIE if and only if |a;|=---=|a,|=1.

Prorosttion 2.3. [2, Example 3.8] If d>2 and z(2)=aiz+--+
a,2,%(la;| =1 for every i) satisfies CIE then d=2.

The following proposition gives a way of getting new polynomials
satisfying CIE from an old one.

ProrosiTiON 2. 4. [2, Lemma 3. 6] If €D, satisfies CIE and U is
a unitary transformation of C* then woU also satis fies CIE.

3. Monomials and their unitary transforms

3.1. The unitary group #(2)
We observe that any unitary matrix U€#%(2) of C? is of the form
(3_ 1) U: (.u \4 1"‘1‘2 lr

”r _m”«/l——r'z—)’ 1A]=lel=lr|=1, 0<r<1,
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which can be factored as U=U,,,V,U,,,(w=—fA), where

o=t ) i ()

3.2. Monomials in 9, and their transforms
We note that if z(2) :b,,,,zllzzme @2 then
lblml: ll p (d l—l—-m)

by the normalization condition (1.1). By the unitary transformation
corresponding to a suitable U,, the monomial 7(2)==0,2'2;™ can be
transformed to

-
(3.2 Tin(2) =y iz @=L+ m).
The unitary matrix

/T

Ul 0
e
transforms 7z, , again to

69 fuamy (T o) (Tt T

which has value 1 at (1,0) if I>1. We list this correspondence in the
following table (3.4) for later references.

(3.4)

d | ma(=>m) Ttom

1 2} 21

2| z? 22
22127 22— (wz2)?

3| =8 2.8
3 é§ 2172, 23— %21 (wzg) 2+ ~/ 5 (wz2)®

4 z14 2t
3 ¢§ —=2 2% —2z:2(wzg) 2+ —— 3 J 3/TH (wzg)3— % (wzz)*
4212257 21t — 2212 (0z22) 2+ (w2)*
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5 215 z15
25 l‘é D st | m— -g—zls (wz2) %+ %”12 (w22)® -—%g—zl (wz2)*+ % (wz2)°
__265&/—3? 2% |zt %213 (wz)2 4256 1/86 21%(029)3+ %zl (wz2)*— —-‘;6 (wz2)°

4. Proof of Theorem 1.1

ProrositoIN 4.1. Any homogeneous polynomial we<=PDs; of degree
d>1 can be transformed to @' of the form
7’ (21, 20) =210+ ap218 222+ -+ a2t
by a suitable unitary change of variables. (Note that the term z,% lz,
is missing in ')

..Proof. Suppose |z|.attains its maximum at ({;,T;) on the sphere
S, of C2. Choose a unitary transform U which maps (1,0) to (&, %)
and set

7’ (21, 29) =m0 U (24, 22) =214 +a 25 2o+ -+ +a 2.0,
Since |z’| attains its maximum 1 at (1,0) and the vector field a—azz-
is tangential to S, at (1,0), we have
0=271% (1, 0) =7 (1, 0)a,=
——-ag- y U) =7 \1, 1=4;3.
This completes the proof.
We now proceed on the proof of Theorem 1.1.

4.2. The case d=1 or d=2. By Proposition 4.1, any t€%,, of
degree 1 can be transformed, by a unitary transformation, to 7’ (2) =z,
a monomial. By Proposition 4.1 again any z€9; of degree 2 can be
transformed to =#'(2)=z,2+a,2,2 by a unitary transformation. If =
satisfies CIE, then either 2,=0 or |az]j=1 by Proposition 2.2. In
either case, n’ reduces to a monomial by a unitary transformation as
we see in the table (3.4).

4.3. The case d=3. Suppose z€ P, of degree 3 satisfies CIE. By
Proposition 4.1, we may assume = is of the form
“4.1) 7w (2) =23+ apz 2%+ azzs®.
By another transformation corresponding to a suitable unitary matrix of
the form U, ,, we may assume a3>0. We compute C[7?%] as follows.
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We note that
4.2) 7 (L1, ) 2=018 4245014052+ 2450, %08
+ @20, ot +2a0a58, 0.5+ a5%C,8,
and
4.3 7 (L1, o) <2, D3=2,3 (084 @:0 1202 4+a:0,3C,9)
+32,%2, (§_15C 2+ azC_13C_23 +a5C,205%)
‘}‘321232 (g L2 +ast 2L+ a3l L)
+23(8130 3430, 5+ a5055).
We use the orthogonality relations for monomials [3, Propositions
1.4.8 and 1.4.9] in the following computation of the Cauchy integral.
From (4.2) and (4.3), we have

s cERE=[ 2 w00

() 1)1[ 7 Q7 () <z, C>ido ©)

]
) ) —13[ B OFO <5 >0

=4{(Eh+2 2124'2 +21a5}238L )0

21

I
/\

(Zaza., 71 +a225_, 7['“ )zlzzz
412!

+3(2a2 ,‘7' +a2]a2|22!4! +2a2la3|2-5—$—>21222

131
+<2 33 8! +2]a 2|2437, +az|as) ——)223}

71
=421 {(30+4]a12+ 3451 22
+ 3 (302113 +2a,%a3) 2,22,
+3(4ay+2a3| az| 2+ 104, | as|?) 21257
+ (3a3+10| a2 | 2a3+ 30| a3 | 2as3) z,°} .
Comparing the coefficients in the CIE condition C[#%%] =71, we have
the following equations from (4.1) and (4.4). Recall that 23>0 is
assumed.
(a.0) 30-+4|az|?243a?=7,,
(a.1) 3a.as+2a,2a3=0,
(a.2) 3a,(4+2]a3|?+10as5?) =as7y,
(a.3) a3(3+10]az|2+ 30as?) =as7;.
(7:>>0 is another constant)
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Case 1. a3=0 : Suppose a,#0. We solve (a.0) and (a.2) for |a,|
and get |a;]=3. If we set a;=3w with |w|=1, then

1 @ \_( 1 \3 1 V2 & _ 4
(7 «/7)‘(@‘) +30(—5) VAT AR
which is impossible for w& %P, Therefore a,=0 and z(2)==23, a
monomial.

Case 2. a3+#0 : Suppose a,=0. We solve (a.0) and (a.3) for a; and
get az;=1. But 7(z)=z;3+=2,® cannot satisfy CIE by Proposition 2. 3.

We should have ay;+#0. From (a.1), we have aZ:%w with @d=—1.

Now, we solve (a.() and (a.2) to get @z%.
Therefore, we have
71'(2) :zls+%0)21222+ ‘/].7 223
=ed— S (@) — ()

which can be transformed to the monomial ~3~1§-3—z1222 by a suitable

unitary transformation as we see in the table (3.4).

4.4. The case d=4. Suppose 7= 9P, of degree 4 satisfies CIE. By

Proposition 4.1 we may assume 7 is of the form
b4 (2) :Zl4+62212222+ 5321223+b4224.
From the CIE condition C[z?z]=7%, we have the following equations
on the coefficients as before.
(b.0) 140+10|b6212+5]83]2+2(82+2b4) b4=T1,
(b. 1) 56352‘["2(622"-264) 53‘1" 5626354:0,
(b.2) 60by-+12(8s2+284) b2+ 3082 b3 |2+ 30 (Bs2+2b2bs) ba= 5471,
(b.3) 20b3-+20|bs|283+20 (bs2+ 2b2b4) b3+ 14083 | b4 | 2=55T 1,
(b.4) 282+ 2by) +5(bs2+2b2bs) bo+35|b3| 284 +140 | b4 | 264= 5,7 ;.
(7:>>0 a constant)

Case 1. b3—=0, 8,=0 : From (b.4), 5,=0; so n(z) =2;%, a monomial.
Case 2. Bb3=0, 5,#0 : Suppose b,=0. From (b.0) and (b.4), we
have |5,| =1, which is impossible by Proposition 2. 3. We should have
b;#0. We may assume that »,=real by a suitable unitary transfor-
mation. We solve (b.0), (b.2) and (b.4) for 5, and get 5,=1; so
7 (2) =24+ b2 22,2+ 2,4, Now we have to consider CIE condition for
m=2. Comparing the coeficients of z;® and =2,82,% in C[z3%%]=7.72
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we have

332+ 17b,2=T7>,

268+ 33b,2=745, T,>>0,
from which b;=+2. Therefore we have 7(2) =2,%-+22,22,2+ 2,4, which
can be transformed to the monomial 4z,2z,2 by a unitary transformation
as seen in the table (3.4).
Case 3. b3#0, 5=0:From (b.1), 6,=0. We show that this case
cannot happen. We note that

7 1(0) = (L 850,53 ™!
=bgm 1L mILIM IS (m - 1) bymLm AL A -
and
T (D) &y mEBm = 405 + by 1373,

From the orthogonality relations for monomials [3, Propositions 1.4. 8
and 1.4.9], we have

[ 71RO Lm0 ©

7 m (m+1)1(83m+3)! m (m+4)!1(3m)!
B vy e Oy oy

and
[ 7@ Trlomdo @ =pan LG
Since #;3#0, the CIE condition (1.2) implies that
- (m+1) 3m+3) (3m+2) (3m+1) INE
™7 (4m+5) (dm+4) (4m+3) dm+2) '
4 (m+1) (m+4) (m+3) (m4-2) (m+ 1)
(4m+5) (d4m+4) (4m+3) (dm+2) ~
This is contradictory to the fact that y,—1 as m—oo. See [1, page
135].
Case 4. b3#0, b,#0: We may assume &3>0 by a unitary transfor-
mation. (b.1) and (b.3) then reduce respectively to
(b. 1), 5-b—2+2(b22+2b4) +5b2[;4:0,
(b. 3)" 20+20]b,|2+ 20632+ 40bsb,+140]8,|2=7.
From (b.0) and (b. 3)’, we should have

(4 5) 5225421'681 and bzb4=real.
If we set by=pw with p>>0 and |w|=1 and set t=5,%6, (=real), then
(4. 6) by= %wz’

and
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4.7 bzb4=—:7w3 real;

so w3=-+1. The equations (b.0), (b.1)’, (b.2), (b.3)’ and (b.4) then
can be written respectively as follows.

(b. 0)” 140+10p2+5532+2t+4—;;=71,

(b. 1) 5p+2<p2+%)w3+5%=0,

(b. 2)" 60-|—12p2+24—52—+30632+30b32%w3+60—;;2;:7’1,
(b. 3)" 20+20p2+20632+40%w3+140—;14271,

4 2
(b. 4)" 2§-+4+51732_’f_w3+10p2+35b32+ 140%#1.

We consider the cases w3=1 and w®=—1 separately.
Subcase 1. @*=1 : From (b.1)”, we have
—_ PP(2p+5)

4.8) t= eord

If we eliminate 7; from (b.0)” and (b.3)” and substitute (4.8) in
place of £, we get

(4.9) 15(5p+4)2b5%2=—2005—460p*— 184003+ 2400°+ 48000+ 1920.
From (b.3)”, (b.4)” and (4.8), we have

“.10 5(p+11) (5p+4) b= —60p*—4200°—56002+5600-+ 320.
From (b.0)”, (b.2)"” and (4.8), we again have

(4.11)

5(50+4) (13p—10) b32=—200°—3400*—100003-+13600%+ 36800+ 1280.
If we eliminate 852 either from (4.9) and (4.10) or from (4.9) and
(4.11), we have

4.12) 08— 11p°—6p*+ 3280° — 288p?—2160p—864=0.
The equation (4.12) can be factored as
(4.13) (0+2) (0—6)3(o?+5p-+2) =0.

Since p>0, p=6. (4.10) then reduces to
2890552 = — 184960,
which is impossible since 832>>0. Therefore the case w3=1 cannot
happen.
Subcase 2. @?=—1: From (b.1)”, we have
(5p—4)t=p*(20—5),
which implies 50—4++0 and
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_ p%(2p—5)
(4. 14) t= —5,—4
If we eliminate 7; and ¢ from (b.0)”, (b.3)” and (4.14), we have
(4.15) 15(50—4)285°=20p°—4600*+18400°+ 24002 — 48000+ 1920.
Eliminating 7; and ¢ from (b.3)”, (b.4)” and (4.14), we get
(4.16) 5(p—11) (5p—4)bs>=—60p*+42003— 56002 — 5600+ 320.
If we eliminate #;> from (4.15) and (4.16) we have
(4.17) 05+1105—6p*—3280%—288p?+ 21600 — 864 =0.
The equation (4.17) can be factored as
(4.18) (0—2) (p+6)3(p*—50+2) =0.
Therefore we have either p=2 or p?=5p—2. If p?=5p—2, then the
right hand side of (4.15) becomes zero; so 5;2=(, a contradiction.
Therefore p=2. We then have

3

t=—=,

2. 64 __ 8
b 27, or bg 3\/?
b4:_%,w2

We have then
72:(:) =g 4+2w~1 <9 + 3‘/__ 21~23——:]3"a)2214
=t — 22,2 (%) 2+ Sy (P5) 3 »(wz D4

3v'3

which can be transformed to the monomial 22,3z, by a suitable

3\/
unitary transformation as in the table (3.4). This completes the proof
of the Theorem 1. 1.
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