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EVALUATION FORMULAS FOR CONDITIONAL
ABSTRACT WIENER INTEGRALS II

DONG MYUNG CHUNG* AND SOON lA KANG**

1. Introduction and preliminaries

Let H be a real separable infinite dimensional Hilbert space with
inner product (., .) and norm I· I. Let B denote the completion of H
with respect to a measurable norm 11·11 on H. As H is identified as a
dense subspace of B, we identified the topological dual B* of B as a
dense subspace of H * z H in the sense that, for all y in B* and x in
H (y, x)= (y, x), where (.,.) is the natural dual pairing between B
and B*. Thus we have a triple B*cH*zH cB. Gross [4J proved
that B carries a mean zero Gaussian measure, called as the abstract
Wiener measure, which is characterized by the probability measure on
the Borel a-algebra d3 CB) of B such that

S/i<Y,X)dv(x) =exp {- ~ lyl2} for every yEB*.

The triple (H, B, v) is called an abstract Wiener space. For more de­
tails, see [4, 6J. Let Rn and C denote an n-dimensional Euc1idean sp­
ace and the complex numbers, respectively.

Let (C[O, TJ, d3(C[O, TJ), mw) denote Wiener space, i. e. C[O, TJ
denotes the Banach space {x ( .) : x is a real valued continuous func­
tion with x(O) =O} with the supremum norm and mw denotes the
Wiener measure on the Borel a-algebra t!6 (C[O, TJ) of C[O, TJ (see

[lOJ). Let C'[O, TJ= {xEC[O, TJ : x(s) = S:f(u) du, fEL2[O, TJ}.

Then it is a real separable infinite dimensional Hilbert space with inner

product (Xh X2)=S;DX1 (1:)·Dx2 (1:)d1:, where DX=~~. As is known,
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(C' [0. TJ. C[O. TJ. mw) is one of the most important examples of
abstract Wiener space [see [6J).

Let {ej; j~ll be a complete orthonormal set in H such that e/s are
in B*. For each hEH and xEB, let

(h ) - = llim t (h. ej) (ej. x). if the limit exists, :x a_oo 1=1

o , otherwise.
Then it is shown that for each h ( =F 0) in H, (h.· ) - is a Gaussian
random variable on B with mean zero. variance Ih 12• and that (h. x)­
is essentially independent of the choice of the complete orthonormal
set used in its definition. and further that (h. Ax)-=.:t(h. x)- for all
.:tER1. It is known [2.4. 9J that if {hb h2• •••• hn} is an orthogonal
set in H. then the random variables (hi' x) -' s are independent, and
that if B=C[O, TJ. H=C'[O, TJ, then

fT -(h, x)~=Jo Dh(s)dx(s)

where f; Dh(s) Jx(s) is the Paley-Wiener-Zygmund integral of Dh.

Let A be a self-adjoint, trace class operator with eigenvalues {akl
and corresponding eigenfunctions {ek}. Let

l

lim ±aj[(ej. X)~J2, if the limit exists
(x, Ax)-= a_oo j=l

o , otherwise.

For more details, see [4,5, 8J.
Let X be a Ra-valued measurable function and Y a C-valued inte­

grable function on (B, 13(B), v). Let ~ (X) denote the IT-algebra gen­
erated by X. Then by the definition of conditional expectation. the
conditional expectation of Y given ~(X), written E[YIXJ, is any
real valued ~ (X) -measurable function on B such that

SE Y dV=SEE[Y\XJdv for EE~(X).

It is well known that there exists a Borel measurable and Px-integr­
able function 1J on (Ra. dl, (Ra) , Px ) such that E[YIXJ =1JoX. where
dl, (Ra) denotes the Borel IT-algebra of Ra and Px is the probability
distribution of X defined by Px (A) =v (X-l (A» for A E dl, (Ra). The
function 1J((;), (;ERa is unique up to Borel null sets in Ra. Following
Yeh [lOJ the function 1J((;), written E[YIX=(;J, will be called the
conditional abstract Wiener integral of Y given X.
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This paper is a continuation of the paper [1,3J. In this paper, we
first establish a general formula for evaluating conditional abstract
Wiener integrals which has all the results given in Cl] as corollaries.
We next generalize translation theorem for conditional Wiener integrals
to abstract Wiener spaces.

2. A evaluation formula for conditional abstract Wiener integ­
rals

In this section we will give a general formula for evaluating condi­
tional abstract Wiener integral which has all the results given in [lJ
as corollaries.

THEOREM 2.1. Let {gh g2' "., gn} be an orthonormal set in H. Let
X and Z be measurable functions on (B, d5(B» defined, respectively, by

(2.1) X (x) = ((gh x)~, (g2' x)~, "', (gm x)~)

and

(2.2) Z(x) =F( (Sh, x)~)

where hE H, S is a bounded linear operator on Hand F is a Borel
measurable function on RI such that E[IZIJ<oo. Then

(2.3) E[ZIX=fJ- V2;,pj2S:", FLtl(Sh,g)~j+u]exp{-21~12}du

where f= (~h ~2, ' •• , ~n) ERn and Jp 12= ISh 12_ ±(Sh, gj)2.
j=l

Proof. We first note that E[Z!XJ exists since E[IZIJ<oo. Let
Sh=k. Then k can be written as.

k= 1; (k, gj)gj+P, pE [gh g2, ' .. , gnJ-L
j=l

where [gh g2, ' .. , gnJ1· stands for the orthogonal comlpement of the su­
bspace of H spanned by {gh g2, ' ••, gn}. So we have

F((k, x)~) =F Lt (k, gj) (gj' x)~+ (p, x)~].

Since (p, x)~ and (gj' x)~'s are independent,

E[ZIX= fJ =E [FL-t (k, g)~j+ (p, x)~]]

=1", FL-t (k, g)~j+u] V2:jpj2 exp{- 21~12 }du.
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n n

But !p\2=\k-L: (k,gj>gj!2=!kI 2-L:(k, gj>2. Hence we establish the
j=1 i=1

equation (2. 3) as desired.

COROLLARY 2.2. [lJ Let X be as in Theorem 2.1. Then we have

(2.4) E[(8h, x)~IX=[J=i:(8h, g)~j,
j=1

where 8 is as in Theorem 2.1.

The function in the following corollary is not a form of function
in (2, 2) ; however its conditional abstract Wiener integral can be
evaluated by using Theorem 2.1.

COROLLARY 2.3. [lJ Let X be as in Theorem 2.1. Then we have

(2.5) E[(x,Ax)~\X=[J
n n n

= TrA +<~ ~j!!j, A (~ ~jgj)> - ~ (gj' Agj>
J=1 J=1 J=1

where A is a self-adjoint, trace class operator on Hand TrA stands
for the trace of A.

Proof. Let {em} be the orthonormal eigenvectors and {am} be the
corresponding eigenvalues of A. Let (gj' em>=amj. Since (x, Ax)~=

tam((em,x)~)2, a.e. xEB, we have, by using 8=1, h=em in The-
m=l

orem 2.1
E[(x, Ax)~\X=[J

=E1am E[((em,X)~)2Ix=[J
00 [n n ]

=f1am (j~amj~j)2+(1-~la;j) .

Hence we estalish equation (2. 5) as desired.

COROLLARY 2.4. [lJ Let X be as in Theorem 2.1. Then

(2.5) E[exp{A(8h, x)~} \X= [J

=exP{Aj~(8h, gj>~j+ ~2[18hI2_j~ (8h, gj>2]}

where AE C and 8 is as in Theorem 2. 1.

REMARK 2.1. If we specialize our results in Corollaries 2.2'"'-'2.4 to
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classical abstract Wiener space C[O, TJ, then we can evaluate various
conditional Wiener integrals studied in [7J (see [lJ).

3. Translation of conditional abstract Wiener integrals

The abstract Wiener space version of the Cameron-Martin translation
theorem (see [6J, p.113) states that if hEH and if T: B-B is gi­
ven by T(x) =x+h, then for any integrable function F on Band
any r in l€ (B)

(3.1) f F(y)dv(y) =f F(x+h)J(h, x)dv(x)
r T-Ir

where

(3.2)

The following is abstract Wiener space version of translation theorem
for conditional Wiener integrals studied in [7J.

THEOREM 3.1. Let X be as in Theorem 2.1 and let hEH. If F is
integrable, then

(3.3) E[F(y) IX(y) =fJ

=E[F(x+h)J(h,x) IX(X+h)=fJexp {- ~ IG(h) 12+(G(h), f>}
where G(h) = «gh h), ..•, (gm h» and f= (~h ..., ~n) ERn.

Proof. Since ::leX) cJ3(B) , (3.1) shows that for any AEJ3(~),

f F(y) dv (y) =f F(x+h)J(h, x)dv(x).
X-I CA) T-ICX-ICA))

SO by the definition of conditional abstract Wiener integral, we have

f F(y) dl.J (y) =f E[F(y) IX (y) = fJdvoX-l ( f)
X-ICA) A

and

f F(x+h)J(h, x)dl.J(x)
T- 1cx- 1 CA))

= fA E[F(x+h)J(h, x) Ixo T(x) = fJdvo(Xo T)-l (f).

Hence for any A E l€ (Rn) ,

fA E[F(y) I X(y) = fJdvoX-l(f)
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= fA E[F(x+h)J(h, x) IXoT(x) = tJdvo(XoT)-l (t)

= fAE[F(x+h)J(h, x) \XoT(x) = tJ· dJ)~~~~T2-1 (t)dvoX-l(t)

from which we have

(3. 4) E[F(y) IX(y) = tJ
=E[F(x+h)J(h, x) !X(x+h) = [J. dv~c;iT2-1 (t).

But

dvo(XoT)-l(t)=[ 1 ]lIexp{_llt-G(h)12}
d f.t .y'21t 2

and

dJ);~-l (t) = [ J21t) 11 exp{- ~ I t1 2
}

where f.t denotes the Lebesgue measure on Rn. So we have

dV~~~~T2-1 ([)=exp{- ~(IG(h) 12+(G(h), t»}

This together with (3. 4) gives the equality (3. 3).

The following example shows that Corollary 2. 4 can also be obtained
by using Theorem 3. 1.

EXAMPLE 3. 1. Let X be as in Theorem 2. 1 and let
Z(x) =exp{~(Sh,x)~} where ~ERl, hER and S is a bounded linear
operator on H. By choosing F=1 and t 1j+G(h) in Theorem 3.1,

1=E[F(x) IX(x) = 1j+G(h)J

=E[J(h, x) \X(x) =1j] 'exp {- ~ IG(h) 12+(G(h), 1j+G(h»}.

Hence we have, by using (3.2)
(3.5) E[exp{ - (h, x)~} !X(x) = 1jJ

=expg Ih12} .exp {- ~ !G(h) 1
2-(G(h), 1j>}

By replacing h by -J..(Sh), we obtain

E[ZIX=tJ=exp{~ ISh\2_
A; IG(Sh) 1

2+J..(G(Sh), t>}.

It can be shown that using analytic continuation, this result coincides
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with Corollary 2. 4.

In the next example, using Theorem 3.1 we obtain the correspon­
ding result of Park and Skoug's for Wiener space [7J.

EXAMPLE 3.2. Let B be the Wiener space C[O, T] with Wiener
measure mw • Let us fix a partition {O=to<tl<···<tn=T} of [0, TJ
and let gjEC' [0, T] be defined by

1 STgj(r) = V 1 (u) duo
tj-tj-l 0 [tj-I> tj]

Then {gI> .••, gn} is an orthonormal set in C'[O, T]. Let hEC'[O, T]

be defined by her) = f:!(u)du for some !EV[O, TJ. Then for any

Wiener integrable function F on C[O, TJ, we have

E[F(y) Iy(tl) =~h .•• , y(tn) =~nJ

=E[F(Y) I (gl' y)~= ~l-~O , ... , (gm y)~ ~n-~n-l J. C;0=0
Vtl-tO -Vtn-tn-l

=E[F(x+h)J(h, x) I (gj, x)~+<gj, h) = C;j-~j-l , j=l, ... , nJ
-Vtj-tj_l

=E[F(X+h)J(h,x) I (gj,x)~= C;j-C;j-l h(tj ) -h(tj-l) ,j=l"",n]
Vtj-tj_l -Vtj-tj_l

'exp {_..l±<gj, h)2+±<gj, h) C;j-C;j-l }
2 j =1 j=1 Vtj-tj-I

=E[F(x+h)J(h, x) Ix(tj) =~j-h(t), j=l, 2, ... , nJ
..nexp{- (h(tj) -h(tj_l))2 + (h(t) -h(tl-I)) (C;j-C;j-l) }

J=1 2 (tj-tj-I) tj-tj_l
which agrees with the result in Theorem 4 [7J.
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