THE GENERALIZED BESSEL TRANSFORMATIONS ON THE SPACES L'_{λ} , OF DISTRIBUTIONS

J. J. BETANCOR AND E.R. NEGRIN

1. Introduction

Two variants of the Hankel transformations that are called Bessel transformations (they are also called Hankel-Schwartz's transformations) are defined by

$$B_{\mu,1}(f)(y) = \int_0^\infty x^{2\mu+1} b_{\mu}(xy) f(x) dx$$

and

$$B_{\mu,2}(f)(y) = y^{2\mu+1} \int_0^\infty b_{\mu}(xy) f(x) dx.$$

Here $b_{\mu}(z) = z^{-\mu}J_{\mu}(z)$, where J_{μ} is the Bessel function of the first kind and order μ . These transformations have been studied extensively in the last years. Significant papers are the ones of G. Altenburg [1], A. Schuitman [13], W.Y. Lee [5], A.M. Sanchez [12] and J.M. Mendez [6], amongst others.

In this paper we study the behaviour of the Bessel transformations on the spaces $L_{p,\nu}$ introduced by P.G. Rooney [9]. We prove that the $B^{\mu,1}$ -transformation is a bounded linear operator of $L_{p,\nu}$ into $L_{p,p(2\mu+2)-\nu}$, provided that $1 , <math>\mu > -\frac{1}{2}$ and $\mu + \frac{3}{2} < \frac{\nu}{p} < 2\mu + 2$.

Also, if $1 , <math>\mu > -\frac{1}{2}$ and $-\mu + \frac{1}{2} < \frac{\nu}{p} < 1$ then $B_{\mu,2}$ is a bounded linear operator of $L_{p,\nu}$ into $L_{p,-\nu-2\mu p}$.

Moreover if $f \in L_{q, (\nu-2\mu-1)q-\nu}$ and $g \in L_{p,\nu}$ then

$$\int_{0}^{\infty} f(x) B_{\mu,1}(g)(x) dx = \int_{0}^{\infty} B_{\mu,2}(f)(y) g(y) dy$$
 (1)

provided that $1 , <math>\frac{1}{p} + \frac{1}{q} = 1$, $\mu > -\frac{1}{2}$ and $\mu + \frac{3}{2} < \frac{\nu}{p} < 2\mu + 2$.

Received March 7, 1989. Revised January 10, 1990.

J. J. Betancor and E. R. Negrin

The mixed Parseval's equation (1) suggests definitions of the generalized Bessel transformations. More exactly, we define the generalized $B'_{\mu,1}$ -transformation on $L'_{q,\nu+(1-\nu)q}$ as the adjoint of the classical $B_{\mu,2}$ -transform, so that

$$\langle B_{\mu,1}^{'}f,\phi \rangle = \langle f,B_{\mu,2}\phi \rangle,$$
 (2)

for every $f \in L'_{q,\nu+(1-\nu)q}$ and for every $\phi \in L_{q,(\nu-2\mu-1)q-\nu}$, provided that $1 < q < \infty$, $\mu > -\frac{1}{2}$ and $\mu + \frac{3}{2} < \nu \left(1 - \frac{1}{q}\right) < 2\mu + 2$.

The generalized $B'_{\mu,2}$ -transformation on $L'_{\mu,(2\mu+2)p}$, is defined as the adjoint of the $B_{\mu,1}$ -transformation, through

$$\langle B'_{\mu,2}f, \phi \rangle = \langle f, B_{\mu,1}\phi \rangle, \ \forall f \in L'_{\mu,(2\mu+2),p-\nu}, \ \forall \phi \in L_{\mu,\nu}$$
 (3)

provided that $1 , <math>\mu > -\frac{1}{2}$ and $\mu + \frac{3}{2} < \frac{\nu}{p} < 2\mu + 2$.

Note that (2) and (3) appear to be extensions of the mixed Parseval equation (1).

We now briefly recall definitions and some properties of space $L_{p,\nu}$ introduced by P.G. Rooney [9]. Suppose $1 \le p < \infty$, ν is real, and denote by $L_{p,\nu}$ the collection of functions f, measurable on $(0,\infty)$, and which satisfy

$$||f||_{p,\nu} = \left[\int_0^\infty x^{\nu-1}|f(x)|^p dx\right]^{1/p} < \infty.$$

The space $D(0, \infty)$ consists of all smooth complex-valued function having compact support contained in $(0, \infty)$.

Proposition 1. $D(0,\infty)$ is dense in $L_{p,\nu}$ for any ν and any p satisfying $1 \le p < \infty$.

For $\gamma > 0$, Re $\alpha > 0$, Re $\beta > 0$, let

$$(I_{\tau,\alpha,\zeta}f)(x) = \frac{\nu}{\Gamma(\alpha)} \int_0^1 (1-u^{\tau})^{\alpha-1} u^{\nu\zeta-1} f(ux) du \tag{4}$$

$$(J_{\tau,\beta,\eta}f)(x) = \frac{\nu}{\Gamma(\alpha)} \int_{1}^{\infty} (u^{\tau} - 1)^{\alpha - 1} u^{-\nu(\beta + \eta - 1) - 1} f(xu) du \qquad (5)$$

where ζ and η are complex numbers. $I_{\nu,\alpha,\zeta}$ and $J_{\nu,\beta,\eta}$ are generalizations of the Riemann-Liouville and Weyl fractional integrals, respectively. There are vast literatures of these fractional integrals, particularly for $\nu=1$ and $\nu=2$; see [4] for an excellent summary, and [3] for many applications.

The generalized Bessel transformations on the spaces $L'_{\mu\nu}$ of distributions

A property that will be useful in the sequel is the following one.

Proposition 2. (P.G. Rooney [9]). If $\frac{\gamma}{b\nu} < Re \zeta$, $I_{\nu,\alpha,\zeta}$ is a bound-

ed linear operator of $L_{p,\tau}$ into itself and if $\frac{\gamma}{p\nu}\gg -Re$ η , then $J_{\nu,\beta,\eta}$ is a bounded linear operator of $L_{p,\tau}$ into itself.

The following behaviours near the origin and the infinity of the function $b_{\mu}(z)$ can be deduced of the correspondent ones of the Bessel function $J_{\mu}(z)$ and they will be used in the sequel,

$$b_{\mu}(z) = O(1)$$
, as $z \rightarrow 0$ (6)
 $b_{\mu}(z) \simeq z^{-\mu - (1/2)}$, as $z \rightarrow \infty$ (7)

$$b_{\mu}(z) \simeq z^{-\mu - (1/2)}, \text{ as } z \to \infty$$
 (7)

The Bessel transformations on the spaces $L_{p,\nu}$

In this section we study the behaviours of the Bessel transformations on the spaces $L_{p,\nu}$.

THEOREM 1. The $B_{\mu,1}$ -transformation is a bounded linear operator of $L_{p,\nu}$ into $L_{p,\,p(2\mu+2)-\nu}$, provided that $1 \le p < \infty$, $\mu > -\frac{1}{2}$ and $\mu + \frac{3}{2} < \frac{\nu}{p}$ $< 2\mu + 2$.

Proof. According to the definition of the $B_{\mu,1}$ -transform, we have $B_{\mu,1}(\phi)\left(\frac{1}{\nu}\right) = \int_0^\infty b_{\mu}\left(\frac{x}{\nu}\right) x^{2\mu+1}\phi(x) dx = y^{2\mu+2} \int_0^\infty b_{\mu}(u) u^{2\mu+1}\phi(uy) du$ In virtue of behaviours (6) and (7) of the function b_{μ} , it follows

$$\left| y^{-2\mu-2} B_{\mu,1}(\phi) \left(\frac{1}{y} \right) \right| \\ \leq C \left[\int_0^1 u^{2\mu+1} |\phi(uy)| du + \int_1^\infty u^{\mu+(1/2)} |\phi(uy)| du \right]$$
(8)

for a certain positive constant C and $\phi \in L_{p,\nu}$.

According to (4) and (5) we can write

$$(I_{1,1,2\mu+2}\phi)(y) = \int_0^1 u^{2\mu+1}\phi(uy)du$$

$$(J_{1,1,-\mu-(9/2)}\phi)(y) = \int_1^\infty u^{\mu+(1/2)}\phi(uy)du$$

and by using Proposition 2, $I_{1,1,2\mu+2}$ and $J_{1,1,-\mu-(3/2)}$ are bounded

J. J. Betancor and E. R. Negrin

linear operators of $L_{p,\nu}$ into itself, provided that $\mu + \frac{3}{2} < \frac{\nu}{p} < 2\mu + 2$, $1 and <math>\mu > -\frac{1}{2}$.

Then, from (8) if
$$\mu + \frac{3}{2} < \frac{\nu}{p} < 2\mu + 2$$
, $1 and $\mu > -\frac{1}{2}$,
$$\left\| y^{-2\mu - 2} B_{\mu, 1}(\phi) \left(\frac{1}{y} \right) \right\|_{\nu, p} \le C_1 \|\phi\|_{\nu, p}$$$

where C_1 is a positive constant; and in other words,

$$||B_{\mu,1}(\phi)(y)||_{p(2\mu+2)-\nu, p} \le C_1 ||\phi||_{\nu, p}$$

under above conditions.

Hence, $B_{\mu,1}$ is a bounded linear operator of $L_{p,\nu}$ into $L_{p,p(2\mu+2)-\nu}$ under the imposed hypotheses.

On the other hand, since

$$B_{\mu,2}(\phi)(y) = y^{2\mu+1}B_{\mu,1}(x^{-2\mu-1}\phi)(y)$$

we can deduce from Theorem 1, the following

COROLLARY 1. If
$$1 , $\mu > -\frac{1}{2}$ and $-\mu + \frac{1}{2} < \frac{\nu}{p} < 1$, then $B_{\mu,2}$ is a bounded linear operator from $L_{p,\nu}$ into $L_{p,-\nu-2\mu p}$.$$

Remark. The behaviour of the Hankel transformation on the spaces $L_{p,\nu}$ was studied by P.G. Rooney in [10] and [11]. However the approach followed by Rooney is essentially different to the method used by us in this paper.

3. The generalized Bessel transformations on $L_{\scriptscriptstyle A\nu}$

This section is devoted to define the generalized Bessel transformations on the spaces $L_{p,\nu}$ of distributions. Definitions of said transformations can be understood as generalizations of the mixed Parseval's equation that is proved in the next

PROPOSITION 3. If
$$f \in L_{p,\nu}$$
, $g \in L_{q,(\nu-2\mu-1)q-\nu}$, $1 , $\frac{1}{p} + \frac{1}{q} = 1$, $\mu > -\frac{1}{2}$ and $\mu + \frac{3}{2} < \frac{\nu}{p} < 2\mu + 2$, then
$$\int_{0}^{\infty} g(x)B_{\mu,1}(f)(x)dx = \int_{0}^{\infty} B_{\mu,2}(g)(y)f(y)dy \qquad (9)$$$

The generalized Bessel transformations on the spaces $L'_{\ell,\nu}$ of distributions

Proof. If $f \in D(0, \infty)$ and $g \in D(0, \infty)$, then

$$\int_{0}^{\infty} g(x) B_{\mu,1}(f)(x) dx = \int_{0}^{\infty} g(x) \int_{0}^{\infty} y^{2\mu+1} b_{\mu}(xy) f(y) dy dx$$

$$= \int_{0}^{\infty} f(y) y^{2\mu+1} \int_{0}^{\infty} b_{\mu}(xy) g(x) dx dy = \int_{0}^{\infty} B_{\mu,2}(g)(y) f(y) dy$$

the interchange of the orders of the integration being easily justified by Fubini's theorem. Thus (9) is true if $f \in D(0, \infty)$ and $g \in D(0, \infty)$, and hence, since $D(0, \infty)$ is dense in $L_{p,\nu}$, the general result will be true if we show that both sides of (9) represent bounded bilinear functionals on $L_{p,\nu} \times L_{q,q(2\mu+2)-\nu}$.

Now, since $1 , <math>\frac{1}{p} + \frac{1}{q} = 1$, by using Holder's inequality, one has

$$\left| \int_0^\infty g(x) B_{\mu,1} f(x) dx \right| \leq \|B_{\mu,1}(f)\|_{p(2\mu+2)-\nu, p} \|g\|_{(\nu-2\mu-1)q-\nu, q}$$

Moreover, since $\mu + \frac{3}{2} < \frac{\nu}{p} < 2\mu + 2$, $B_{\mu,1}$ is a bounded linear operator of $L_{p,\nu}$ into $L_{p,p(2\mu+2)-\nu}$, and we can deduce

$$\left| \int_0^\infty g(x) B_{\mu,1}(f)(x) dx \right| \le C \|f\|_{\nu,p} \|g\|_{(\nu-2\mu-1)q-\nu,q}$$

where C is a certain positive constant, so that the left hand side of (9) is a bounded bilinear function on $L_{p,\nu} \times L_{q,q(2\mu+2)-\nu}$, as the right hand side on (9) by a similar calculation, and the result follows.

We now define the generalized $B'_{\mu,1}$ -transformation on $L'_{q,\nu+(1-\nu)q}$ as the adjoint on the classical $B_{\mu,2}$ -transform, through

$$\langle B'_{\mu,1}f,\phi \rangle = \langle f,B_{\mu,2}\phi \rangle, \ f \in L'_{q,\nu+(1-\nu)q}, \phi \in L_{q,(\nu-2\mu-1)q-\nu}$$
 (10)
From Corollary 1, we can deduce the following

THEOREM 2. If $1 < q < \infty$, $\mu > -\frac{1}{2}$ and $\mu + \frac{3}{2} < \nu \left(1 - \frac{1}{q}\right) < 2\mu + 2$ then the generalized $B'_{\mu,1}$ -transformation is a bounded linear operator of $L'_{q,\nu+(1-\nu)q}$ into $L'_{q,(\nu-2\mu-1)q-\nu}$.

Note that definition (10) represents an extension of the mixed Parseval's equation (9).

On the other hand, if $f \in L_{p,\nu}$ then by invoking again Holder's inequality

J. J. Betancor and E. R. Negrin

$$\left| \int_0^\infty f(x)\phi(x)dx \right| \le ||f||_{\nu,p} ||\phi||_{\nu+(1-\nu)q,q}$$

where $\frac{1}{p} + \frac{1}{q} = 1$. Hence f generates a regular distribution in $L'_{q,\nu+(1-\nu)q}$ and, in this sense, $L_{p,\nu}$ is contained in $L'_{q,\nu+(1-\nu)q}$.

Thus if $f \in L_{p,\nu}$ then we can define the generalized $B'_{\mu,1}$ -transformation $B'_{\mu,1}f$ of f and the classical $B_{\mu,1}$ -transformation $B_{\mu,1}f$ of f. We can prove that $B'_{\mu,1}f = B_{\mu,1}f$ in the sense of equality in $L'_{q,(\nu-2\mu-1)q-\nu}$. In effect, if $\phi \in L_{q,(\nu-2\mu-1)q-\nu}$ then by using (9)

$$< B_{\mu,1}f, \phi> = \int_0^\infty (B_{\mu,1}f)(x)\phi(x)dx = \int_0^\infty f(x)(B_{\mu,2}f)(x)dx$$

= $< f, B_{\mu,2}f> = < B_{\mu,1}f, \phi>$

Therefore the classical $B_{\mu,1}$ -transformation is a special case of the generalized $B'_{\mu,1}$ -transform.

In a similar way we can define the $B'_{\mu,2}$ -transformation. More exactly if $f \in L'_{\mu,\mu(2\mu+2)-\nu}$ the $B'_{\mu,2}$ -transformation $B'_{\mu,2}f$ of f is defined by $\langle B'_{\mu,2}f,\dot{\phi} \rangle = \langle f, B_{\mu,1}\phi \rangle$, for every $\phi \in L_{\mu,\nu}$

and from Theorem 1 we can deduce

THEOREM 3. If $1 , <math>\mu > -\frac{1}{2}$ and $\mu + \frac{3}{2} < \frac{\nu}{p} < 2\mu + 2$, then the generalized $B'_{\mu,2}$ -transformation is a bounded linear operator of $L'_{b,\nu}(2\mu+2)-\nu$ into $L'_{b,\nu}$.

We can see that the classical $B_{\mu,2}$ -transformation is a special case of the generalized $B'_{\mu,2}$ -transformation.

References

- 1. G. Altenburg, Bessel transformationen in Raumen von Grundfunctionen uber dem intervall $\Omega = (0, \infty)$ und derem dual raumen, Math. Nachr., 108 (1982), 197-218.
- L. S. Dube and J. N. Pandey, On the Hankel transform of distributions, Tohoku Math. J., 27 (1975), 337-354.
- 3. A. Erdelyi, On some functionals transformations, Univ. e Politec. Torino Rend. Sem. Mat. 10 (1951), 217-234.
- 4. H. Kober, On fractional integrals and derivatives, Quart. J. Math. Oxford Ser. I (1940), 193-211.

The generalized Bessel transformations on the spaces $L'_{t,\nu}$ of distributions

- W. Y. Lee, On Schwartz's Hankel transformation of certain spaces of distributions, SIAM J. Math. Anal., 6, N. 2 (1975), 427-432.
- J.M. Mendez, On the Bessel transform of arbitrary order, Math. Nachr., 136 (1988), 233-239.
- 7. J. M. Mendez, A mixed Parseval equation and the generalized Hankel transformation, Proc. Amer. Math. Soc., 102(3) (1988), 619-624.
- 8. O.P. Misra and J.L. Lavoine, Transform analysis of generalized functions, North Holland, Amsterdam, 1986.
- 9. P.G. Rooney, On the ranges of certain fractional integrals, Can. J. Math., XXIV (1972), 1198-1216.
- 10. P.G. Rooney, A technique for studying the boundedness and extendability of certain types of operators, Can. J. Math., XXV (1973), 1090-1102.
- 11. P.G. Rooney, On the range of the Hankel transformation, Bull. London Math. Soc., 11 (1979), 45-48.
- 12. A.M. Sanchez, La transformacion integral generalizada de Hankel-Schwartz, Doctoral Thesis, Department of Math. Anal., Univ. of La Laguna, 1988.
- 13. A. Schuitman, On certain test function space for Schwartz's Hankel transformation, Delft Progress Rep. (2) (1977), 193-206.
- 14. L. Schwartz, Theorie des distributions, Ed. Hermann, Paris, 1957-59.
- A. L. Schwartz, An inversion theorem for Hankel transform, Proc. Amer. Math. Soc., 22, N. 3 (1969), 713-717.
- 16. E.C. Titchmarsh, Introduction to the theory of Fourier integrals, Oxford Univ. Press, Oxford, 1948.
- 17. G.N. Watson, A treatise on the theory of Bessel functions, Cambridge Univ. Press, Cambridge, 1958.
- A. H. Zemanian, Distribution theory and transform analysis, McGraw Hill Book Co., New York, 1965.
- A. H. Zemanian, Generalized integral transformations, Interscience Publishers, New York, 1968.

Departamento de Analisis Matematico Facultad de Matematicas Universidad de La Laguna La Laguna (Tenerife) Canary Islands, Spain