
J. Korean Math. Soc. 27(1990). No.1. pp.77-86

ON DUALITIES FOR STRONGLY
DECOMPOSABLE OPERATORS

JAE CHUL RHO AND TAE-GEUN CRO

1. Notations and definitions

Throughout this note, X denotes a complex Banach space, B (X)
the Banach algebra of all bounded linear operators of X and X* the
dual of X. For an operator TEB(X), T* denotes the dual operator
of T. If M is a closed T-invariant subspace of X, we write TIM
for the restriction and TIM for the operator induced by T on the
quotient space XI M. For NeX, let NJ.. be its annihilator in X*, N
the closure of N. The symbol q(T) stands for the spectrum of T. We
denote 'U and ~ the class of all open subsets and the closed subsets in
the finite complex plane C respectively. If T has the single valued
extension property, we denote XT(F) = {XEX : q(x, T) eF}. This is
a linear subspace of X but not necessarily closed even if F is closed
in C. The set theoretic difference between two sets A and B is denoted
by A-B.

DEFINITION 1.1 ([3J). Let TEB(X). A T-invariant subspace Z
is said to be spectral maximal for T if for any T-invariant subspace
Y such that q(TI Y)eq(TIZ) we have that YeZ.

We denote the set of all spectral maximal subspaces for T by
SM(T).

DEFINITION 1. 2 ([3J). An operator TEB(X) is said to be decom­
posable if for any :finite system {Gh G2, •••••• , Gn} of open subsets of C
that cover q(T), there exist spectral maximal subspaces {YI , Y2, •••••• ,

Yn} such that x=i;y. and q(TIY.)eG. for i=I,2, ,n.
;=1 ' r:,
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It is known that if Tis decomposable, then SM(T) = {XT(F) :
FE~}.

DEFINITION 1.3 ([9J). The T-invariant subspace Y is called analy­
tically invariant if for each X-valued analytic function f defined on a
region Vf in C such that (A-T)f(.:l) E Y for AE Vb then it follows
that f(A) E Y for AE V f .

It is known that "Spectral Maximal" implies "Analytically invariant"
but the converse is false. We denote the class of all analytically inva­
riant subspaces for T by AI(T). Thus SM(T) cAI(T).

DEFINITION 1. 4 ([6J). A decomposable operator is strongly decom­
posable if the operator TI Y is decomposable for every T-spectral
maximal subspace Y. .

2. Analytical spectral resolvent (ASR)

DEFINITION 2.1. A map E: ra-?AI(T) is said to be an analytic
spectral resolvent of T if

( i) E(tft) = CO},
(ii) For any finite open cover {GI. G2, •••••• , G,,} of q(T),.

X= ,EE(Gi ),
i=1

(iii) q(TIE(G»cG for each CEra.

Thus an ASR is a spectral resolvent, which is defined in [5J, whose
range is analytically invariant subspaces.

The ASR for T is not unique as well as the spectral resolvent,
there are typical types of ASR for T.

REMARK 2. 2. Let T be strongly decomposable, then the map E
defined by E(G) =XT(G) (GEra) is an ASR for T.

For, it is known that if T is decomposable then XT(G) is analyti­
cally invariant for each GEra. Obviously E(tft) =XT(tft) = {O}, and
q(TIE(G» =q(TIXT(G» cq(TIXT(G» cG(GEU) hold since XT(G)
cXT(G), and both XT(G), XT(G) are analytically invariant under
T; in fact, XT(G) is spectral maximal so it is analytically invariant.
For any finite open cover {GI. G2, •••••• , G,,} of q(T),
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tE(G.) = I:XT(G.):::) I:XT(Gi ) =XT( UGi ) =XT(q(T) =X,
;=1 ';=1 t ;=1 i=1

the second equality holds since T is strongly decomposable (see [6J,
p. 86, Lemma 12. 7).

REMARK 2.3. Let T be decomposable. The map E defined by E(G)
=XT(G) (GE1t) is an ASR for T.

Proof. Let {Gi }i=l be any open covering of q(T), it is known that. .
X=XT(q(T))C~XT(G.), thus X=~XT(G.).

;=1 J ;=1'

Obviously, q(T!XT(G»cG and XT({O})=q;.

THEOREM 2.4. If T has an ASR E : 1J---+AI(T) , then T is decom­
posable.

There are three different methods of proof on this theorem. Among
those we give a proof using the following theorem.

THEOREM 2.5 ([10J). For an operator T, the following are equiva­
lent.

(a) T is decomposable.
(b) For every open set G in C, there is a T-invariant subspace M

such that q(TIM)cG and q(TjM)cC-G.

Proof of Theorem 2.4. Since q(TIE(G» cG by definition, and
q(TjE(G» cC-G holds if E(G) is analytically invariant under T
(see [5J, p.60, Theorem 10). (In fact, q(TjE(G)Cq(T)-G since
q(TjE(G» cq(T». Hence the conclusion follows by Theorem 2.5.

Further properties for an operator T having ASR were studied in
[l1J.

3. A duality theorem for a strongly decomposable operator

In this section, we prove the main result, that is, if T is strongly
decomposable with the spectrum q(T) of T, under some conditions,
the dual operator T* of T is strongly decomposable.

To begin with we list here some basic results.
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PROPOSITION 3.1 ([IJ, p.l; [9J, p.231). Let Yand Z be T-inva-
ri4nt suhspaces such that YCZ. Then

(1) YEAI(T) implies YEAI(TIZ)
(2) YEAI(TIZ), ZEAI(T) implies YEAI(T)
(3) ZEAI(T) if and only if Z/YEAl(T/Y)
(4) (T\Z) IY=TI Y
(5) (TIZ)/Y=(T/Y) I(Z/Y)

We prove the following lemma using the above proposition.

LEMMA 3.2. Let T be decomposable. For an open set G in C, we
put Y(G) =XT(G) , Z(G)=XT(G), Y(G)=Z(G)/Y(G), 1'=T/Y(G)
~ (G) =X/ Y(G) and T* is the dual operator of 1'. Then

q(1'1 Y(G» cG, q(1'/Y) cC-G
and Y is analytically invariant under T.

Proof. Let G be arbitrary open in C but fixed, let Y=Y(G), Z=
Z(G) and Y=Y(G). By proposition 3.1, (3), Y=Z/Y is analytically
invariant under 1'=T / Y since both Y and Z are analytically invariant
under T. Since T is decomposable, Y=XT(G) is analytically invariant
under T, it is also analytically invariant under T IZ. Thus we have

q[ (TI Z) / Y] cq(T IZ) =q(T IXT(G» cG;
the first inclusion follows from the fact that, in general, if Y is anal­
ytically invariant (or spectral maximal) under T, then q(T) =q(TI Y)
uq(T/ Y) (see [9J, p.227, Proposition 1. 5).

Moreover, from the equality (T IZ) / Y= (T/ Y) I (Z / Y), we have
q(1'1 Y)=q[(T/Y) I(Z/Y)J=q[(TIZ)/Y]cG:

Since GE'lJ, is arbitrary, we have q(TI Y(G» cG for any GE'lJ,.

Again :fix G. By the identification (T/Z)*=T*IZol=T*IXT(G)ol,
we get

q(T* IXT(G)ol) =q[(T/Z)*J =q(T/Z).
Furthermore, since YcZ, we have the following unitarily equival­

ence relation
(T/Y)*I(Z/y)ol::T*IZol (see [7J, p.292, Lemma 5).

Therefore
q«T)* IYol) =q(T* IZol) =q[(T/Z)*J=q(T/Z)

=q(T/XT(G» cC-G,
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the last inclusion holds since Z (G) =X T (G) (=E (G) ) defines an
ASR for T as we noted in Remark 2.3. In fact (J(T/ XT(G)) c(J(T)
-G since (J(T/XT(G)) c(J(T).

The arbitrariness of G implies (J[(1')* I Y(G).lJ cC-G for every G
El1. It follows that (J(T/Y)=(J[(T/Y)*J=(J[(1')*1 Y(G).LJcC-G.

We have proved the lemma.

Now, we consider again the identification (T/XT(G))*=T*IXT(G).l.
Since SM(T*) = {XT(C -F).l : FEm = {XT(G).L : GEU} (see [8J,
p.1057, Remark), T* is strongly decomposable if and only if
T*IXT(G).l is decomposable for every GEU. Therefore, T* is
strongly decomposable if and only if T/XT(G) is decomposable for every
GEU since, in general, AEB(X) is decomposable if and only if A*
is.

It is known that if T is strongly decomposable then T / M is decom­
posable for any spectral maximal space M for T. Since XT(G) =
XT(Gn(J(T)), if (J(T) is finite then T/XT(G) is decomposable for
any GEU, whence T* is strongly decomposable.

Thus we have the following

PROPOSITION 3.3. Let T be strongly decomposable. If the spectrum
of T is finite, then T* is strongly decomposable.

THEOREM 3.4. Let T be strongly decomposable. If the spectrum (J(T)
of T does not contain any isolated point, the interior of (J (T) =G 0 is
nonempty and XT(G o) =X then T* is strongly decomposable.

Proof. For those open sets such that Gn(J(G) =4>, XT[Gn(J(T)J
= to}, whence T/XT(G) =T is decomposable. So we may assume
without loss of generality that Gn(J(T) =1=4>. Let GEU be arbitrary
but fixed, and let H be any open set in C. \Ve put Y=XT(G) ,
Z=XT(GUH), Y=Z/Y, T=T/Yand let (7')* be the dual of T.

By the Similar proof as that of Lemma 3.2, Y is analytic invariant
under T. Now, we prove that

(*) (J(TI y) cR, (J(T/Y)cC-H for any HEU.
Then, by Theorem 2.5., T=T/XT(G) is decomposable. Arbitrariness
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of G implies that T* is strongly decomposable.

For an open set H such that 0'(1") nH=if>,
0'(1" I{OD =if>cH, 0'(1"/ {OD =0'(1") cC-H;

where 0 is the zero vector in X/XT(G), that is, XT(G)=O. Therefore,
without loss of generality, we may assume that 0' (1") nH =1= if>. Since
0'(1") =q(T/XT(G)) cC-G, 0'(1") nH=I=if>, so H-G=I=¢J and q(T) nH

=1= ifJ.

Case (a). q(TIXT(GU H)) =l=q(T).

Since T IZ=T IX T(G UH) is decomposable, we have
(**) q[TIXT(GUH)J-Gcq(T\Z)-q(TI Y)

=q(TIZ) -q[(TIZ) IY] cq[(TIZ) /Y]=q(TI Y) cq(TIZ) -G;
the last inclusion holds since YEAI(TIZ), so q[(TIZ)/Y]cq(TIZ);
and since YEAI(T), 0'(1"1 Y) cq(T) =q(T/XT(G)) cC-G.

As we stated in Remark 2.2, E(G) =XT(G) defines an ASR for T,
q(T) nGcq(T\XT(G)) cGnq(T) (GEU) (see [12J, p.81, Prop.17),
and (GUH) nq(T) cq(TIZ) cGUHnq(T). Moreover since (GUH)
nq(T) =l=ifJ, q(T) contains no isolated point, so (GUH) nq(T)=
GUHnq(T), also Gnq(T)=Gnq(T).
Thus we have

q(TIZ) -G=q(TIZ) -Gnq(TIZ):J (GUH) nq(T) -Gnq(TIZ)
=[Gnq(T)] U [R nq(T)J-Gnq(TIZ) =l=ifJ.

We claim that
[q(TIZ)-G]-=q(TIZ)-G.

Suppose [q(TIZ)-G]-~q(TIZ)-G. Choose A belong to the right
but not the left, then dist. fA, [q(TI Z) -G]-}>0.
While AE[q(TIZ)-G]-[q(TIZ)-G]=q(TIZ) naG, where aG=G
-G, the boundary of G. But this implies AE [q(TIZ) -G]-, which
is a contradiction. Therefore, we get, by (**) , that

0'(1"1 y)=[q(T\Z)-q(TI Y)]-c[GUHnq(T) -G-=-n-q=(T=)]­
=[(Gnq(T)) U (R nq(T)) -Gnq(T)]-cR nq(T) cR.

i. e. 0'(1"1 Y) cR.

Case (b). q(TIXT(GUH)=q(T).

In this case, (**) can be written by
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geT) -Gcg(T) -g(TI Y) cg(T/Y) cg(T) -G.
( i) If geT) -G=t/J then g(T If) Cg(T) =g(T/Y) =t/J.

Thus q(TI f) eH for any HEra.
(ii) If q(T) -G=I=t/J, then, by the same calculation as in (a), we

have
[q(T)-GJ-=q(T)-G, so [g(T)-g(TI Y)J-=q(T/Y).

Hence g(TI f) cg(T/ Y) = [geT) -g(TI Y) J-
c[GuH) ng(T) -Gng(T)J-cH.

(iii) Finaly, if q(T) -G=t/J but gCT) -G=I=t/J, then
X=XT(G o) cXT(Gnq(T)).

Thus X/XT(G) is the zero vector. Therefore, we have
q(TI f) =g[(T/Y) IX/XT(G))J=t/JcH.

For the second inclusion, the proof is the same as that of Lemma
3.2; by the identification (T/Y)*(Z/y)l.=T*IZ.L, we have

geT/f) =q[(T/f)*J=g[(T)* Ifl.J=q(T* IZl.)
=g[(T/Z)*J=g(T/Z) cC- (GUH) cC-H.

We completes the proof.

EXAMPLE 3. 5. Let T be strongly decomposable with the spectrum
q(T) = [a, bJ, a<b. We prove that T* is strongly decomposable.
According to the Theorem 3.4, it is enough to show that XT[ (a, b)J
=X since Go = (a, b).

We choose a system of open sets G,,= (a- ~, a+ ~) U (b- ;, b+

~) in R, n=l, 2, Then G..+lcG" for n=l, 2, , whence

- - - 1 1XT(G,,+l) cXT(G"),G,,ng(T) = [a, a+nJ U (b- n , bJ, and

n[G"ng(T)J=lim[G.. nq(T)J= {a, b} =oBl1(T) .
• =1 JI_ClO

In general, for any system of open sets {Hi} :=1 in C,

X T (U H.) = ±XT(H.) holds if T is strongly decomposable (see [6J,
.=1 I .=1 I

p. 86, Lemma 12. 7). Therefore, we have
X=XT([a, bJ) cXT[(a, b) UG,.J=XT[(a, b)J +XT(G,.).

Thus
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XCXT[(a, b)J+ nXT[Gnnq(T)J=XT[(a, b)J+XT[nGnnq(T)J
.=1 .=1

=XT[(a, b)J +XT[ORq(T)J=XT[(a, b)J+XT[ {a, b}].
Moreover, since two closed sets {a}, {b} are disjoint
X T[ {a, b} J=XT( {a} ) EfjXT[ {b}].

Both XT[{a}] and XT[{b}] are contained in XT[(a,b)J; for, let
{An} be a sequence in (a, b) such thabt An--+"b as n--+"oo.
Since

X T( fAh A2' .•., An}) CXT( {Ah A2' .••, An, An+l}) cXT(a, b)
hold for any nEN, whence

X T[ {b} JcXT( {Ah A2' •••, An, ••., bj) = lim X T( (Ah A2' ..• , An})
n-

cXT[(a,b)J.
Similary, XT[{a}] c=X,......,T["'"""(,..-a,...",b)--=]. Hence

X T[ {a, b} J=XT[ {a} JEfjXT [ {b} J c=X""""T["'("'-a,"""b)'-=;J,
and

THEOREM 3.6. Let A=C[a, bJ be the commutative Banach *-algebra
of complex-valued continuous functions on [a, bJ endowed with tke norm
IIxll= sup Ix(t) I (xEA) and tke natural involution. The operator T of

te[a,6]

multiplication by independent variables in C[a, bJ defined by (Tx) (t) =
tx(t) (tE[a,bJ) is strongly decomposable and q(T)=[a,bJ.

Proof. Let mECCa, bJ be met) =t, tE [a, bJ. The multiplication
operator T m defined by T mX=m.x. Since

(Tm.x)(t) =m(t)x(t) =tx(t) , so T=Tm.

We prove that T 111 is strongly decomposable: Since [a, bJ is compact
Hausdorff for the usual topology, the maximal ideal space of A=
C[a,bJ is [a,bJ (See [13J, p.271, Example (a)). For every closed
subset F of [a, bJ and toE$F, there exists an xEC[a, bJ such that x=
o on F and x(to) ~O thus C[a, bJ is regular. By the Gelfand-Naimark
theorem, A is also semisimple, whence every multiplication operator
in A is super-decomposable (See [l1J, p. 42, Corollary 2. 4) , so it is
strongly decomposable (See [l1J, p.36, Theorem 1.3).

The fact q(T) = [a, bJ is well known.

CoROLLARY 3.7. The operator of multiplication by independent variables
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in A=C[a, b] and its dual are strongly decomposable.

This follows from Example 3. 5 and Theorem 3. 6.
For the representation of T m*, we consider A=C[a,b] as a

Banach space, let A* be its dual. By the Riesz's representation theorem
T m* can be represented by Riemann-Stieltjes integral

(Tm*f)(x)-f(Tmx)=S:tx(t)dw(t) (xEA, fEA*),

where w is a bounded variation function on [a, b] and has the total
variation Var(w) =lIfll.
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