ON DUALITIES FOR STRONGLY DECOMPOSABLE OPERATORS

JAE CHUL RHO AND TAE-GEUN CHO

1. Notations and definitions

Throughout this note, X denotes a complex Banach space, B(X) the Banach algebra of all bounded linear operators of X and X^* the dual of X. For an operator $T \in B(X)$, T^* denotes the dual operator of T. If M is a closed T-invariant subspace of X, we write $T \mid M$ for the restriction and T/M for the operator induced by T on the quotient space X/M. For $N \subset X$, let N^{\perp} be its annihilator in X^* , \overline{N} the closure of N. The symbol $\sigma(T)$ stands for the spectrum of T. We denote \mathcal{U} and \mathcal{F} the class of all open subsets and the closed subsets in the finite complex plane C respectively. If T has the single valued extension property, we denote $X_T(F) = \{x \in X : \sigma(x, T) \subset F\}$. This is a linear subspace of X but not necessarily closed even if F is closed in C. The set theoretic difference between two sets A and B is denoted by A - B.

DEFINITION 1.1 ([3]). Let $T \in B(X)$. A T-invariant subspace Z is said to be spectral maximal for T if for any T-invariant subspace Y such that $\sigma(T|Y) \subset \sigma(T|Z)$ we have that $Y \subset Z$.

We denote the set of all spectral maximal subspaces for T by SM(T).

DEFINITION 1.2 ([3]). An operator $T \in B(X)$ is said to be decomposable if for any finite system $\{G_1, G_2, \ldots, G_n\}$ of open subsets of C that cover $\sigma(T)$, there exist spectral maximal subspaces $\{Y_1, Y_2, \ldots, Y_n\}$ such that $X = \sum_{i=1}^n Y_i$ and $\sigma(T \mid Y_i) \subset G_i$ for $i = 1, 2, \ldots, n$.

Received June 23, 1989.

Revised September 21, 1989.

This research is supported by MOE grant 1988.

It is known that if T is decomposable, then $SM(T) = \{X_T(F) : F \in \mathcal{F}\}.$

DEFINITION 1.3 ([9]). The T-invariant subspace Y is called analytically invariant if for each X-valued analytic function f defined on a region V_f in C such that $(\lambda - T)f(\lambda) \in Y$ for $\lambda \in V_f$, then it follows that $f(\lambda) \in Y$ for $\lambda \in V_f$.

It is known that "Spectral Maximal" implies "Analytically invariant" but the converse is false. We denote the class of all analytically invariant subspaces for T by AI(T). Thus $SM(T) \subset AI(T)$.

Definition 1.4 ([6]). A decomposable operator is strongly decomposable if the operator $T \mid Y$ is decomposable for every T-spectral maximal subspace Y.

2. Analytical spectral resolvent (ASR)

Definition 2.1. A map $E: \mathcal{U} \rightarrow AI(T)$ is said to be an analytic spectral resolvent of T if

- (i) $E(\phi) = \{0\}$,
- (ii) For any finite open cover $\{G_1, G_2, \ldots, G_n\}$ of $\sigma(T)$,

$$X = \sum_{i=1}^{n} E(G_i),$$

(iii) $\sigma(T|E(G)) \subset \overline{G}$ for each $G \in \mathcal{U}$.

Thus an ASR is a spectral resolvent, which is defined in [5], whose range is analytically invariant subspaces.

The ASR for T is not unique as well as the spectral resolvent, there are typical types of ASR for T.

REMARK 2.2. Let T be strongly decomposable, then the map E defined by $E(G) = \overline{X_T(G)}$ $(G \in \mathcal{U})$ is an ASR for T.

For, it is known that if T is decomposable then $\overline{X_T(G)}$ is analytically invariant for each $G \in \mathcal{U}$. Obviously $E(\phi) = \overline{X_T(\phi)} = \{0\}$, and $\sigma(T|E(G)) = \sigma(T|\overline{X_T(G)}) \subset \sigma(T|X_T(\overline{G})) \subset \overline{G}(G \in \mathcal{U})$ hold since $\overline{X_T(G)} \subset X_T(\overline{G})$, and both $\overline{X_T(G)}$, $X_T(\overline{G})$ are analytically invariant under T; in fact, $X_T(\overline{G})$ is spectral maximal so it is analytically invariant. For any finite open cover $\{G_1, G_2, \ldots, G_n\}$ of $\sigma(T)$,

On dualities for strongly decomposable operators

$$\sum_{i=1}^{n} E(G_{i}) = \sum_{i=1}^{n} \overline{X_{T}(G_{i})} \supset \sum_{i=1}^{n} X_{T}(G_{i}) = X_{T}(\bigcup_{i=1}^{n} G_{i}) = X_{T}(\sigma(T)) = X,$$
 the second equality holds since T is strongly decomposable (see [6], p. 86, Lemma 12.7).

Remark 2.3. Let T be decomposable. The map E defined by $E(G) = X_T(\overline{G})$ $(G \in \mathcal{U})$ is an ASR for T.

Proof. Let $\{G_i\}_{i=1}^n$ be any open covering of $\sigma(T)$, it is known that $X = X_T(\sigma(T)) \subset \sum_{i=1}^n X_T(\overline{G}_i)$, thus $X = \sum_{i=1}^n X_T(\overline{G}_i)$.

Obviously, $\sigma(T|X_T(\overline{G})) \subset \overline{G}$ and $X_T(\{0\}) = \phi$.

THEOREM 2.4. If T has an ASR $E: \mathcal{U} \rightarrow AI(T)$, then T is decomposable.

There are three different methods of proof on this theorem. Among those we give a proof using the following theorem.

Theorem 2.5 ([10]). For an operator T, the following are equivalent.

- (a) T is decomposable.
- (b) For every open set G in C, there is a T-invariant subspace M such that $\sigma(T|M) \subseteq G$ and $\sigma(T/M) \subseteq C G$.

Proof of Theorem 2.4. Since $\sigma(T|E(G)) \subset \overline{G}$ by definition, and $\sigma(T/E(G)) \subset C-G$ holds if E(G) is analytically invariant under T (see [5], p. 60, Theorem 10). (In fact, $\sigma(T/E(G) \subset \sigma(T) - G$ since $\sigma(T/E(G)) \subset \sigma(T)$). Hence the conclusion follows by Theorem 2.5.

Further properties for an operator T having ASR were studied in [11].

3. A duality theorem for a strongly decomposable operator

In this section, we prove the main result, that is, if T is strongly decomposable with the spectrum $\sigma(T)$ of T, under some conditions, the dual operator T^* of T is strongly decomposable.

To begin with we list here some basic results.

PROPOSITION 3.1 ([1], p.1; [9], p.231). Let Y and Z be T-invariant subspaces such that $Y \subset Z$. Then

- (1) $Y \in AI(T)$ implies $Y \in AI(T|Z)$
- (2) $Y \in AI(T|Z)$, $Z \in AI(T)$ implies $Y \in AI(T)$
- (3) $Z \in AI(T)$ if and only if $Z/Y \in AI(T/Y)$
- (4) (T|Z)|Y=T|Y
- (5) (T|Z)/Y = (T/Y)|(Z/Y)

We prove the following lemma using the above proposition.

LEMMA 3.2. Let T be decomposable. For an open set G in C, we put $Y(G) = \overline{X_T(G)}$, $Z(G) = X_T(\overline{G})$, $\widetilde{Y}(G) = Z(G)/Y(G)$, $\widetilde{T} = T/Y(G)$ $\widehat{X}(G) = X/Y(G)$ and \widetilde{T}^* is the dual operator of \widetilde{T} . Then $\sigma(\widetilde{T}|\widetilde{Y}(G)) \subset \overline{G}$, $\sigma(\widetilde{T}/\widetilde{Y}) \subset C - G$

and \tilde{Y} is analytically invariant under \tilde{T} .

Proof. Let G be arbitrary open in C but fixed, let Y = Y(G), Z = Z(G) and $\tilde{Y} = \tilde{Y}(G)$. By proposition 3.1, (3), $\tilde{Y} = Z/Y$ is analytically invariant under $\tilde{T} = T/Y$ since both Y and Z are analytically invariant under T. Since T is decomposable, $Y = \overline{X_T(G)}$ is analytically invariant under T, it is also analytically invariant under T/Z. Thus we have

 $\sigma[(T|Z)/Y] \subset \sigma(T|Z) = \sigma(T|X_T(\overline{G})) \subset \overline{G};$ the first inclusion follows from the fact that, in general, if Y is analytically invariant (or spectral maximal) under T, then $\sigma(T) = \sigma(T|Y)$

 $\cup \sigma(T/Y)$ (see [9], p. 227, Proposition 1.5). Moreover, from the equality (T|Z)/Y = (T/Y)|(Z/Y), we have $\sigma(\tilde{T}|\tilde{Y}) = \sigma[(T/Y)|(Z/Y)] = \sigma[(T|Z)/Y] \subset \overline{G}$.

Since $G \in \mathcal{U}$ is arbitrary, we have $\sigma(\tilde{T} | \tilde{Y}(G)) \subset \bar{G}$ for any $G \in \mathcal{U}$.

Again fix G. By the identification $(T/Z)^* = T^*|Z^{\perp} = T^*|X_T(G)^{\perp}$, we get

$$\sigma(T^*|X_T(\overline{G})^{\perp}) = \sigma[(T/Z)^*] = \sigma(T/Z).$$

Furthermore, since $Y \subset Z$, we have the following unitarily equivalence relation

 $(T/Y)^*|(Z/Y)^{\perp} \cong T^*|Z^{\perp}$ (see [7], p. 292, Lemma 5). Therefore

$$\sigma((\tilde{T})^*|\tilde{Y}^\perp) = \sigma(T^*|Z^\perp) = \sigma[(T/Z)^*] = \sigma(T/Z)$$
$$= \sigma(T/X_T(\overline{G})) \subset C - G,$$

the last inclusion holds since $Z(G) = X_T(\overline{G})$ (= E(G)) defines an ASR for T as we noted in Remark 2.3. In fact $\sigma(T/X_T(\overline{G})) \subset \sigma(T)$ -G since $\sigma(T/X_T(\overline{G})) \subset \sigma(T)$.

The arbitrariness of G implies $\sigma[(\tilde{T})^*|\tilde{Y}(G)^{\perp}] \subset \mathbb{C} - G$ for every $G \in \mathcal{U}$. It follows that $\sigma(\tilde{T}/\tilde{Y}) = \sigma[(\tilde{T}/\tilde{Y})^*] = \sigma[(\tilde{T})^*|\tilde{Y}(G)^{\perp}] \subset \mathbb{C} - G$. We have proved the lemma.

Now, we consider again the identification $(T/\overline{X_T(G)})^* = T^*|X_T(G)^{\perp}$. Since $SM(T^*) = \{X_T(C-F)^{\perp} : F \in \mathcal{F}\} = \{X_T(G)^{\perp} : G \in \mathcal{U}\}$ (see [8], p. 1057, Remark), T^* is strongly decomposable if and only if $T^*|X_T(G)^{\perp}$ is decomposable for every $G \in \mathcal{U}$. Therefore, T^* is strongly decomposable if and only if $T/\overline{X_T(G)}$ is decomposable for every $G \in \mathcal{U}$ since, in general, $A \in B(X)$ is decomposable if and only if A^* is,

It is known that if T is strongly decomposable then T/M is decomposable for any spectral maximal space M for T. Since $X_T(G) = X_T(G \cap \sigma(T))$, if $\sigma(T)$ is finite then $T/X_T(G)$ is decomposable for any $G \in \mathcal{U}$, whence T^* is strongly decomposable.

Thus we have the following

PROPOSITION 3. 3. Let T be strongly decomposable. If the spectrum of T is finite, then T^* is strongly decomposable.

THEOREM 3.4. Let T be strongly decomposable. If the spectrum $\sigma(T)$ of T does not contain any isolated point, the interior of $\sigma(T)=G_o$ is nonempty and $X_T(G_o)=X$ then T^* is strongly decomposable.

Proof. For those open sets such that $G \cap \sigma(G) = \phi$, $X_T[G \cap \sigma(T)] = \{0\}$, whence $T/\overline{X_T(G)} = T$ is decomposable. So we may assume without loss of generality that $G \cap \sigma(T) \neq \phi$. Let $G \in \mathcal{U}$ be arbitrary but fixed, and let H be any open set in C. We put $Y = \overline{X_T(G)}$, $Z = \overline{X_T(G \cup H)}$, $\widetilde{Y} = Z/Y$, $\widetilde{T} = T/Y$ and let $(\widetilde{T})^*$ be the dual of \widetilde{T} .

By the Similar proof as that of Lemma 3.2, \tilde{Y} is analytic invariant under \tilde{T} . Now, we prove that

(*) $\sigma(\tilde{T}|\tilde{Y}) \subset \bar{H}$, $\sigma(\tilde{T}/\tilde{Y}) \subset C-H$ for any $H \in \mathcal{U}$.

of G implies that T^* is strongly decomposable.

For an open set H such that $\sigma(\tilde{T}) \cap H = \phi$,

$$\sigma(\tilde{T} | \{0\}) = \phi \subset H, \ \sigma(\tilde{T}/\{0\}) = \sigma(\tilde{T}) \subset C-H;$$

where 0 is the zero vector in $X/\overline{X_T(G)}$, that is, $\overline{X_T(G)}=0$. Therefore, without loss of generality, we may assume that $\sigma(\tilde{T}) \cap H \neq \phi$. Since $\sigma(\tilde{T}) = \sigma(T/\overline{X_T(G)}) \subset C - G$, $\sigma(\tilde{T}) \cap H \neq \phi$, so $H - G \neq \phi$ and $\sigma(T) \cap H \neq \phi$.

Case (a). $\sigma(T|X_T(G \cup H)) \neq \sigma(T)$.

Since $T|Z=T|X_T\overline{(G\cup H)}$ is decomposable, we have

(**)
$$\sigma[T|X_T(\overline{G \cup H})] - \overline{G} \subset \sigma(T|Z) - \sigma(T|Y)$$

 $=\sigma(T|Z)-\sigma[(T|Z)|Y]\subset\sigma[(T|Z)/Y]=\sigma(\tilde{T}|\tilde{Y})\subset\sigma(T|Z)-G;$ the last inclusion holds since $Y\in AI(T|Z)$, so $\sigma[(T|Z)/Y]\subset\sigma(T|Z)$; and since $\tilde{Y}\in AI(\tilde{T})$, $\sigma(\tilde{T}|\tilde{Y})\subset\sigma(\tilde{T})=\sigma(T/\overline{X_T(G)})\subset C-G$.

As we stated in Remark 2.2, $E(G) = \overline{X_T(G)}$ defines an ASR for T, $\sigma(T) \cap \overline{G} \subset \sigma(T | \overline{X_T(G)}) \subset \overline{G} \cap \sigma(T)$ ($G \in \mathcal{U}$) (see [12], p. 81, Prop. 17), and $\overline{(G \cup H) \cap \sigma(T)} \subset \sigma(T | Z) \subset \overline{G \cup H} \cap \sigma(T)$. Moreover since $\overline{(G \cup H)} \cap \sigma(T) \neq \phi$, $\sigma(T)$ contains no isolated point, so $\overline{(G \cup H) \cap \sigma(T)} = \overline{G \cup H} \cap \sigma(T)$, also $\overline{G \cap \sigma(T)} = \overline{G} \cap \sigma(T)$.

Thus we have

$$\sigma(T|Z) - \overline{G} = \sigma(T|Z) - \overline{G} \cap \sigma(T|Z) \supset \overline{(G \cup H) \cap \sigma(T)} - \overline{G} \cap \sigma(T|Z)$$
$$= [\overline{G} \cap \sigma(T)] \cup [\overline{H} \cap \sigma(T)] - \overline{G} \cap \sigma(T|Z) \neq \phi.$$

We claim that

$$[\sigma(T|Z)-\overline{G}]^-=\sigma(T|Z)-G.$$

Suppose $[\sigma(T|Z)-G]^-\subseteq \sigma(T|Z)-G$. Choose λ belong to the right but not the left, then dist. $\{\lambda, [\sigma(T|Z)-\overline{G}]^-\}>0$.

While $\lambda \in [\sigma(T|Z) - G] - [\sigma(T|Z) - \overline{G}] = \sigma(T|Z) \cap \partial G$, where $\partial G = \overline{G} - G$, the boundary of G. But this implies $\lambda \in [\sigma(T|Z) - \overline{G}]^-$, which is a contradiction. Therefore, we get, by (**), that

$$\sigma(\tilde{T}|\tilde{Y}) = [\sigma(T|Z) - \sigma(T|Y)]^{-} \subset [\overline{G \cup H} \cap \sigma(T) - \overline{G \cap \sigma(T)}]^{-}$$

$$= [(\overline{G} \cap \sigma(T)) \cup (\overline{H} \cap \sigma(T)) - \overline{G} \cap \sigma(T)]^{-} \subset \overline{H} \cap \sigma(T) \subset \overline{H}.$$
i. e. $\sigma(\tilde{T}|\tilde{Y}) \subset \overline{H}$.

Case (b).
$$\sigma(T|X_T(G \cup H) = \sigma(T)$$
.

In this case, (**) can be written by

On dualities for strongly decomposable operators

$$\sigma(T) - \overline{G} \subset \sigma(T) - \sigma(T|Y) \subset \sigma(T/Y) \subset \sigma(T) - G.$$

- (i) If $\sigma(T) G = \phi$ then $\sigma(\tilde{T} | \tilde{Y}) \subset \sigma(\tilde{T}) = \sigma(T/Y) = \phi$. Thus $\sigma(\tilde{T} | \tilde{Y}) \subset \overline{H}$ for any $H \in \mathcal{U}$.
- (ii) If $\sigma(T) \overline{G} \neq \phi$, then, by the same calculation as in (a), we have

$$[\sigma(T) - \overline{G}]^- = \sigma(T) - G$$
, so $[\sigma(T) - \sigma(T|Y)]^- = \sigma(T/Y)$.

Hence $\sigma(\tilde{T}|\tilde{Y}) \subset \sigma(T/Y) = [\sigma(T) - \sigma(T|Y)]^{-1}$

$$\subset [\overline{G} \cup \overline{H}) \cap \sigma(T) - \overline{G} \cap \sigma(T)]^- \subset \overline{H}.$$

(iii) Finaly, if $\sigma(T) - \overline{G} = \phi$ but $\sigma(T) - G \neq \phi$, then $X = \overline{X_T(G_0)} \subset \overline{X_T(G \cap \sigma(T))}$.

Thus $X/\overline{X_T(G)}$ is the zero vector. Therefore, we have $\sigma(\widetilde{T}|\widetilde{Y}) = \sigma[(T/Y)|X/\overline{X_T(G)}) = \phi \subset \overline{H}$.

For the second inclusion, the proof is the same as that of Lemma 3.2; by the identification $(T/Y)^*(Z/Y)^{\perp} = T^*|Z^{\perp}|$, we have

$$\sigma(\tilde{T}/\tilde{Y}) = \sigma[(\tilde{T}/\tilde{Y})^*] = \sigma[(\tilde{T})^*|\tilde{Y}^{\perp}] = \sigma(T^*|Z^{\perp})
= \sigma[(T/Z)^*] = \sigma(T/Z) \subset \mathbf{C} - (G \cup H) \subset \mathbf{C} - H.$$

We completes the proof.

Example 3.5. Let T be strongly decomposable with the spectrum $\sigma(T) = [a, b]$, a < b. We prove that T^* is strongly decomposable. According to the Theorem 3.4, it is enough to show that $\overline{X_T[(a, b)]} = X$ since $G_o = (a, b)$.

We choose a system of open sets $G_n = \left(a - \frac{1}{n}, a + \frac{1}{n}\right) \cup \left(b - \frac{1}{n}, b + \frac{1}{n}\right)$ in R, $n=1, 2, \ldots$ Then $\overline{G}_{n+1} \subset \overline{G}_n$ for $n=1, 2, \ldots$, whence

$$X_{T}(\overline{G}_{n+1}) \subset X_{T}(\overline{G}_{n}), \overline{G}_{n} \cap \sigma(T) = [a, a + \frac{1}{n}] \cup (b - \frac{1}{n}, b], \text{ and}$$

$$\bigcap_{n=1}^{\infty} [\overline{G}_{n} \cap \sigma(T)] = \lim_{n \to \infty} [\overline{G}_{n} \cap \sigma(T)] = \{a, b\} = \partial_{R}\sigma(T).$$

In general, for any system of open sets $\{H_i\}_{i=1}^n$ in C,

 $X_T(\bigcup_{i=1}^n H_i) = \sum_{n=1}^n X_T(H_i)$ holds if T is strongly decomposable (see [6],

p. 86, Lemma 12.7). Therefore, we have

$$X=X_T([a,b])\subset X_T[(a,b)\cup G_n]=X_T[(a,b)]+X_T(G_n).$$

Thus

$$X \subset \overline{X_T[(a,b)]} + \bigcap_{n=1}^{\infty} X_T[\overline{G_n} \cap \sigma(T)] = \overline{X_T[(a,b)]} + X_T[\bigcap_{n=1}^{\infty} \overline{G_n} \cap \sigma(T)]$$
$$= \overline{X_T[(a,b)]} + X_T[\partial_R \sigma(T)] = \overline{X_T[(a,b)]} + X_T[\{a,b\}].$$

Moreover, since two closed sets $\{a\}$, $\{b\}$ are disjoint $X_T[\{a,b\}] = X_T(\{a\}) \oplus X_T[\{b\}]$.

Both $X_T[\{a\}]$ and $X_T[\{b\}]$ are contained in $\overline{X_T[(a,b)]}$; for, let $\{\lambda_n\}$ be a sequence in (a,b) such that $\lambda_n \to b$ as $n \to \infty$. Since

$$X_T(\{\lambda_1,\lambda_2,...,\lambda_n\})\subset X_T(\{\lambda_1,\lambda_2,...,\lambda_n,\lambda_{n+1}\})\subset \overline{X_T(a,b)}$$

hold for any $n \in N$, whence

$$X_T[\{b\}] \subset X_T(\{\lambda_1, \lambda_2, ..., \lambda_n, ..., b\}) = \lim_{n \to \infty} X_T(\{\lambda_1, \lambda_2, ..., \lambda_n\})$$
$$\subset \overline{X_T[(a, b)]}.$$

Similary, $X_T[\{a\}] \subset \overline{X_T[(a,b)]}$. Hence $X_T[\{a,b\}] = X_T[\{a\}] \oplus X_T[\{b\}] \subset \overline{X_T[(a,b)]}$,

and

$$X=X_T[(a,b)].$$

THEOREM 3.6. Let A=C[a,b] be the commutative Banach *-algebra of complex-valued continuous functions on [a,b] endowed with the norm $||x|| = \sup_{t \in [a,b]} |x(t)| (x \in A)$ and the natural involution. The operator T of multiplication by independent variables in C[a,b] defined by (Tx)(t) = tx(t) $(t \in [a,b])$ is strongly decomposable and $\sigma(T) = [a,b]$.

Proof. Let $m \in C[a, b]$ be m(t) = t, $t \in [a, b]$. The multiplication operator T_m defined by $T_m x = mx$. Since

$$(T_m x)(t) = m(t)x(t) = tx(t)$$
, so $T = T_m$.

We prove that T_m is strongly decomposable: Since [a, b] is compact Hausdorff for the usual topology, the maximal ideal space of A = C[a, b] is [a, b] (See [13], p. 271, Example (a)). For every closed subset F of [a, b] and $t_0 \notin F$, there exists an $x \in C[a, b]$ such that x = 0 on F and $x(t_0) \neq 0$ thus C[a, b] is regular. By the Gelfand-Naimark theorem, A is also semisimple, whence every multiplication operator in A is super-decomposable (See [11], p. 42, Corollary 2.4), so it is strongly decomposable (See [11], p. 36, Theorem 1.3).

The fact $\sigma(T) = [a, b]$ is well known.

COROLLARY 3.7. The operator of multiplication by independent variables

in A=C[a,b] and its dual are strongly decomposable.

This follows from Example 3.5 and Theorem 3.6.

For the representation of T_m^* , we consider A=C[a,b] as a Banach space, let A^* be its dual. By the Riesz's representation theorem T_m^* can be represented by Riemann-Stieltjes integral

$$(T_m * f)(x) = f(T_m x) = \int_a^b tx(t) dw(t) \quad (x \in A, \ f \in A*),$$

where w is a bounded variation function on [a, b] and has the total variation Var(w) = ||f||.

References

- 1. C. Apostol, Some properties of spectral maximal spaces and decomposable operators, Rev. Roum. Math. Pures et Appl. (1967), Tome XII, No. 5, 607-610.
- C. Apostal, Spectral decompositions and functional calculus, Rev. Roum. Math. Pures et Appl., Tome XII, 10 (1968), 1481-1528.
- I. Colojoara and C. Foias, Theory of generalized spectral operators, Gordon and Breach, NY, 1968.
- 4. N. Dunford, J.T. Schwartz, *Linear operators II*, Wiley Interscience, NY (1971).
- 5. I. Erdelyi, Spectral resolvents, Research notes in Mathematics, No. 38, Pitman advanced Pub. Program, San Francisco, London (1979) 51-70.
- 6. I. Erdelyi and R. Lange, Spectral decompositions on Banach spaces, Lecture notes in Mathematics, #623 Springer-Verlag, NY, 1977.
- 7. I. Erdlyi and Wang Shengwang, On strongly decomposable operators, Pacific J. Math., Vol. 110(1984), 287-296.
- 8. S. Frunza, A duality theorem for decomposable operators, Rev. Roum. Math. Pures et Appl., Tome XVI, 7(1971) 1055-1058.
- 9. R. Lange, Analytic decomposable operators, Trans. Amer. Math. Soc., 244 (1978), 225-240.
- R. Lange, Duality and asymptotic spectral decompositions, Pacific J. Math. Vol. 121, No. 1 (1986), 93-108.
- 11. K.B. Laursen and M.M. Neumann, Decomposable operators and automatic continuity, J. Operator theory 15(1986), 33-51.
- 12. J.C. Rho, T.G. Cho, Operators having analytic spectral resolvents, Jour. Korean Math. Soc., Vol. 24, No. 1(1987), 73-82.
- 13. W. Rudin, Functional Analysis, McGraw-Hill Book Company, NY, 1974.

Jae Chul Rho and Tae-Geun Cho

- G. Shulberg, Spectral resolvents and decomposable operators, Research notes in Mathematics, No. 38, Pitman Advanced Pub. Program, San Francisco, London (1979), 71-84.
- 15. J. C. Snader, Strongly analytic subspaces and strongly decomposable operators, Pacific J. Math., Vol. 115, No. 1 (1984), 193-202.

Sogang University Seoul 121-742, Korea