A NOTE ON IDEALS WHICH ARE MAXIMAL AMONG NONVALUATION IDEALS

Byung Gyun Kang*

In this paper R will be an integral domain. A Noetherian ring with unique maximal ideal is called a local ring. An ideal of R is called a valuation ideal if it is the contraction of an ideal of some valuation overring of R. It is known that every primary ideal of a Noetherian domain R is a valuation ideal if and only if R is a Dedekind domain. From this fact we come to be interested in the ideals which are maximal among nonvaluation ideals. One might guess that such an ideal has to be a primary ideal, but this is false. We will show thas such an ideal I in a Noetherian domain R is a primary ideal if and only if its radical \sqrt{I} is a maximal ideal. In the case that R is a two dimensional regular local ring, we will show that I is a primary ideal. Note that \sqrt{I} is not always a prime ideal. But it will turn out that \sqrt{I} is a prime ideal if R is a local domain. This will be used to prove that in a two dimensional regular local ring, I is always a primary ideal. For undefined terms and general information, the reader is referred to [2].

Lemma 1. Let R be a commutative ring such that the set Z(R) of zero divisors is a union of finite number of prime ideals. Then any regular ideal of R is generated by regular elements.

Proof. This follows from [1, Lemma B]

Lemma 2. Let R be a local domain and I an ideal of R. If I is maximal among nonvaluation ideals of R, then \sqrt{I} is a prime ideal.

Proof. Let M be the maximal ideal of R. If $\sqrt{I} = M$, then there is nothing to prove. So let us assume that $\sqrt{I} \subseteq M$. Choose $a \in M \setminus$

Received March 24, 1989.

^{*}This research was supported by the POSTECH research fund.

 \sqrt{I} . Then for each $k \ge 1$, $I \subsetneq I + (a^k)$. Now by passing to R/I and using Krull's intersection theorem [3, Theorem 142], we deduce that $I = \bigcap_{k=1}^{\infty} (I + (a^k))$. Put $I + (a^k) = I_k$. Now $I = \bigcap_{k=1}^{\infty} I_k$, $I_1 \supseteq I_2 \cdots \supseteq I_k \supseteq I_{k+1}$..., and each I_k is a valuation ideal. To prove that \sqrt{I} is a prime ideal, suppose that $xy \in I^2$ for $x, y \in R$. Then $xy \in (I_k)^2$ for each k. So either x or y is in I_k since I_k is a valuation ideal [2, Lemma 24. 4]. Hence at least one of x and y is contained in infinitely many I_k 's, which implies that either x or y is contained in $\bigcap_{k=1}^{\infty} I_k = I$. Now suppose $xy \in \sqrt{I}$ for $x, y \in R$. Then $(xy)^n \in I$ for some n > 0. So $x^{2n}y^{2n} = (xy)^{2n} \in I^2$. From the previous argument, either x^{2n} of y^{2n} is contained in I. From this, we conclude that x or $y \in \sqrt{I}$ and hence \sqrt{I} is a prime ideal.

Lemma 3. Let R be an integral domain and I an ideal which is maximal among nonvalution ideals. If P is a prime ideal containing I, then R/P is a valuation ring.

Proof. Let \bar{x}, \bar{y} be two nonzero elements of $\bar{R} = R/P$, so that $x \notin P$, $y \notin P$. Since $I \subseteq P \subseteq P + (xy)$, we have that P + (xy) is a valuation ideal of R. For some valuation overring V of R, $(xy) + P = ((xy) + P) V \cap R$.

Then either

$$[x^2V \subseteq ((xy)+P)V \text{ or } y^2V \subseteq ((xy)+P)V]$$

or

$$[x^2V \supseteq ((xy)+P))V$$
 and $y^2V \supseteq ((xy)+P))V$

Case I. $x^2V \subseteq ((xy)+P)$ $V \Rightarrow x^2 \in ((xy)+P)$ $V \cap R = (xy)+p \Rightarrow x^2 = rxy+p$ for $r \in R$ and $p \in P \Rightarrow x(x-ry) \in P \Rightarrow x-ry \in P$ since $x \notin P \Rightarrow x \in (y)+P \Rightarrow (x)+P \subseteq (y)+P \Rightarrow (\bar{x}) \subseteq (\bar{y})$.

Case II. $((xy)+P) \ V \subseteq x^2 V$ and $((xy)+P) \ V \subseteq y^2 V \Rightarrow xy = x^2 v$, $xy = y^2 v'$ for some $v, v' \in V \Rightarrow x^2 y^2 = x^2 y^2 vv' \Rightarrow vv' = 1 \Rightarrow x^2 = xyv'$ from $xy = x^2 v \Rightarrow x^2 \in ((xy)+P) \ V \cap R$. This reduces to case I. Thus either $(\bar{x}) \subseteq (\bar{y})$ or $(\bar{y}) \subseteq (\bar{x})$. Hence R/P is a valuation ring.

COROLLARY 4. Let R be a local domain and I an ideal maximal among nonvaluation ideals. Then R/\sqrt{I} is a principal ideal domain.

A note on ideals which are maximal among nonvaluation ideals

Proof. This follows from Lemma 2 and Lemma 3.

Let R be a Noetherian domain and I an ideal maximal among non-valuation ideals. Let D be a Dedekind domain which is not a DVR. The set of nonvaluation ideals of D is not empty. Let us choose an ideal I which is maximal among nonvaluation ideals. If I is a primary, then $I=I_P\cap R$, where $P=\sqrt{I}$, and hence I is a valuation ideal since D_P is a DVR. This contradicts our choice of I. So I need not be a primary ideal. In the next theorem, we give a necessary and sufficient condition for I to be a primary ideal.

Theorem 5. Let D be a Noetherian domain and I an ideal maximal among nonvaluation ideals. Then I is a primary ideal if and only if \sqrt{I} is a maximal ideal.

(⇒) Suppose that I is a primary ideal. Let $\sqrt{I} = P$. want to show that P is a maximal ideal. If not, there exists a maximal ideal M such that $P \subseteq M$. In R = D/I, Z(R) = P/I. Let \bar{x} and \bar{y} be regular elements of R, so $x, y, xy \notin P$. Then $I + (xy) \supseteq I$ so I + (xy)is a valuation ideal of D. Then for some valuation overring V of R, $I+(xy)=(I+(xy))\ V\cap D$. As in the proof of Lemma 3, we deduce that either $x^2V\subseteq ((xy)+I)V$ or $y^2V\subseteq ((xy)+I)V$. We may assume that $x^2V\subseteq ((xy)+I)V$. We can find $r\in R$ such that $x(x-ry)\in I$ as we did in the case I of the proof of Lemma 3. Since I is a primary ideal and $x \notin P = \sqrt{I}$, so $(\bar{x}) \subseteq (\bar{y})$. Thus in D/I, the regular principal ideals are totally ordered. It is easy to see that every element of $(M\backslash P)/I$ is a regular element of D/I. So M/I is a regular ideal and it is generated by regular elements by Lemma 1. Since D/I is Noetherian, M/I is finitely generated and hence M/I is a principal ideal. By the Krull's principal ideal theorem, M/I is a minimal prime ideal of D/I. So M/I=P/I and M=P, which contradicts our assumption that $P \subset M$. Therefore we conclude that P is a maximal ideal.

 (\Leftarrow) is obvious.

Let $P_1 \subseteq P_2 \subseteq \cdots \subseteq P_n$ be a chain of prime ideals of an integral domain R. Then there always exists a valuation overring V of R such that $P_i V \cap D = P_i$ for each $i=1, \dots, n$. This fact is crucial in proving

the next result.

Theorem 6. Let (R, M) be a two dimensional regular local domain and I an ideal maximal among nonvaluation ideals of R. Then \sqrt{I} is the maximal ideal of R.

Proof. If $P = \sqrt{I}$ is not the maximal ideal, then P is a minimal prime ideal of R. Since R is a UFD, there exists an $a \in R$ such that P=(a). By corollary 4, R/P is a PID. So M=P+(b) for some $b \in R$ and M=(a,b). It is easy to see that $A \equiv \{J \text{ is an ideal of } R \mid (a^2) \subseteq J\}$ $\subseteq (a)$ = $\{(a^2, ab^k)\}_{k=0}^{\infty}$. We claim that $I \in A$. We have to show that $P^2 \subseteq I$. For otherwise, $P^2 \nsubseteq I$ and $P^2 \nsubseteq I + (b^n)$ for some n by Krull's intersection theorem. Let $J=(I+(b^n))\cap P$. Then $Pb^n\in J$. Since $I\subseteq J$ $\subseteq P$, we have that $\sqrt{I} \subseteq \sqrt{J} \subseteq P$. Thus $\sqrt{J} \subseteq M$. Choose $z \in M \setminus$ \sqrt{J} . Then following the same argument as in the proof of Lemma 2, we can showt that $J = \bigcap_{k=1}^{\infty} (J + (z^k))$. Put $J + (z^k) = J_k$. Then each J_k is a valuation ideal since J_k properly contains I. Now let x=a, y=a b^n . Now $xy \in J$, which implies hat $xy \in J_k$ for each k. For each k, either x^2 or y^2 belongs to J_k since J_k is a valuation ideal [2, Lemma 24.47, and hence either x^2 or y^2 belongs to infinitely many J_k . So $x^2 \in J = \bigcap_{k=1}^{\infty} J_k$ or $y^2 \in J$, i.e., $a^2 \in J$ or $b^{2n} \in J$. This contradicts that $P^2 \nsubseteq I$ and $b \notin P$. Thus we have that $P^2 \subseteq I$. Now $I \in A$, so that I = (a^2, ab^n) for some $n \ge 0$. We can choose a valuation domain V such that $PV \cap R = P$ and $MV \cap R = M$. Obviously $IV \cap R \in A$, so $IV \cap R =$ (a^2, ab^k) for some k. But $k \le n$ since $I \subseteq IV \cap R$. We will show that k=n, so that $I=IV\cap R$. Suppose k < n. Then

$$ab^{k} \in IV = (a^{2}, ab^{n}) V \Rightarrow b^{k} \in (a, b^{n}) V$$

$$\Rightarrow b^{k} (1 - b^{n-k}v) \in aV \text{ for some } v \in V$$

$$\Rightarrow b^{k} \in aV \text{ since } 1 - b^{n-k}v(n-k > 0) \text{ is a unit of } V$$
(note that b is a nonunit of V since $b \in M$ and $MV \neq V$)
$$\Rightarrow b^{k} \in aV \cap D = P$$

$$\Rightarrow b \in P,$$

which contradicts that $P \neq M$. Thus k=n, so $I=IV \cap R$ is a valuation ideal. But this contradicts that I is not a valuation ideal. Therefore \sqrt{I} is the maximal ideal of R.

A note on ideals which are maximal among nonvaluation ideals

References

- 1. E. Davis, Overrings of commutative rings, Trans. Amer. Math. Soc., 110 (1964), 196-212.
- 2. R. Gilmer, Multiplicative ideal theory, Dekker, 1972.
- 3. E. Kaplansky, Commutative rings, Allyn and Bacon, Boston, Mass., 1970.

Pohang Institute of Science and Technology Pohang 790-330, Korea