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A NOTE ON IDEALS WHICH ARE MAXIMAL
AMONG NONVALUATION IDEALS

Byune Gyun Kane*

In this paper R will be an integral domain. A Noetherian ring with
unique maximal ideal is called a local ring. An ideal of R is called a
valuation ideal if it is the contraction of an ideal of some valuation
overring of R. It is known that every primary ideal of a Noetherian
domain R is a valuation ideal if and only if R is a Dedekind domain.
From this fact we come to be interested in the ideals which are ma-
ximal among nonvaluation ideals. One might guess that such an ideal
has to be a primary ideal, but this is false. We will show thas such
an ideal I in a Noetherian domain R is a primary ideal if and only if
its radical 4/ 7 is a maximal ideal. In .the case that R is a two dim-
ensional regular local ring, we will show that I is a primary ideal.
" Note that 4/ T is not always a prime ideal. But it will turn out that
v/ T is a prime ideal if R is a local domain. This will be used to
prove that in a two dimensional regular local ring, I is always a pri-
mary ideal. For undefined terms and general information, the reader -
is referred to [2].

Lemva 1. Let R be a commutative ring such that the set Z(R) of
zero divisors is a union of finite number of prime ideals. Then any reg-
ular ideal of R is generated by regular elements.

Proof. This follows from [1, Lemma B]

Lemma 2. Let R be a local domain and I an ideal of R. If I is
mazximal among nonvaluation ideals of R, then +/ ] is a prime ideal.

Proof. Let M be the maximal ideal of R. If v 7=M, then there
is nothing to prove. So let us assume that /7 SM. Choose e M\
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v/ T- Then for each £>1, IS I+ (a¥). Now by passing to R/I and
using Krull’s intersection theorem [3, Theorem 142], we deduce that
I=ng I+ (@), Put I+ (a®) =14 Now I=02 Iy, L2L-21,21,,
-=-, and each I is a valuation ideal. To prove that 4/ ] is a prime
ideal, suppose that zy€I? for z,y&R. Then zyc (I;)?2 for each k.
So either = or y is in I; since I, is a valuation ideal [2, Lemma 24.
47]. Hence at least one of z and y is contained in infinitely many I)s,
which implies that either z or y is contained in N, I,=1. Now su-
ppose zyE +/ I for z,yER. Then (zy)"cI for some n>>0. So z2ny2n
=(zy)»<I% From the previous argument, either z?* of y** is con-
tained in I. From this, we conclude that z or y&€ v/ 7 and hence 4 T
is a prime ideal.

LemMA 3. Let R be an integral domain and I an ideal which is ma-
ximal among nonvalution ideals. If P is a prime ideal containing I, then
R/P is a valuation ring.

Proof. Let Z 7 be two nonzero elements of R=R/P, so that &P,
y&P. Since ISPCP+ (zy), we have that P+ (zy) is a valuation
ideal of R. For some valuation overring V of R, (zy)+P=({zy)+
PYVNR.

Then either

[22VE ((zy) +P)V or VS ((zy)+P)V]
or
[22V2((zy) +P))V and V2 ((zy)+P)) V]

Case I. 22V<((zy)+P)) V = 22€((zy) +P)) VAR=(zy)+p =
2=rxy+p forreRand peP = z(x—ry)EP = z—ryEP since &P
> ze()+P=> @) +PS(»)+P= ()< (B). '

Case II. ((zy) +P) Va2V and ((zy)+P) VE¥RV=zy=2a%0, zy=
20 for some v, v €V = 22y2=1x2y?v/ = v/ =1=> 22=zyv from zy=
220 > 22€ ((xy) +P) VN R. This reduces to case I. Thus either (z) <
() or () €(z). Hence R/P is a valuation ring.

CoroLLARY 4. Let R be a local domain and I an ideal maximal am-
ong nonvaluation ideals. Then R/ v is a principal ideal domain.
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Proof. This follows from Lemma 2 and Lemma 3.

Let R be a Noetherian domain and I an ideal maximal among non-
valuation ideals. Let D be a Dedekind domain which is not a DVR.
The set of nonvaluation ideals of D is not empty. Let us choose an
ideal I which is maximal among nonvaluation ideals. If I is a prim-
ary, then I=IpN R, where P=+/7, and hence I is a valuation ideal
since Dp is a DVR. This contradicts our choice of . So I need not
be a primary ideal. In the next theorem, we give a necessary and
sufficient condition for I to be a primary ideal.

THeOREM 5. Let D be a Noetherian domain and I an ideal maximal
among nonvaluation ideals. Then I is a primary ideal if and only if
v T is a mazximal ideal.

Proof. (=) Suppose that I is a primary ideal. Let v T=P. We
want to show that P is a maximal ideal. If not, there exists a ma-
ximal ideal M such that PCM. In R=D/I,Z(R)=P/I. Let z and 5
be regular elements of R, so z,y, zy&P. Then I+ (zy) 21 so I+ (z¥)
is a valuation ideal of D. Then for some valuation overring V of R,
I+ (zy)={+ (zy)) VND. As in the proof of Lemma 3, we deduce
that either 22VC ((zy) +1)V or »2VC ((zy) +I)V. We may assume
that 22V ((zy) +1I) V. We can find r&R such that z(z—ry)&l as
we did in the case I of the proof of Lemma 3. Since I is a primary
ideal and z&P= 4], so (z)<(5). Thus in D/I, the regular prin-
cipal ideals are totally ordered. It is easy to see that every element
of (M\P)/I is a regular element of D/I. So M/I is a regular ideal
and it is generated by regular elements by Lemma 1. Since D/I is
Noetherian, M/I is finitely generated and hence M/I is a principal
ideal. By the Krull’s principal ideal theorem, M/I is a minimal prime
ideal of D/I. So M/I=P/I and M=P, which contradicts our assum-
ption that PC M. Therefore we conclude that P is a maximal ideal.

(&) is obvious.

Let P,CP,C---S P, be a chain of prime ideals of an integral dom-
ain R. Then there always exists a valuation overring V of R such
that P,V ND=P; for each i=1, ---,n. This fact is crucial in proving
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the next result.

Tueorem 6. Let (R, M) be a two dimensional regular local domain
and I an ideal maximal among nonvaluation ideals of R. Then ] is
the mazximal ideal of R.

Proof. If P=+/T is not the maximal ideal, then P is a minimal
prime ideal of R. Since R is a UFD, there exists an e R such that
P=(a). By corollary 4, R/P is a PID. So M=P+ (b) for some bR
and M=(a, b). It is easy to see that A= {J is an ideal of R|(&®) CJ
C(a)} = {(a?, ab?®)} o. We claim that e A. We have to show that
P2c]. For otherwise, P2¢I and P2Z I+ (b”) for some n by Krull's
intersection theorem. Let J=({+ (#))NP. Then Pbr<=J. Since ICJ
CP, we have that v TS v JEP. Thus v JEM. Choose z& M\
v J. Then following the same argument as in the proof of Lemma
2, we can showt that J= N2, (J+ (z%)). Put J+ (2¥) =J;. Then each
J; is a valuation ideal since J, properly contains I. Now let z=a, y=
b»*. Now zy&J, which implies hat zysJ; for each £ For eacth &,
either 22 or »* belongs to J, since Ji is a valuation ideal [2, Lemma
24.47], and hence either 22 or »® belongs to infinitely many J;. So
ZeJ=Nm J; or y2cJ, ie, a*<J or ¥**<J. This contradicts that
P2Z ] and bt P. Thus we have that P2CI. Now I€ A, so that I=
(a2, ab™) for some n=>0. We can choose a valuation domain V such
that PVNR=P and MVNR=M. Obviously IVNR€A, so IVNR=
(a?, ab*) for some k. But <z since ISIVNR. We will show that
k=n, so that I=IVNR. Suppose k<a. Then

ab*cIV=(a%ab")V = btc(a,b®) V

= b¢(1—d"*) =aV for some vV

= ptcaV since 1—b6* tv(n—k>0) isa unitof V

(note that  is a nonunit of V since b&M and MV#V)

=> btcaVND=P

= heP,
which contradicts that P#M. Thus £=a, so I=IVNR is a valuation
ideal. But this contradicts that I is not a valuation ideal. Therefore
v T is the maximal ideal of R. '
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