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An Application of Bredikhin’s Theorem

S. HAuN AND Y. On

ABSTRACT. We apply Bredikhin’s theorem to the distribution
of prime numbers in arithmetic progressions.

Let P denote the set of all prime numbers. Let S be a subset of P.
Let G denote the multiplicative semigroup generated by 5. We define
two functions 7¢ and vg by

tg(z) = Z 1 and wvg(z)= Z 1.

p<z,p€S n<z,ne€G

We say S is regular if there are numbers r 2 0, € > 0 so that

z T
ma(z) = Tloga: +0 (log”‘:c)

Suppose that S is regular. Then by a theorem of Bredikhin (4], there
is a constant C¢ so that

B i zlog™ 'z
vg(z) = Cgzlog " z+0 (—-—-———log Tog®" a:)

where €7 = min(1,¢). We say that S has Bredikhin density 7 and
Bredikhin number Cg. Trivially, P has Bredikhin density 1 and
Bredikhin number 1. Let fg be the function on P defined by

1 if pes
0 otherwise.

s = {
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fs determines a completely multiplicative arithmetic function which
we denote by the same symbol fs. Then by a theorem of Wirsing [4],

ve(z) =Y fs(n)

(o) s L0557 )

where v is Euler’s constant and I'(7) denotes the gamma-function. So

zlog” !z
loglog® z

() I ().

Hence we have
THEOREM 1. Suppose that S is regular with v and Cg. Then

I, (-5)= (@ o0) s

p<Lz,p€ES

Cozlog™ 'z +0 (

ProoOF: We know that

(Co + 0(1))10;; log” 2 = (;;:) +°(1)) 10:-"«' _H (1 - %)

From this the claim easily follows.
REMARK: The case when § = P was proved by Merten.

Let H# = P — §. Then we have, by Merten’s result,

e_"‘r e_ﬂ/(l_r)

CoT(r)Cal(l=7)

e Y

So CeCuT(r)I'(1 —7) = 1, CgCy = (sinnr)/n. Here we see that
there may exist a theory similar to that of special values of gamma
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function and their relations [3]. Let n be an odd integer and a an
integer such that ged(n,a) = 1. Let S denote the set {p € P :p =
amod n}. We know that S is regular with » = 1/p(n) and some
e > 0 [2]. Let ¢(n,a) denote the Bredikhin number of 5. Then

e/ #(n)

tn.l;[=1 a1 fetm) ¢

So we have

THEOREM 2.

I cn a)=T(1/p(n) .

(r,a)=1

So we are naturally led to the following computational
QUESTION 3: Is ¢(4,1) = ¢(4,3)?
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