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An Application of Bredikhinas Theorem

S. Hahn and Y. Oh

ABSTRACT. We apply Bredikhin's theorem to the distribution 
of prime numbers in arithmetic progressions.

Let P denote the set of all prime numbers. Let S be a subset of P. 

Let G denote the multiplicative semigroup generated by S. We define 

two functions ttg and vq by

ttg(^) = 1 and ，g(z) = £ 1.

n<z, n^G

We say S is regular if there are numbers r > 0, € > 0 so that

顽时=言+。(庇悬)

Suppose that S is regular. Then by a theorem of Bredikhin [4], there 

is a constant Cg so that

= CGX logr-1 c+O 헚 ei：)
\ log log X J

where = min(l,€). We say that S has Bredikhin density r and 

Bredikhin number C* Trivially, P has Bredikhin density 1 and 

Bredikhin number 1. Let fs be the function on P defined by

1 if p 6 S

0 otherwise.
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fs determines a completely multiplicative arithmetic function which 

we denote by the same symbol fs- Then by a theorem of Wirsing [4],

心3) = £ fs(n)

n<x

=(謂+"⑴)亩业EV +響"•)

where y is Euler's constant and r(r) denotes the gamma-function. So

Cg log1」' 捋 L)
ylogiog1^/

=G3+여1))启丄(岂) •

Hence we have

THEOREM 1. Suppose that S is regular with 厂 이?d Cg・ Then

Proof： We know that

(Cg + .............  = (§7 + o(l)) i， TT 3—-一r-

長 槌⑺ 丿樓忠苗(1-9

From this the claim easily follows.

REMARK: The case when S = P was proved by Merten.

Let H = P — S. Then we have, by Merten's result,

e-7r e-7(l-r)

Cg「(丁)Ch「(1 一 丁)= © 七

So CgCh「⑺「(1 — r) = 1, CgCh = (sin 7tt)/7f. Here we see that 

there may exist a theory similar to that of special values of gamma 
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function and their relations [3]. Let n be an odd integer and a an 

integer such that gcd(n, a) = 1. Let S denote the set {p £ F : p 三 
a mod n}. We know that S is regular with r = l/(/?(n) and some 

e > 0 [2]. Let c(n, a) denote the Bredikhin number of S. Then

e-7/<^(n) _

(n,a)=l

So we have

Theorem 2.

U c(n, a) = r(l/</?(n))-¥，(n).

(n,a)=l

So we are naturally led to the following computational

Question 3： Is c(4,1) = c(4,3)?
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