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Optimal Sequential Tests 
which minimize the Average Sample Size

Sung Lai Kim

ABSTRACT. For testing a hypothesis H : 0 = A : 0 = 此 
(31 < 02), we obtain a truncated sequential bayes procedure 
which minimizes the average sample size between 0고 and 이2.

1. Introduction
Let Xi,X2,... be a sequence of random variables (not necessary 

idd) with joint distribution depending on a real parameter 0 6 0. 

Let X = (Xi, A}, • • •, An) at xn = (:ri,⑦2, • • •，究n) have a density 
Pnie(xn w.r.t. fjLn(dxn). Now suppose 0 = 0i is to be tested against 

6 = 02 where 佔 < 成. Let the error probabilities of any test 8 be 

«i(5) = (5 reject 仏), i = 1,2. Then we can find examples that

EqN for SPRT(Sequential Probability Ratio Test) is everywhere less 

than the sample size for fixed sample size procedure having the same

= 1,2) and also there are examples that 匕 max^ E$N for SPRT 

is large than the sample size for fixed sample size procedure with the 

same «i(i = 1,2). So there naturally arised the problem to find a 

procedure which minimizes max EqN.
By the optimum properties of the SPRT, given a SPRT with 

stopping bounds (B,』4), (B < 1 < A) and given A = (A1, A2) with 

0 < A’ < 1 (i = 1,2), the SPRT 8q is the sequential Bayes proce

dure (Ar, 4i,【2)for some 11,12 > 0. Therefore we can restricted the 

procedures in the sequential Bayes procedures and furthermore if a 

sequential Bayes procedure is truncated, then we can easily find the 

sequential Bayes procedure using the method of backward induction.

Several studies were done trying to minimize max E$N. In this 
61 玄어玄어 2

paper, we are interested in minimizing the average sample size be

tween 61 and 02 instead of minimizing maxE^TV. Throughout this
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paper, let (3t, 있, 6 € 0) be a probability space where Q C R and 

let A be a prior distribution on (0, Q3) where 53 is a a-field on 0. We 

use the following notations;

있: actions space, L : 0 x 21 — 2? nonnegative finite loss functionn, 

3) : X — 있 the set of decision functions. (or 11(5, A)) ; the Bayes 

Risk of 5 G 3).

2. Sequential Bayes procedures
LEMMA 1. Let P = {Pe : 0 6 0} be a dominated family of proba

bility distribution over (X, 21). For testing the hypothesis H : 0 = 

vs A : 0 = 02 (Oi < 02), put aj(5) = 日아 (take wrong decision |5) 

i = 1,2 and put i/(6) = E}0(7\『|5) for some 6i < 0q < ⑤ Then 

for a given 0<ai<l,i = l,2, there is a sequential Bayes proce

dure 6\ having Qi(@x) = «i(i = 1,2) which minimizes i/(6) among all 

procedures 5 € 2) with oti(6) < a,, i = 1,2.

PROOF: Let A = (A1, A0, A2 * *) be a prior distribution on {8i,9o,@2} 

with A* > 0, i = 0,1,2. Let

i = 0,1,2. If there exists a converging to zero sequence of constants 

{&n) such that I리L(仏，애(:rn))Pn,休(:己/己乃시 < b으 where 
i=l

2

rf°(rrn) is chosen to minimize 乞 乂£(休, dn(xn))Pn,休(:rn) among all
i=i ’

£(比,句) = {: ifi = 0ori=j,(Zj€3) 

otherwise 

and let the cost per observation be constant, say c > 0 if 0 = 0q and 

c = 0 if 0 = @i or 0 = 02-

7?(5, 시 = 乂어乃) 十 X2a2(6) 十 A°이/(5) W e

Since is Bayes (A), R(6, A) > K(@x, A) V 6 G 2). Therefore A°c[i/(5)- 
2

K分)] > S 시[아(祭) — %(스)] > o. So gii프 1/(5) = 少(5入).
i=i 5에

Theorem 2. Let (Xi,X2,...,Xn) have a p.d.f Pn,休(:rn) w.r.t 

//n(:rn) under 比 € 0 and Pn,休(a:n) < Pn,此(xn) V n, i = 1,2. Let 
A = (A1, A0, A2) be a prior distribution on with Xt > 0,
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W, 시 = 乞 / 

n=0 저

dn(xn>). Then the sequential Bayes procedure to test 6 = vs 02 

is truncated.

PROOF: Let cost per observation be c(> 0) if 0 = and zero if 

6 = or O2 and let L(比, aj) = 0ifi = 0ori=j and equals to one 

otherwise where aj is the action to accept 6j. Define the stopping rule 
00

as {ao?tti(^1),«2(^2)9 • • • } s.t. 乞伏n(나) = 1 where u; = (xi,⑦2, • • • ) 
o

and terminal decision rule {dn(xn)} values in {01,02}- Then for dn = 

dn(xn) = 얘,

an(:r")[A°nc.PnoGr") 

2

+ 乞 W(比, 애)pn,w：")]G(成")

i=l

= 히 an(:z:")[A0nc + MO] 月成") 

n=0 드
00

= J2Gan(A")[Aonc + MXn)] 

n=0

where bn(xn) = 乞 A~L(比, 애)Pn,어(xn)/Pn,此$xn). Put 
i=l

EeQan(Xn)bn(Xn)/EeQan(Xn) = bn,

then bn < Vn. We have R(6,X) = £ E此an(X")[A°nc + bn] = 
n=0 

00 _
52 ^n(A°nc + 6n) where 0n = EeQan(Xn). Let no be s.t. < A°c 
n=0
for all n > no. Then the sequential Bayes procedure 6x must have 

0n = 0 for n > no. So an(xn) = 0 a.e. P此, so does a.e.』P成 .

THEOREM 3. Let {Xi} be a sequence of random variables defined 

on (X,21,2玄,0 G 0 C -R) and let Xn = (A\,A},• • •, An) have a 

p.cLf Pnie(xn) w.r.t ^n(dxn) at xn = (xi,a：2,... ,^n)- For testing 

H : 0 = vs A : 0 = 62 ⑴ 1 < &2)with error probabilities 아 
(0 < a. < 1) i = 1,2.
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If there is a sequence of constants {&$} with 5$ —> 0 as n —> oo such 

that m]nPn,比(xn)-(02 — Oi)/ f：져 Pn,e(：心n)d0 < Vn. Then there is a 

truncated sequential Bayes procedure 6\ such that fg Ee(N\8x) dO = 

min f：2 Ee(N\6) dO for all <어(5) = Pe(6 reject 仏) < ai, i = 1,2.
5 引D 1

PROOF: Define a prior distribution on 0 as follows; A(比) = A2 > 0, 

i = 1,2, A = 0 if 6 < 0i or 6 > 成 and A0 dO on interval (61,62) with 
A1 + A2 + A°(02 — @1) = 1- Assume that the loss equals to one for wrong 

terminal decision, and cost per observation equals to one for each d, 

0i < 0 < 02 but no cost if 0 = or 成. Let {an} be a sequence of 

stopping rule. Then

W,A) = g an«)I 으 AWv=(O

n=0 이 L i=l
日 2 \

+nA° [ Pnje(xn)d0 > ^n(dorn).

九 i J

Observe that the best determinal decision dn(xn) = 0i if A1Pn)^1(a:n) > 

A2Pn,日2(:rn), and equals to 02 if X1Pn,e1(xn) < A2. Pn乃2(:rn). So 
oo

for best decision rule A) = 리 an(xn) f {min A1 • Pn,休(:cn) + 
n=o 두 ’

nX° Pn,e(：Dn)d0}fin(dxn). Let Pn(^n) = 하주 J：： PV—d6, 

then Pn(:rn) is a density w.r.t /zn(da:n) and

R(6, 시 = g an(z") I己(O{"2 — 0i)A0 

n=0 』

+ min 乂/\休(才)/己(丈)}/슈(成:").

Since mini Pn,^(J：n)/^n(^n) < b어 which converges to zero, there ex

ists a truncated sequential Bayes procedure 6\ which minimizes the 

average sample size by the theorem 2.
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