JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 3, June 1990

Optimal Sequential Tests which minimize the Average Sample Size

SUNG LAI KIM

ABSTRACT. For testing a hypothesis $H : \theta = \theta_1$, vs $A : \theta = \theta_2$ $(\theta_1 < \theta_2)$, we obtain a truncated sequential bayes procedure which minimizes the average sample size between θ_1 and θ_2 .

1. Introduction

Let X_1, X_2, \ldots be a sequence of random variables (not necessary idd) with joint distribution depending on a real parameter $\theta \in \Theta$. Let $X = (X_1, X_2, \ldots, X_n)$ at $x^n = (x_1, x_2, \ldots, x_n)$ have a density $P_{n,\theta}(x^n \text{ w.r.t. } \mu_n(dx^n)$. Now suppose $\theta = \theta_1$ is to be tested against $\theta = \theta_2$ where $\theta_1 < \theta_2$. Let the error probabilities of any test δ be $\alpha_i(\delta) = P_{\theta_i}$ (δ reject θ_i), i = 1, 2. Then we can find examples that $E_{\theta}N$ for SPRT(Sequential Probability Ratio Test) is everywhere less than the sample size for fixed sample size procedure having the same $\alpha_i(i = 1, 2)$ and also there are examples that $\max_{\theta_1 \leq \theta \leq \theta_2} E_{\theta}N$ for SPRT is large than the sample size for fixed sample size procedure with the same $\alpha_i(i = 1, 2)$. So there naturally arised the problem to find a procedure which minimizes $\max E_{\theta}N$.

By the optimum properties of the SPRT, given a SPRT δ_0 with stopping bounds (B, A), $(B \leq 1 \leq A)$ and given $\lambda = (\lambda^1, \lambda^2)$ with $0 < \lambda^i < 1$ (i = 1, 2), the SPRT δ_0 is the sequential Bayes procedure $(\lambda_1, \iota_1, \iota_2)$ for some $\iota_1, \iota_2 > 0$. Therefore we can restricted the procedures in the sequential Bayes procedures and furthermore if a sequential Bayes procedure is truncated, then we can easily find the sequential Bayes procedure using the method of backward induction.

Several studies were done trying to minimize $\max_{\substack{\theta_1 \leq \theta \leq \theta_2}} E_{\theta}N$. In this paper, we are interested in minimizing the average sample size between θ_1 and θ_2 instead of minimizing $\max E_{\theta}N$. Throughout this

Received by the editors on 25 June 1990.

¹⁹⁸⁰ Mathematics subject classifications: Primary 62L10.

paper, let $(\mathfrak{X}, \mathfrak{A}, P_{\theta} : \theta \in \Theta)$ be a probability space where $\Theta \subset R$ and let λ be a prior distribution on (Θ, \mathfrak{B}) where \mathfrak{B} is a σ -field on Θ . We use the following notations;

 \mathfrak{A} : actions space, $L: \Theta \times \mathfrak{A} \to R$ nonnegative finite loss functionn, $\mathfrak{D}: \mathfrak{X} \to \mathfrak{A}$ the set of decision functions. R_{δ} (or $R(\delta, \lambda)$); the Bayes Risk of $\delta \in \mathfrak{D}$.

2. Sequential Bayes procedures

LEMMA 1. Let $P = \{P_{\theta} : \theta \in \Theta\}$ be a dominated family of probability distribution over $(\mathfrak{X}, \mathfrak{A})$. For testing the hypothesis $H : \theta = \theta_1$ vs $A : \theta = \theta_2$ ($\theta_1 < \theta_2$), put $\alpha_i(\delta) = P_{\theta_i}$ (take wrong decision $|\delta\rangle$ i = 1, 2 and put $\nu(\delta) = E_{\theta_0}(N|\delta)$ for some $\theta_1 < \theta_0 < \theta_2$. Then for a given $0 < \alpha_i < 1$, i = 1, 2, there is a sequential Bayes procedure δ_{λ} having $\alpha_i(\delta_{\lambda}) = \alpha_i(i = 1, 2)$ which minimizes $\nu(\delta)$ among all procedures $\delta \in \mathfrak{D}$ with $\alpha_i(\delta) \leq \alpha_i$, i = 1, 2.

PROOF: Let $\lambda = (\lambda^1, \lambda^0, \lambda^2)$ be a prior distribution on $\{\theta_1, \theta_0, \theta_2\}$ with $\lambda^i > 0, i = 0, 1, 2$. Let

$$L(\theta_i, a_j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } i = j, a_j \in \mathfrak{D} \\ 1 & \text{otherwise} \end{cases}$$

and let the cost per observation be constant, say c > 0 if $\theta = \theta_0$ and c = 0 if $\theta = \theta_1$ or $\theta = \theta_2$.

$$R(\delta,\lambda) = \lambda^1 \alpha_1(\delta) + \lambda^2 \alpha_2(\delta) + \lambda^0 c \nu(\delta) \quad \forall \delta \in \mathfrak{D}.$$

Since δ_{λ} is Bayes (λ) , $R(\delta, \lambda) \ge R(\delta_{\lambda}, \lambda) \forall \delta \in \mathfrak{D}$. Therefore $\lambda^{0} c[\nu(\delta) - \nu(\delta_{\lambda})] \ge \sum_{i=1}^{2} \lambda^{i} [\alpha_{i}(\delta_{\lambda}) - \alpha_{i}(\delta)] \ge 0$. So $\min_{\delta \in \mathfrak{D}} \nu(\delta) = \nu(\delta_{\lambda})$.

THEOREM 2. Let $(X_1, X_2, ..., X_n)$ have a p.d.f. $P_{n,\theta_i}(x^n)$ w.r.t $\mu_n(x^n)$ under $\theta_i \in \Theta$ and $P_{n,\theta_i}(x^n) \ll P_{n,\theta_0}(x^n) \forall n, i = 1, 2$. Let $\lambda = (\lambda^1, \lambda^0, \lambda^2)$ be a prior distribution on $\{\theta_1, \theta_0, \theta_2\}$ with $\lambda^i > 0$, i = 0, 1, 2. If there exists a converging to zero sequence of constants $\{b_n^0\}$ such that $\sum_{i=1}^2 \lambda^i L(\theta_i, d_n^0(x^n)) P_{n,\theta_i}(x^n) / P_{n,\theta_0}(x^n) \leq b_n^0$ where $d_n^0(x^n)$ is chosen to minimize $\sum_{i=1}^2 \lambda^i L(\theta_i, d_n(x^n)) P_{n,\theta_i}(x^n)$ among all

 $d_n(x^n)$. Then the sequential Bayes procedure δ_{λ} to test $\theta = \theta_1$ vs θ_2 is truncated.

PROOF: Let cost per observation be c(>0) if $\theta = \theta_0$ and zero if $\theta = \theta_1$ or θ_2 and let $L(\theta_i, a_j) = 0$ if i = 0 or i = j and equals to one otherwise where a_j is the action to accept θ_j . Define the stopping rule as $\{\alpha_0, \alpha_1(x^1), \alpha_2(x^2), \ldots\}$ s.t. $\sum_{i=0}^{\infty} \alpha_n(\omega) = 1$ where $\omega = (x_1, x_2, \ldots)$ and terminal decision rule $\{d_n(x^n)\}$ values in $\{a_1, a_2\}$. Then for $d_n = d_n(x^n) = d_n^0$,

$$R(\delta,\lambda) = \sum_{n=0}^{\infty} \int \alpha_n(x^n) [\lambda^0 nc \cdot P_{n_0}(x^n) + \sum_{i=1}^{2} \lambda^i L(\theta_i, d_n^0) P_{n,\theta_i}(x^n)] \mu_n(dx^n)$$
$$= \sum_{n=0}^{\infty} \int \alpha_n(x^n) [\lambda^0 nc + b_n(x^n)] P_{n,\theta_0}(x^n) \mu_n(dx^n)$$
$$= \sum_{n=0}^{\infty} E_{\theta_0} \alpha_n(\lambda^n) [\lambda^0 nc + b_n(X^n)]$$

where $b_n(x^n) = \sum_{i=1}^2 \lambda^i L(\theta_i, d_n^0) P_{n,\theta_i}(x^n) / P_{n,\theta_0}(x^n)$. Put $E_{\theta_0} \alpha_n(X^n) b_n(X^n) / E_{\theta_0} \alpha_n(X^n) \equiv \bar{b}_n,$

then $\bar{b}_n \leq b_n^0 \,\forall n$. We have $R(\delta, \lambda) = \sum_{n=0}^{\infty} E_{\theta_0} \alpha_n(X^n) [\lambda^0 nc + \bar{b}_n] = \sum_{n=0}^{\infty} \beta_n (\lambda^0 nc + \bar{b}_n)$ where $\beta_n = E_{\theta_0} \alpha_n(X^n)$. Let n_0 be s.t. $b_n^0 < \lambda^0 c$ for all $n \geq n_0$. Then the sequential Bayes procedure δ_{λ} must have $\beta_n = 0$ for $n > n_0$. So $\alpha_n(x^n) = 0$ a.e. P_{θ_0} , so does a.e. P_{θ_i} .

THEOREM 3. Let $\{X_i\}$ be a sequence of random variables defined on $(\mathfrak{X}, \mathfrak{A}, P_{\theta}, \theta \in \Theta \subset R)$ and let $X^n = (X_1, X_2, \ldots, X_n)$ have a p.d.f. $P_{n,\theta}(x^n)$ w.r.t $\mu_n(dx^n)$ at $x^n = (x_1, x_2, \ldots, x_n)$. For testing $H : \theta = \theta_1$ vs $A : \theta = \theta_2$ ($\theta_1 < \theta_2$) with error probabilities α_i ($0 < \alpha_i < 1$) i = 1, 2.

SUNG LAI KIM

If there is a sequence of constants $\{b_n^0\}$ with $b_n^0 \to 0$ as $n \to \infty$ such that $\min_i P_{n,\theta_i}(x^n) \cdot (\theta_2 - \theta_1) / \int_{\theta_1}^{\theta_2} P_{n,\theta}(x^n) d\theta \leq b_n^0 \, \forall n$. Then there is a truncated sequential Bayes procedure δ_λ such that $\int_{\theta_1}^{\theta_2} E_{\theta}(N|\delta_\lambda) d\theta = \min_{\delta \in \mathfrak{D}} \int_{\theta_1}^{\theta_2} E_{\theta}(N|\delta) d\theta$ for all $\alpha_i(\delta) = P_{\theta}(\delta \text{ reject } \theta_i) \leq \alpha_i, i = 1, 2$.

PROOF: Define a prior distribution on Θ as follows; $\lambda(\theta_i) = \lambda^i > 0$, $i = 1, 2, \lambda = 0$ if $\theta < \theta_1$ or $\theta > \theta_2$ and $\lambda^0 d\theta$ on interval (θ_1, θ_2) with $\lambda^1 + \lambda^2 + \lambda^0(\theta_2 - \theta_1) = 1$. Assume that the loss equals to one for wrong terminal decision, and cost per observation equals to one for each θ , $\theta_1 < \theta < \theta_2$ but no cost if $\theta = \theta_1$ or θ_2 . Let $\{\alpha_n\}$ be a sequence of stopping rule. Then

$$R(\delta,\lambda) = \sum_{n=0}^{\infty} \alpha_n(x^n) \int \left\{ \sum_{i=1}^{2} \lambda^i L(\theta_i, d_n(x^n)) P_{n,\theta_i}(x^n) + n\lambda^0 \int_{\theta_1}^{\theta^2} P_{n,\theta}(x^n) d\theta \right\} \mu_n(dx^n).$$

Observe that the best determinal decision $d_n(x^n) = \theta_1$ if $\lambda^1 P_{n,\theta_1}(x^n) > \lambda^2 P_{n,\theta_2}(x^n)$, and equals to θ_2 if $\lambda^1 P_{n,\theta_1}(x^n) < \lambda^2$. $P_{n,\theta_2}(x^n)$. So for best decision rule $R(\delta,\lambda) = \sum_{n=0}^{\infty} \alpha_n(x^n) \int \{\min_i \lambda^i \cdot P_{n,\theta_i}(x^n) + n\lambda^0 \int_{\theta_1}^{\theta_2} P_{n,\theta}(x^n) d\theta \} \mu_n(dx^n)$. Let $\overline{P}_n(x^n) = \frac{1}{\theta_2 - \theta_1} \int_{\theta_1}^{\theta_2} P_{n,\theta}(x^n) d\theta$, then $\overline{P}_n(x^n)$ is a density w.r.t $\mu_n(dx^n)$ and

$$R(\delta,\lambda) = \sum_{n=0}^{\infty} \alpha_n(x^n) \int \overline{P}_n(x^n) \{n(\theta_2 - \theta_1)\lambda^0 + \min_i \lambda^i P_{n,\theta_i}(x^n) / \overline{P}_n(x^n)\} \mu_n(dx^n).$$

Since $\min_i P_{n,\theta_i}(x^n)/\overline{P}_n(x^n) \leq b_n^0$ which converges to zero, there exists a truncated sequential Bayes procedure δ_{λ} which minimizes the average sample size by the theorem 2.

REFERENCES

1. Burkholder, D.L., Wijsman, R.A., Optimum properties and admissibility of sequential tests, Ann. Math. Statist. 34 (1963), 1-18.

- 2. Govindarajulu, Z., "The sequential statistical analysis," Amer. Science Press, Inc., 1981.
- 3. Lehmann, E.L, "Testing statistical hypotheses," Wiley, New-York, 1959.
- 4. Lai, T.L., Optimum stopping and sequential tests which minimize the maximum expected sample size, Ann. Statist. 1 (1973), 659-673.
- 5. Matthes, T.K., On the optimality of sequential probability ratio tests, Ann. Math. Statist **34** (1963), 18-21.
- 6. Shapiro, C.P., Wardrop, R.L., Bayes sequential estimation for one parameter exponential families, J. Amer. Statist. Assoc. 75 (1981), 984-988.
- 7. Siegmund, D.O., "Sequential Analysis," Springer-Verlag, New-York, 1985.
- 8. Weiss, L., On sequential tests which minimize the maximum expected sample size, J. Amer. Statist. Assoc. 57 (1962), 551-557.

Department of Mathematics Chungnam National University Taejeon, 305-764, Korea